Please use this identifier to cite or link to this item:
Title: Impact of mobility patterns on the performance of a disruption tolerant network with multi-radio energy conservation
Authors: Tumar, Iyad 
Sehgal, Anuj 
Schönwälder, Jürgen 
Keywords: Wireless communication systems;Mobile communication systems;Routing (Computer network management);Electronic data processing - Distributed processing.;Fault-tolerant computing;Computer networks - Scalability;Multi-Radio energy conservation
Issue Date: 2011
Publisher: Proceedings - International Conference on Advanced Information Networking and Applications, AINA
Abstract: Frequent partitions, intermittent connectivity and message delivery delay are the commonly observed characteristics of disruption tolerant networks (DTNs). These networks often operate over extended periods since they are regularly deployed in harsh and constrained environments. Efficient energy conservation is therefore necessary to prolong network lifetime. Most DTNs nodes depend on mobility to deliver messages to their destination. The introduction of energy conservation, using a high power radio for data delivery and low power radio for neighbor discover to achieve higher energy savings, coupled with mobility can negatively impact the total connection opportunities. This makes it important to understand the effects that mobility patterns can have on the performance of DTNs when multi-radio energy conservation is used. In this paper we study the effects of random waypoint, Manhattan mobility, message-ferry, human and zebra mobility models on DTNs where a wake-up model multi-radio energy conservation is used. The simulation results show that absolute impact of mobility on energy savings is quite limited. It also appears that in high traffic load dense networks mobility impacts delivery ratios and average delays, while impact in low traffic is not pronounced.
DOI: 10.1109/AINA.2011.83
Appears in Collections:Fulltext Publications

Show full item record

Page view(s)

checked on Jun 27, 2024


checked on Jun 27, 2024

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.