Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11889/5382
DC FieldValueLanguage
dc.contributor.authorSaleh, Mohammad
dc.contributor.authorAmer, Jafar
dc.date.accessioned2018-03-07T07:53:09Z
dc.date.available2018-03-07T07:53:09Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.11889/5382
dc.description.abstractThe main goal of this paper is to investigate the boundedness, invariant intervals, semi-cycles and global attractivity of all nonnegative solutions of the equation xn+1 = βxn + γ xn−k A + Bxn + C xn−k , n ∈ N0, where the parameters β, γ, A, B and C and the initial conditions x−k , x−k+1,..., x0 are non-negative real numbers, k = {1, 2,...}. We give a detailed description of the semi-cycles of solutions, and determine conditions that satisfy the global asymptotic stability of the equilibrium pointsen_US
dc.language.isoenen_US
dc.subjectNonlinear difference equations - Numerical solutions.en_US
dc.subjectNonlinear theoriesen_US
dc.subjectdynamicsen_US
dc.titleDynamics of nonlinear difference equationen_US
dc.typeArticleen_US
newfileds.departmentScienceen_US
newfileds.corporate-authorJaefar Aen_US
newfileds.item-access-typeopen_accessen_US
newfileds.thesis-prognoneen_US
newfileds.general-subjectnoneen_US
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
Appears in Collections:Fulltext Publications
Files in This Item:
File Description SizeFormat
amerjaf-saleh.pdf870.88 kBAdobe PDFView/Open
Show simple item record

Page view(s)

51
Last Week
2
Last month
4
checked on May 11, 2022

Download(s)

31
checked on May 11, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.