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Abstract: We present and validate a computationally efficient lower limb musculoskeletal model
for the control of a rehabilitation robot. It is a parametric model that allows the customization of
joint kinematics, and it is able to operate in real time. Methods: Since the rehabilitation exercises
corresponds to low-speed movements, a quasi-static model can be assumed, and then muscle force
coefficients are position dependent. This enables their calculation in an offline stage. In addition, the
concept of a single functional degree of freedom is used to minimize drastically the workspace of
the stored coefficients. Finally, we have developed a force calculation process based on Lagrange
multipliers that provides a closed-form solution; in this way, the problem of dynamic indeterminacy
is solved without the need to use an iterative process. Results: The model has been validated by
comparing muscle forces estimated by the model with the corresponding electromyography (EMG)
values using squat exercise, in which the Spearman’s correlation coefficient is higher than 0.93. Its
computational time is lower than 2.5 ms in a conventional computer using MATLAB. Conclusions:
This procedure presents a good agreement with the experimental values of the forces, and it can be
integrated into real time control systems.

Keywords: biomechanics; musculoskeletal model; knee

1. Introduction

Lower limb musculoskeletal models (MSM) constitute a powerful simulation tool with
numerous applications in the field of sports and rehabilitation. Despite the progress made
in lower limb MSM, they still have some drawbacks which affect their validity [1] and their
usefulness in clinical applications [2]. These drawbacks are related with three fundamental
aspects: (i) have a precise and adjustable kinematic model for each patient; (ii) keep the
model complexity as low as possible; and (iii) experimentally validate the model.

First, joint kinematics must be able to accommodate specific rehabilitation movements
and inter-subject variability. In effect, the knee kinematics model defines the estimated
relative motion between relevant anatomical points, affecting the muscles’ lever arms and
the calculated forces, hence it is important to use models that can be adapted to different
peoples and ranges of movement [3]. Leardini et al. conducted an exhaustive review of the
different joint models used in MSM [4]. Simple knee models using the revolute pair do not
adequately represent its kinematics [5]. In contrast, other complex models, such as those
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presented by [6], provide good movement estimates, but require anatomical information
that can only be personalized using medical imaging techniques. However, the most widely
used models represent the knee joint using a mobile axis of rotation, whose position and
orientation are related to knee flexion angle. This relationship is obtained experimentally
in in vitro studies, which limits its realism and customization capacity [7], mainly when
applied to people with medical conditions [8,9].

For this reason, other alternatives that are more adaptable to different subjects or con-
ditions of movement have been developed. One approach is based on three-dimensional
parallel mechanisms that attempt to simulate the geometry of the ligaments [10]. Unfor-
tunately, they have the disadvantages of (i) needing complex personalization based on
anatomical data that requires medical imaging [4], and (ii) being sensitive to the mechanical
properties of the ligaments [11]. A simpler approach was proposed in Farhat et al. [12],
which simulates the instantaneous axis of rotation through a four-bar mechanism obtained
through a functional calibration procedure.

Second, the models must offer an adequate representation of the contribution of muscle
groups to joint movement, which is usually associated with considering a higher number of
muscles. The majority of models used in practice apply schemes similar to those introduced
by Delp et al. [13], and improved by Klein Horsman et al. [14] and Arnold et al. [15], with
numerous groups of muscles. Generally, it is assumed that increasing the complexity of the
model will improve its validity [16,17]. However, increasing the number of muscles requires
more information about their anatomical and physiological characteristics to calibrate the
model [18]. In addition, the resolution of the problem of the redundancy of muscular
actions becomes more difficult, requiring complex optimization algorithms with a high
computational cost [19,20]. For this reason, in many works, adjacent muscles are grouped,
or only a single set of muscles is considered when solving the redundancy problem [21].

Finally, the validity of MSMs is perhaps the main limitation for their use in clinical
applications. Currently, some practical rules for the verification and validation of MSMs
have been established [22]. Other important clinimetric properties, such as the reliability of
the estimates, have also been addressed [23]. However, most of the published works are
limited to comparing estimates with other previous models or to indirect validations based
on the coherence between the levels of EMG activity and the estimated forces [20,24]. The
works with direct validation, i.e., the magnitudes estimated by the model are compared
directly with experimental measurements, are scarce, and are often limited to in vitro
validations [25]. The results of these studies are difficult to extrapolate to clinical appli-
cations. Hence the interest in in vivo validation based on joint contact forces, measured
from instrumented knee prostheses [16,26] has recently been increased. Although it is not a
complete validation—only the contact forces are measured, not the muscular ones—the
instrumented prostheses are the source of experimental data in vivo with measurements
closest to the reality of the internal reactions in the knee joint.

One of the most recent and interesting applications of MSM is their inclusion within
the control algorithm of the robotic systems devoted to rehabilitation exercises. The
knowledge of the muscular and ligamentous forces during movement allows (i) to increase
the patient’s safety during the process; (ii) to monitor the rehabilitation process over time,
thus quantifying its progress; and (iii) to establish a priori what force levels are to be
achieved during the movement in specific muscles [27].

Within the mechanical systems that constitute the core of robotic rehabilitation systems,
two main types can be distinguished: open kinematic chains, mainly exoskeletons [28–30],
and closed kinematic chains, mainly parallel robots. One of the main differences between
exoskeletons [31] and parallel robots for knee rehabilitation (RPRs) [32] is that the RPRs
exert mechanical actions on the distal end of the limb. For this reason, it is necessary to
ensure that the forces transmitted by the robot terminal element (mobile platform) to the
patient’s foot give rise to the desired actions on the knee. As a result, developing a precise
and adjustable MSM for the estimation of the relevant forces in the knee, such as muscle,
tendon, ligament, and tibial contact forces, while performing the exercise with the robot is
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of paramount importance for the practical implementation of RPRs [21]. Additionally, if
the model is to be integrated into the RPR control scheme, it must be simple enough to be
able to operate in real-time. Finally, the MSM must be verified experimentally, since the
safety and evolution of the patient’s recovery from injury will depend on it.

In this research, we propose a simplified MSM lower limb model for the control of an
RPR [33]. It is based on a scalable parametric model [12], with some adaptations to reduce
the computational cost and thus operate in real-time [11]. The model has been validated by
using data from the “Third Grand Challenge Competition to Predict in Vivo Knee Loads” [26,34].

2. Materials and Methods

As mentioned before, the main objective of this work is to improve the computational
efficiency of the dynamic model of the lower limb introduced in Nidal et al. [12], such that it
can be used in real-time control algorithms of parallel robots used in rehabilitation exercises.
In this section: (a) an overview of the dynamic model is presented, (b) assumptions to
improve its computational efficiency are provided, (c) a real-time algorithm is provided,
and finally (d) the procedure that was used in its verification is presented.

2.1. Dynamic Model

Here is a quick overview of this model is presented. The reader can refer to the original
article [12] for more detailed information.

The lower limb is modeled by means of four segments: pelvis, femur, tibia, and foot.
The joints are modeled as a three degrees-of-freedom (DOF) spherical joint at the hip joint
center (HJC), a one-DOF four-bar mechanism at the knee, and a one-DOF revolute joint at
the ankle joint center (AJC), leading to a total of five independent generalized coordinates.
The inputs of the kinematic model are the coordinates of a set of anatomical landmarks,
measured by a video-photogrammetry system (Figure 1).
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The location of the HJC and the parameters of the four-bar mechanism that best match
the actual motion of the knee are obtained in an offline stage using a functional calibration
procedure [12]. For the location of the HJC, we use the method described in [35]. The
four-bar mechanism that represents knee motion is determined using an optimal synthesis
procedure based on the formulation of [36]. Furthermore, at this stage, (a) scaling is carried
out to adjust the anatomical and joint characteristics as well as the inertial parameters
of the model to the size of the subject, and (b) the local anatomical coordinate systems
(ACSs) are defined. Later, in the online stage, the global positions of each parameter can be
reconstructed from the motion of ACSs.

With respect to the dynamic model, the equation of motion was developed in the form
of generalized forces using direct Jacobian transformation [12]:

→
τ I +

→
τ G +

→
τ Mus +

→
τ Ext =

→
0 (1)

where,
→
τ Mus,

→
τ I ,
→
τ G, and

→
τ Ext are the generalized forces corresponding to muscles, inertia,

gravity, and external forces, respectively.
Note that the complete model includes all the inertial effects in

→
τ I . They were obtained

basing on the inertial parameter calculated using the relations of Dumas et al. [37].
With respect to the muscles, they were modeled using via points and via cylinders

approaches, as well as by considering the major muscles controlling the knee joint: eight
flexors and ten extensors [14]. To solve the redundancy problem that exists in the calcu-
lation of muscle forces, minimizing the squared sum of muscle stresses was used as the
optimization criterion. Once muscle forces were calculated, important knee forces such as
the normal force on the meniscus and ligament forces were calculated from the free body
diagram of the tibia.

2.2. Computational Efficiency Improvements

The following improvements were implemented to enhance the computational effi-
ciency of the model:

1. Since the model is applied to slow movements in rehabilitation exercises, the iner-
tial forces are considered negligible compared to gravitational and external ones.
Therefore, we assume a quasi-static model that does not depend on velocities and
accelerations. As a result, the equation of motion expressed by Equation (1) can be
represented by the following simple equation:

→
τ Mus = −

(→
τ G +

→
τ Ext

)
(2)

The generalized forces that correspond to weight and external forces, respectively,
simply are:

τG = JT
GFem

→
W

T

Fem + JT
GTib

→
W

T

Tib + JT
GFoot

→
W

T

Foot (3)

and:
τExt = JT

PExt

→
F Ext + JT

ωFoot

→
MExt (4)

where JT
GFem

, JT
GTib

, JT
GFoot

, JT
PExt

, and JT
ωFoot

are the Jacobian matrices relating the generalized

coordinates to the gravitational forces of the femur
→
WFem, tibia

→
WTib, the foot

→
WFoot, the

external force
→
F Ext, and moment

→
MExt, respectively.

2. We solve the redundancy problem by minimizing the squared sum of muscle stress.
Therefore, the associated optimization procedure has a direct analytical solution by
using Lagrange multipliers [2]. Thus, Equation (2) can be rewritten as follows:

− (τG + τExt) = τMus = C1F1 + C2F2 + · · ·+ CnFn (5)
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where, Fi represents the i-th muscle force, and Ci its coefficient or its contribution to the
generalized force, which is calculated using the direct Jacobian transformation. The result of
the optimization process is equivalent to Equation (6), extracted using Lagrange multipliers

Fi =
A2

i CiτMus

∑n
j=1

(
AjCj

)2 (6)

where Ai represents the i-th muscle cross-sectional area as measured in [14]. It appeared
here as a result of minimizing the squared sum of muscle stresses, as mentioned previously
Hence, the optimization process can be omitted from the formulation of the dynamic model.

3. The calculation of the muscle’s coefficients Ci—or moment arms—is a computation-
ally high-cost procedure. This issue arises due to the number of muscles under
consideration, their modeling, insertion points, and the corresponding Jacobian calcu-
lations. Fortunately, these coefficients are exclusively dependent on bone geometry
and the current position. Therefore, they can be calculated in an offline process for all
the possible combinations of the generalized coordinates in the dynamic system [2].
In this way, the muscle force calculation in the online stage is carried out directly
using Equation (6) from the corresponding generalized muscle force value.

4. The number of combinations associated with 5 DOF is too large. For example, for the
squat exercise and assuming a discretization with a step of 1% of the range of each of
the generalized coordinates, 3.2 × 1011 possible combinations are obtained. However,
this number can be drastically decreased by assuming a reduced number of functional
degrees of freedom. Indeed, due to motor coordination, generalized variables do not
change independently in repetitive movements. As a result, the number of indepen-
dent parameters needed to describe this motion is lower than the total number of
generalized coordinates. These independent parameters are called functional degrees
of freedom (fDOF) [38]. This concept allows us to determine experimentally, and for
each individual, the relationships between the main variable (the knee angle in our
case) and the rest of the generalized coordinates of the model. Then, the combinations
to be considered are reduced to the range of the main variable plus a narrow band
of the rest of the variables around their average functions. These functions must be
established in an offline process, carried out previously, in a kinematic calibration
phase of the model.

After calculating the generalized muscle force τMus using Equation (2), the muscle
forces can be obtained directly by applying Equation (6). All of the previous equations
are simple, direct, and computationally efficient, enabling the real-time calculation of
muscle forces.

2.3. Real-Time Algorithm

Figure 2 summarizes the two stages to apply the model: an offline calibration stage,
and an online muscle and joint force calculation stage. The offline calibration stage consists
of performing kinematic exercises for the anatomical, functional, and kinematic calibration
of the model. The anatomical and functional calibration provides (1) the size of the modeled
bone, (2) the parameters of the joints (HJC and four-bar mechanism), (3) the points of
insertion of the muscles, and (4) the scale of the inertia parameters. This calibration is
followed by a series of rehabilitation exercises to obtain the functional relationships between
the kinematic variables. The workspace is discretized, and the coefficients of muscle force
are calculated.
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Figure 2. Application of the model.

The model is then ready for online application in real time. The movement of the
lower limb and its associated ACSs are reconstructed from the marker positions recorded
by video photogrammetry. A force sensor measures the forces applied on the foot by the
robot, while the gravitational forces are estimated from the masses and the positions of
the centers of mass, which makes it possible to obtain the generalized muscle forces using
Equation (2). According to the current value of the generalized coordinates, the values of
muscle coefficients are retrieved from the stored offline values. Then, the magnitudes of
muscle forces are calculated using Equation (6), as well as the internal reaction forces in the
knee joint.

2.4. Verification and Validation

An experiment has been carried out to test the starting hypotheses and to verify
the consistency of the model’s estimates with the levels of electromyographic activity.
Furthermore, direct validation of the model’s estimates was carried out using in vivo
experimental measurements based on data from Fregly et al. [26].

The verification of the model was performed using squat exercises (Figure 3). This
motion imposes high force levels on the knee joint that induce higher moments and muscle
forces than those resulting from normal gait motion. The experiment was approved by the
Ethics Committee of the Universitat Politècnica de València, and all participants signed an
informed consent document.

The subjects were asked to remain still in an upright, standing position, and a 5 s static
trial was recorded. This trial was used for scaling the model. Subsequently, functional trials
were performed enabling the functional calibration of the hip joint center, as well as the
four-bar mechanism of the knee.

The considered squat exercise consisted of a repetitive cyclic motion, up and down
with three load levels, in each of two trials: (i) with no load (L0), (ii) with a 6 kg backpack
(L1), and (iii) with a 12 kg backpack (L2). Subjects were asked to perform approximately
5 slow repetitions of the squat, with their feet pointing forward, within 30 s.
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Kinematic, dynamic, and EMG variables were recorded using conventional biome-
chanics instrumentation. External ground reaction forces were measured using a Di-
nascan/IBV force platform, and the movement was recorded using a Kinescan video–
photogrammetry/IBV system [2]. Anatomical landmarks were used to scale the model
and for the functional calibration [12]. The movements were recorded at 120 fps. Finally,
EMG signals were measured with Noraxon Myotrace400 equipment (Scottsdale, AZ, USA).
The equipment provides the RMS value (root mean square) of the EMG signal sampled
at 1000 Hz. This signal was subsampled at 100 Hz, smoothed, and interpolated to obtain
the values at the same time instants as Kinescan. The EMG electrodes were placed on the
vastus medialis (VM) and vastus lateralis (VL), the biceps femoris, and the gastrocnemius
according to the recommendations of SENIAM Project [39].

2.5. Data Processing and Statistical Analysis

The kinematic analysis was carried out from the coordinates of the markers, using
the algorithms described in Page et al. [40]. For this study, two approaches were used to
estimate the muscle forces: the full dynamic model (FDM) described in Farhat et al. [12],
and the static geometric model (SGM) proposed here, using Equations (3)–(6).

Based on the experimental data, we have made the following verifications:

1. Verification of the hypothesis of one functional degree of freedom. The degree of
dependence of the generalized coordinates on the main variable (knee angle) has been
calculated using a determination coefficient [41]. This coefficient was calculated for
each of the different load conditions (0 kg, 6 kg, and 12 kg) for the five subjects. For
these 45 measurements, the median and interquartile range were obtained.

2. Verification of the hypothesis that inertial forces are negligible. We quantified the
agreement between the generalized forces calculated from FDM and SGM. Concor-
dance was assessed using the intraclass correlation coefficient (ICC) and the standard
error of measurement (SEM). These calculations have been carried out in a functional
way, obtaining a value for each trial (n = 15, 5 subjects × 3 trials) [42].

3. Evaluation of the concordance between muscle forces as estimated using the SGM and
the EMG measurements, using Spearman’s correlation coefficient (n = 75, five subjects,
three trials, five cycles).
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4. Predictive ability of the model. Trials with load conditions L0 and L2 were used to
establish a functional relationship between the muscle forces estimated by the model,
VL and VM muscles using SGM, and the corresponding EMG signals observed
(rms value). This functional relationship was used to estimate the forces in the same
muscles for load condition L1 as a function of the corresponding EMG signals (rms)
only. These new muscle estimates are referred to as FVLemg and FVMemg. For
verification, they were compared with the same muscle values obtained by the model
for the same load conditions. The comparison was made using ICC and standard error
of the mean SEM, as described in point 2 (n = 25, five subjects, one trial, five cycles).

5. Finally, a comparison was made between the internal reaction forces of the knee as
estimated by our model and as measured experimentally in Fregly et al. [26]. We used
ICC and SEM, as described in Points 2 and 4.

3. Results

The study involved five subjects, three females and two males (age 34.2 ± 10.3 years,
mass 60.0 ± 6 kg, mean ± SD). For the validation of the model, we used the data of a
woman from the “Third Grand Challenge Competition to predict in vivo knee loads” [26].

Each subject performed 5 continuous cycles for each of the three loading conditions
(no load, L0; 6 kg load, L1; and 12 kg load, L2). Only measurements for the right leg were
recorded.

Table 1 shows the kinematic characteristics of the movements (mean and SD) of the
knee range (flexion–extension), and the corresponding maximum angular velocities in both
directions. The mean range of flexion was 96.2◦, with a maximum value of 106.5◦. The
mean maximum angular velocity was 81.2◦/s in the flexion movement and somewhat
faster (86.4◦/s) in the extension movement.

Table 1. Kinematic characteristics of the movements (n = 15, five subjects x three load conditions).

Variable Mean STD

Knee ROM (◦) 96.2 7.1
Max knee flexion angle (◦) 106.5 5.9

Max flexion angular velocity (◦/s) 81.2 25.0
Max extension angular velocity (◦/s) 81.2 22.4

Table 2 describes the dynamic variables estimated by the full dynamic model (FDM).
Knee moment had a negative mean value in the order of −30 Nm, with a maximum value
of 11.1 Nm. It was negative during most of the movement, and needed to be balanced by
the extensor muscles. As a result, the vastus lateralis muscle was active during most of
the movement, exerting an average force of 275 N and a maximum value of 680 N. In the
same way, the average and maximum forces induced by the vastus medialis were 118 N
and 290 N, respectively. With respect to the reaction forces on the tibial plateau, the mean
normal compressive force was 1000 N, and its maximum value was almost doubled, 1974 N.
The forces in the tangential direction had much lower values (mean: 90 N; maximum:
350 N). The great dispersion of the forces obtained in the different tests should be noted.
This may be due to differences between subjects and between load conditions.

The knee angle showed, on average, 99.2% of the variance of the other generalized
coordinates (98.5% for the lowest quartile). This result confirms to the hypothesis that the
movement has a single functional degree of freedom. Hence, it will be possible to estimate
all generalized coordinates from the knee angle.

The correspondence between the FDM and SGM models is almost perfect (Table 3).
The value of the ICC was 1.000 and the error resulting from neglecting the inertial forces is
insignificant (less than 0.1% of the total range). The effect of the gravitational parameters
on the estimation of forces is also limited, and hardly represents an average difference of
the order of 1% of the range.
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Table 2. Summary of dynamic variables estimated using the full dynamic model FDM *. n = 15.

Variable Mean Across Cycles.
Mean (STD)

99 Percentile (All Cycles).
Mean (STD)

Knee moment (N.m) −29.5 (12.6) 11.1 (4.6)
VL force (N) 275.1 (117.9) 679.7 (222.8)
VM force (N) 117.8 (50.4) 290.6 (94.3)

Tibia normal force (N) 1018.0 (203.0) 1974.0 (364.0)
Tibia tangent force (N) 89.6 (30.7) 348.1 (71.6)

* The left column shows the mean and standard deviation of the mean values in each trial. The right column shows
the mean and standard deviation of the maximum values, calculated as the 99th percentile for each trial. Knee
moments are the moments associated with the gravitational, inertial, and external actions of the FDM. Positive
knee moments are extensor, and negative moments are flexor.

Table 3. Agreement between FDM and SGM and Purely Geometric Model *. n = 15.

Model ICC, Median (IQR) SEM, Median (IQR)

SGM 1.000 (0.000) 0.042 (0.016)
Purely Geometric Model 0.999 (0.001) 0.957 (0.386)

* FDM: Full Dynamic Model. SGM: Static Geometric Model (the weights of the lower limbs are considered,
but not the inertial forces). Purely Geometric Model: only the directly applied actions are considered, but not
the gravitational or inertial forces. ICC: intraclass correlation coefficient. SEM: standard error of measurement,
expressed as a percentage of the range of generalized force in the knee.

Figure 4 illustrates these results for a specific subject, showing the contributions of
each component of the dynamic model to the generalized forces. As can be seen, the most
important component is the external force on the foot. The force of gravity has a minor
effect. The effect of the inertial components is negligible.
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Figure 4. Contribution of each component of the dynamic model to the generalized forces in the knee.
Full dynamic model: it includes the forces of the platform, the weights of the foot and leg, and the
inertial forces of the foot and leg. External: it represents the contribution associated with the force of
the platform on foot. Gravitatory: it measures the effect on the joint moment of the weights of the leg
and foot. Inertial: contribution of inertia forces, associated with the leg and foot on the joint moment.

Table 4 shows Spearman’s correlation coefficients between EMG signals as measured
for the vastus medialis and vastus lateralis muscles, and the corresponding muscle force
values as estimated by the SGM. Flexion and extension motions were separated for each
cycle. We used 75 records for the flexion direction and the same number for the extension
direction (five subjects, three trials, five cycles).
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Table 4. Spearman’s correlation coefficients between measured EMG and muscle forces estimated by
SGM. (n = 75).

MUSCLE Extension. Mean (STD) Flexion. Mean (STD)

Vastus lateralis 0.947 (0.038) 0.931 (0.068)
Vastus medialis 0.957 (0.032) 0.959 (0.019)

As can be observed, the correlation between the estimated muscle force and the
measured EMG signals is excellent, with mean values higher than 0.93 for both muscles
and both directions of motion. This reveals that model-based estimated muscle forces
are coherent with the measured EMG values: they both increase and decrease in the
same manner.

On the other hand, Table 5 presents the agreement between the estimated muscle
forces using the SGM and the estimation of the same forces obtained by the Force–EMG
calibration curves. These calibration curves were obtained for each subject based on data
(estimated muscle forces—measured EMG signals) from two load conditions: L0 and L2.
These curves were used to estimate the forces from the EMG signals and in the exercise
with L1 load condition.

Table 5. Agreement between the muscle force estimates by SGM and as estimated using Force–EMG
calibration. The forces estimated by the SGM model for the L1 load condition are compared with the
forces calculated from the Force–EMG calibration curves of the L0 and L2 conditions, using the EMG
signal of the L1 tests. n = 25.

MUSCLE ICC. Median (p25) SEM. Median (p75)

Vastus lateralis (extension) 0.972 (0.934) 5.6 (7.1)
Vastus lateralis (flexion) 0.974 (0.909) 5.5 (7.8)

Vastus medialis (extension) 0.974 (0.952) 5.5 (6.5)
Vastus medialis (flexion) 0.966 (0.958) 5.5 (5.7)

Estimates computed for payload = 6 kg; Force–EMG calibration curves based on payload = 0 and 12 kg trials. ICC:
intraclass correlation coefficient. SEM: standard error of measurement.

These results provide an excellent correspondence between the model-based estimated
forces and those obtained based on Force–EMG calibration. The mean ICC values were
higher than 0.96 for both muscles and both directions of motion of the knee. The 25th
percentile is greater than 0.9 in all cases. With respect to the error level, the mean error was
in the order of 5.5% of the force range, while in 75% of cases it was lower than 8%.

Figure 5 displays an example (subject # 3) with excellent correspondence between the
results of the model and those obtained from the EMG signals. Both signals are perfectly
synchronized, and the differences are very small and are limited to motion extremes.

Table 6 shows the results of agreement between the reaction forces in the directions
normal and tangential to the tibial plateau as estimated by the quasistatic model, and as
measured directly using an instrumented prosthesis [26]. As can be observed, the ICC
value is very high for the normal force (0.945), with an error in the order of 6% of the total
range. With respect to the force in the tangential direction, the ICC had a worse but still
acceptable value (0.827). In this case, the error was in the order of 10% of the total range of
this force, which is also small.

Figure 6 presents the measured and estimated forces. As can be observed, the directly
measured force has high noise, especially at the beginning of the motion. This noise was
smoothed before calculating the agreement parameters (Figure 6 shows the raw signal).
As can be seen, despite this noise, the correspondence between the reaction forces (in the
normal and tangential directions) is good: measured and estimated forces are in-phase,
and had similar amplitudes.
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Figure 5. Vastus medialis muscle force for the third subject with a 6 kg payload. Gray markers
correspond to the force estimated by the model and those in black are for estimated muscle force
based on Force–EMG calibration curves using payloads of 0 kg and 12 kg.

Table 6. The correspondence between the reaction force on the tibial plateau as measured directly [26],
and as estimated using SGM.

ICC SEM (% of the Force Range)

Normal compressive force 0.945 5.6
Tangential force 0.827 10.1
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The computation time required to calculate the forces in a cycle of calculation for a leg
configuration is less than 2.51 ms using a Personal Computer with Ram Intel Core i7-8700K
32 Gb, SUSTek PRIME B360M-A Rev X.0x Motherboard and Matlab R2020b, which allows
its integration into a rehabilitation robot control system. This is because, in the control
system, a real time system programmed in C++ will be used.

4. Discussion

RPRs need to be assisted by MSMs that provide estimates of internal efforts, both for
safety reasons and to ensure the effectiveness of rehabilitation exercises. Although there is
extensive research activity in the field of MSMs, current approaches are directed towards
greater complexity and levels of anatomical and physiological detail or the incorporation
of information on muscle activity measured by EMG [15]. Despite their scientific interest,
they are complex and expensive models in terms of time and equipment, which limits their
applications in clinical practice and in the control of RPRs.

MSMs used for controlling RPRs must be adaptable to the patient’s characteristics,
simple, and able to operate in real time, while also providing accurate estimates of the
muscle forces and identifying overexertion in the body structures. In this paper, we
present a model based on essential actions that attempt to solve some of the applicability
problems of the current models. The level of detail used is like that of other previous
models [15,43]. However, some improvements were introduced to accomplish the afore-
mentioned requirements.

First, the kinematics of the knee joint is customized by adjusting a four-bar mechanism.
This simplified model offers better results than those based on a fixed axis of rotation,
without the need-to-know anatomical details, such as models that use the characteristics of
the ligaments. The adjustment is carried out using a functional calibration process, which
provides an advantage over parametric models obtained with specimens [10].

This aspect is relevant in the case of clinical applications, where it is important to be
able to adapt the joint model to specific rehabilitation movements performed by people
with medical disorders, and thus altered movement patterns [4–11].

Secondly, simplifications have been made to the inverse dynamics model to reduce cal-
culations and allow a real-time estimation of internal forces. This is necessary for effective
control of the robot. For this, a quasistatic model is used, not considering the inertial forces
compared to the segment weights and those directly applied. This simplification has two
consequences. First, it makes the numerical calculation of velocities and accelerations un-
necessary and, secondly, it transforms the relationships between forces and joint moments
into geometric relationships that only depend on position. This allows the optimization
process, used to solve muscle force indeterminacy problem, to have a direct analytical
solution using Lagrange multipliers. As a result, muscle coefficients can be calculated in
an offline calibration stage. The calculations of the muscle coefficients associated with an
exercise can be reduced by assuming one functional degree of freedom [8,41]. Then, the
manifold combinations associated with fDOFs are much fewer than those corresponding to
kinematic DOFs, which reduces the computational time and simplifies the application of
the model.

Another relevant aspect in the development of an MSM is its verification and vali-
dation. The verification and validation of the model have been carried out through the
analysis of the squat movement, using a conventional biomechanical laboratory [2]. Re-
garding the movement used, it is an easily reproducible gesture that causes significant
efforts at muscle and joint level. It has already been used previously in other works [5].

Although there are some guidelines on the MSM validation strategy, most of the pub-
lished papers only verify the coherence between the estimated forces and the EMG signals.
However, validation in a physical sense involves comparing estimated and measured forces
directly. In this paper, we have followed this double strategy. First, the coherence between
the EMG signals and the estimated forces was verified with calibration curves obtained
in independent exercises. This strategy has been suggested previously [24], and ensures
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that the validation data are independent of those used in the calibration curves. Secondly, a
direct validation was made with experimental measures [26].

The experimental results demonstrated the validity of the hypotheses of our simplified
model. Thus, in all cases, the variance explained by the knee angle was very high (lower
quartile 98.5%), which confirms the hypothesis that there is a single fDOF. Therefore, all
generalized coordinates could be predicted accurately from one main variable (knee flexion
in this movement). This result has already been verified in other joints when cyclical
repetitions are performed [42].

Regarding the hypothesis of the quasistatic regime, there is a practically perfect
correspondence between the estimates associated with the FDM and SGM models. Thus,
the ICC between both models is higher than 0.999, with errors lower than 0.1% of the
joint moment range. This shows that, in slow movements such as those usually applied in
rehabilitation, the inertial forces are negligible.

The coherence between the estimated forces and the EMG signals in the active muscles
(vastus lateralis and vastus medialis) is significant. The correlation coefficients were greater
than 0.931 in all cases. Furthermore, the correspondence between the forces estimated by
the model and those obtained by the Force–EMG calibration curves was also very good,
with ICC values higher than 0.966 and an SEM of the order of 5% of the range. Note that this
verification was performed with different exercises than those used to obtain the calibration
curves. Although this validation is indirect, since the forces in the tendons have not been
measured, it shows that the model is consistent with the levels of muscle activation.

Finally, the correspondence between the estimates of the joint forces of the model
and those measured experimentally in the SGM has also been verified. The ICC obtained
for the compression force is 0.945, with an error of 6% over the range of the registered
force. For tangential forces, the result was somewhat worse, but in any case, very good,
with an ICC of 0.827 and an error of 10% of the range. Obviously, the results obtained
in the direct validation correspond to a single subject, and we should expand the sample
to include other subjects and exercises. However, the results of this work confirm that
assuming the appropriate hypotheses and adjusting the model to the essential muscles, it
is possible to obtain a very simple model capable of offering estimates that are consistent
with muscle activity and in vivo measurements of joint forces. Moreover, the stationary
geometric approach used is compatible with performing offline calculations, which will
help provide efficient models that are capable of operating in real time. These are essential
requirements for its use in the control of rehabilitation robots.

5. Conclusions

A highly recommended feature in rehabilitation robots is that the control system has
access to a real time estimate of force in muscles and ligaments. Having this capacity
significantly increases patient safety, and it allows the practitioner to obtain precise data
on the evolution of the rehabilitation process. For this reason, it is essential to have
musculoskeletal models which are adaptable to the characteristics of the patient, offering
valid estimates and operating in real time. Advances in recent years have been directed
towards the development of very complex models that use a large number of parameters,
and are computationally expensive. Furthermore, there are important problems for the
experimental validation of such models.

The simplification of the models without losing predictive capability should be ori-
ented fundamentally in two directions: on the one hand, personalizing the joint kinematics
to obtain a good representation of the individual movement and, on the other, eliminating
those actions that do not contribute significantly to the movement.

In this research, a simple model is proposed, which allows a sufficient level of indi-
vidual adaptation and simple calculations that can be performed in real time. For this, a
kinematic calibration is carried out, and a rescaling model based on anatomical markers is
used, which allows a good adaptation to the anatomical characteristics and the movement
pattern of each patient. Furthermore, dynamic calculations are simplified by eliminat-
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ing inertial actions, which have no appreciable effect on joint torques. Finally, an offline
optimization procedure is used, which allows for uncoupling the calculations from the
biomechanical model during robot operation. This procedure uses the concept of functional
degree of freedom, which makes it possible to reduce the dimensionality in the optimization
process, constraining the calculations to a band of combinations of kinematic variables of
reduced dimensionality.

The validity of the hypotheses, the coherence between the estimates of the model and
the levels of muscle activity measured with surface electromyography have been verified.
In addition, estimates of joint forces have been compared with those measured directly
using an instrumented knee prosthesis, based on data published in the Grand Challenge
Competition to Predict In Vivo Knee Loads.

In summary, the proposed model incorporates the essential characteristics that allow
an excellent personalization to obtain reasonable estimates of the internal forces through a
simple model and with a low computational cost. These are the fundamental characteristics
for the use of MSM models for real-time control of rehabilitation robots.
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