Journal of King Saud University - Computer and Information Sciences xxx (XXXX) XXX

agesudloldl
King Saud University

Journal of King Saud University -
Computer and Information Sciences

Contents lists available at ScienceDirect

Journal of
King Saud University -
Computer and.

Information Sciences

journal homepage: www.sciencedirect.com

An efficient, font independent word and character segmentation
algorithm for printed Arabic text

Aziz Qaroush **, Bassam Jaber?, Khader Mohammad ¢, Mahdi Washaha ¢, Eman Maali?, Nibal Nayef"

2 Department of Electrical and Computer Engineering, Birzeit University, Palestine

b[3i, University of La Rochelle, France

ARTICLE INFO

ABSTRACT

Article history:

Received 20 June 2019
Revised 27 August 2019
Accepted 27 August 2019
Available online xxxx

Keywords:

Arabic OCR

Word segmentation
Character segmentation
Cursive script
Segmentation techniques
Baseline

Projection profile

Characters segmentation is a necessity and the most critical stage in Arabic OCR system. It has attracted
the interest of a wide range of researchers. However, the nature of the Arabic cursive script poses extra
challenges that need further investigation. Therefore, having a reliable and efficient Arabic OCR system
that is independent of font variations is highly required. In this paper, an indirect, font-in dependent
word and character segmentation algorithm for printed Arabic text investigated. The proposed algorithm
takes a binary line image as an input and produces a set of binary images consisting of one character or
ligature as an output. The segmentation performed at two levels: a word segmentation performed in the
first level, by employing a vertical projection at the input line image along with using Interquartile Range
(IQR) method to differentiate between word gaps and within word gaps. A projection profile method used
as a second level of segmentation along with a set of statistical and topological features, which are font-
independent, to identify the correct segmentation points from all potential points. The APTI dataset used
to test the proposed algorithm with a variety of font type, size, and style. The algorithm experimented on
1800 lines (approximately 24,816 words) with an average accuracy of 97.7% for words segmentation and
97.51% for characters segmentation.
© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Although the amount of information preserved and used in dig-
ital forms has gradually increased, the number of Arabic books, in
addition to the historical documents without digital redundancies
are massive. Regardless, the optical scanning preserves digital
copies of such a document into a digital image form, mining the
content of the image to information is impossible unless a subse-
quent transformation process into a digital text form accomplished
Alginahi (2013). Moreover, the need for reliable optical character
recognition system increased due to the existence of information-
based application such as information retrieval system, search
engine, editing old document system, exam correction system,
and security identification (i.e. license plate recognition system).

* Corresponding author.
E-mail addresses: aqaroush@birzeit.edu (A. Qaroush), khamadawwad@birzeit.
edu (K. Mohammad), emaali@birzeit.edu (E. Maali).
Peer review under responsibility of King Saud University.

iisevier | Production and hosting by Elsevier

https://doi.org/10.1016/j.jksuci.2019.08.013

Optical Character Recognition (OCR) is the process of transfer-
ring a printed or handwritten text image captured by a camera
or scanner to an editable form, that can more efficiently be
searched and stored. As a result, an increase in data usage and
saves individuals and businesses time and money (Lawgali,
2015). In general, the OCR system consists of six main stages
(Lawgali, 2015): image acquisition, preprocessing, segmentation,
feature extraction, recognition, and post-processing. The OCR sys-
tems classified based on acquisition image to offline and online.
In online OCR systems, the characters and words, which taken from
a pen on a tablet or a smartphone, are recognized immediately
once written. On the other hand, the input of offline OCR systems
is usually a stored image taken by a camera, or a scanner, or any
electronic device. Offline OCR further classified into two subcate-
gories of handwritten and typed text (Islam et al., 2017). The
Pre-processing step in the OCR system is a vital stage because
the next stages will use the image more efficiently. This step aims
to produce a cleanup version from the original input image. The
step of Pre-processing includes several methods; these methods
usually independent of font variations such as contrast enhance-
ment, noise removal, binarization, skew correction, slant correc-
tion, and morphological operations like thinning. The
segmentation stage consists of analyzing and dividing the input

1319-1578/© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2019.08.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aqaroush@birzeit.edu
mailto:khamadawwad@birzeit.edu
mailto:khamadawwad@birzeit.edu
mailto:emaali@birzeit.edu
https://doi.org/10.1016/j.jksuci.2019.08.013
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com
https://doi.org/10.1016/j.jksuci.2019.08.013

2 A. Qaroush et al. /Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx

image into basic units, depending on the script under the study and
the segmentation methodology used. The units could be regions of
interest, lines, words, sub-words, ligatures, characters, and strokes.
The segments resulted from the partitioning stage, such as words
and characters, processed in the feature extraction step to extract
a set of statistical, structural, and topological or global transforma-
tion features. This information then passed to the classifier, which
represents the recognition stage to identify the segments. Finally, a
series of post-processing methods applied to enhance recognition
accuracy by incorporating dictionaries, language models and
spell-checks method.

The most critical stage in the developing cycle of an OCR system
is segmentation because the output of this stage directly fed into
the recognition engine (Islam et al, 2017; Lorigo and
Govindaraju, 2006). Segmentation consists of four sequencing
steps: page layout analysis, line segmentation, word segmentation
and character segmentation. The regions of interest are identified
and categorized in page layout analysis phase for the input image,
followed by labeling the text regions then fed into line segmenta-
tion phase to extract the text lines using methods like horizontal
projection. Finally, extracted lines partitioned into words or sub-
words for direct recognition or further segmented into characters
or ligatures as the last step.

According to character segmentation method, OCR systems
classified into two different approaches: segmentation-free
approach (holistic approach) and segmentation-based approach
(analytical approach) as shown in Fig. 1 (Alginahi, 2013; Naz
et al, 2016a; Zeki et al., 2011). In segmentation free approach
(Sabbour and Shafait, 2013), since Arabic characters could overlap,
slant and have different styles and fonts, the recognition performed
without segmenting the words into its low-level segments like
ligatures, characters, strokes, and diacritics. However, it uses some
features, patterns, and look-up dictionary for a certain number of
words. This approach usually used when targeting to recognize
particular words like numbers and the names of cities’. The obvi-
ous problem with this approach is the number of classes present
in the recognition stage, which results in performance degradation
as the number of vocabulary increases. In contrast, the analytical
approach segments each word into low-level segments like charac-
ters (Naz et al., 2014). More processing needed in this approach,
however, fewer classes used for the recognition stage, which
makes this approach more general and practical than the holistic
approach for real-world problems.

Segmentation-based methods divided into implicit and explicit
segmentation (Rehman et al., 2009). In implicit Segmentation or
recognition-based segmentation, the word image is not divided
into a small unit (e.g. characters), while characters recognized dur-
ing the recognition. Such methods fall into two subcategories. Win-
dowing methods, which based on using a sliding mobile window of

Character Recognition ‘

\ :)
[]
Segmentation-Free ‘ ‘ Segmentation-Based ’

(Holistic) (Analytical)
‘ |
‘ Implicit Segmentation I ’ Explicit Segmentation
‘ ‘ Windowing-Based ’ I Direct Segmentation ’
| Feature-Based I i Indirect Segmentation ‘

Fig. 1. Classification of character recognition methods.

variable width to provide the temporal segmentations without
regarding the image features, and feature-based methods that
based on detecting the physical location of image features, and
then seek to segment this representation into well-classified sub-
sets. Therefore, the former employs recognition to search for
“hard” segmentation boundaries, the latter for “soft” segmentation
boundaries (Casey and Lecolinet, 1996). In Contrast, in explicit seg-
mentation, words segmented into independent units, such as liga-
tures, letters, or strokes. These methods classified into direct and
indirect segmentation (Naz et al., 2016a; Zeki et al., 2011). In direct
segmentation, a word image is divided directly into letters by
employing some rules and heuristics. In contrast, indirect segmen-
tation of a word separated into units that might be characters or
part of a character called strokes (i.e dots, diacritics) (Elnagar and
Harous, 2003). Then, these strokes merged by searching for certain
features such as starting points, ending points, points of a sudden
change in the contour, cusps, open curves, closed curves, and
others. This approach has the advantage of minimizing the
under-segmentation problem, but the cost of finding the optimum
word from the merging of small units is expensive. Explicit-based
segmentation methods were computationally complex but yielded
slightly better results than less complex implicit-based segmenta-
tion methods (Rehman et al., 2009).

The character segmentation performance is highly dependent
on the nature of language. In the Arabic language, the complexity
of identifying and finding the correct segmentation point increases
by the cursive nature of the script. Indeed, the hardest, the most
crucial and the most time-consuming step of any OCR system is
the character segmentation. Moreover, the Arabic language has a
set of unique features that made the character segmentation task
more challenging, and thus the research in the field of Arabic
OCR moves slowly. The features of the Arabic script includes the
following characteristics and uniqueness as depicted in Fig. 2
(Ahmed and Al-Ohali, 2000; Zeki and Zakaria, 2004; Mahmood,
2013): (e) The availability of different font types makes the shape
and the contour of characters irregular and diverse (Fig. 2a);
() The existence of diacritics called “Harakat” increases
overlapping between adjacent characters (Fig. 2b); (e) Most of
the characters in Arabic have four forms according to the function
of their position in the world (at the beginning, middle, end, or sep-
arated) (Fig. 2c), (e) Arabic characters do not have a fixed size in
terms of height and width (Fig. 2d), (e) In some font types such
as Thuluth and Naskh connected characters may be combined as
a new shape called Ligature, which is not similar to the result of
concatenating the two basic shapes horizontally (Fig. 2e), () The
length of connection strokes vary in different fonts (Fig. 2f).
(e) Several Arabic characters can overlap with the next character
in the same or adjacent word, (Fig. 2g) and (e) In some fonts or
writing styles, the strokes of some characters like - SEEN
character- are omitted to give them a non-standard shape (Fig. 2h).

Several methods presented in the literature to address the prob-
lem of segmenting Arabic characters, however, some of these
methods are font (type, size, and style) dependent, and cannot han-
dle different fonts, which have overlapping characters or ligatures
such as “Diwani”, “Andalus”, and “Thuluth” which are widely used
in old books and documents. Besides, some of these methods
depend on predefined parameters (i.e threshold) such as the pro-
jection value to find the segmentation points (Zheng et al., 2004;
Shaikh et al., 2009; Marwa Amara and Zidi, 2016; Anwar and
Adiwijaya, 2015; Mousa et al., 2017). Moreover, the essential goal
of these methods is to find the correct segmentation points with-
out optimizing the shape of the extracted characters, which results
in missing some important shape information especially when the
characters overlapped.

This paper presents an indirect segmentation-based algorithm
for printed Arabic text. The presented algorithm takes a text-line

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx 3

ool i 5 10,800 d bl 35l
aygulall dnsia ¢ dgladll Zunmiall dyila

(a) Different font types (Naskh, Andalus, Tahoma)

gl @wrid ¢ @l,pSIl @waipll 6yl

7

-
O a

dof o 2

L4

(b) Existence of diacritics

End Middle L.
Isolated Beginning

for"?'\& c.’. =

(c) Different shape of same character

A

J a 4)

(d) Different width and height

S

(e) Ligatures

PPR $88 g

(f) Different connection stroke

23309 < byl

(g) Overlapping characters

A

(h) Strokes of “SEEN” characters

Fig. 2. Arabic text properties.

image as an input and consists of two main stages: word and char-
acter segmentation. For word segmentation, the proposed algo-
rithm employs a projection profile method along with using the
Interquartile Range (IQR) statistical method to differentiate
between word spaces and sub-word spaces (Han et al., 2012).
Meanwhile, the proposed character segmentation algorithm
employs a projection profile method along with using a set of statis-
tical and topological features which are invariant to font variations,
to identify the correct segmentation points from all potential seg-
mentation points. Hence, the main contributions of this paper are
as follows: First, we present a simple, efficient, and font-
independent word segmentation method. Second, we present an
indirect character segmentation approach that has the following
characteristics: (i) the presented method is font-independent and
can handle simple and complex font types, (ii) solves the problem
of overlapping between adjacent characters and between sub-
words, (iii) optimizes the location of the segmentation points to
maintains character shape, and (iv) reduces the number of ligatures
as much as possible. Third, in the evaluation stage, experimental
results on the APTI dataset prove that our method achieves better
performance than the state-of-the-art methods.

This paper organized as follows: Section 2 describes the state of
art-related work. Section 3 introduces the proposed method. Sec-
tions 4 describes the dataset used in the experiments then intro-
duce the results with a comprehensive comparison with other
related methods. Finally, Section 5 presents our conclusion and
future work.

2. Related work
2.1. Explicit segmentation

Many methods proposed for Explicit Segmentation of Arabic
OCR character (Lawgali, 2015; Alginahi, 2013; Naz et al., 2016a;
Zeki et al., 2011; Casey and Lecolinet, 1996). These methods are
classified into: (i) projection profile; (ii) contour tracing, (iii) mor-
phological operations, and (iv) template matching methods.

2.1.1. Projection profile methods

Projection profile methods (Zheng et al.,2004; Shaikh et al., 2009;
Marwa Amara and Zidi, 2016; Anwar and Adiwijaya, 2015; Mousa
etal., 2017)are commonly used method for lines, words and charac-
ters segmentation. Indeed, the horizontal projection profile used for
lines segmentation, while the vertical projection profile usually used
for words and characters segmentation. Projection profile methods
are computationally simple and achieve good results for simple font
types. However, using vertical projection alone for cursive text is
directly prone to over-segmentation when the existence of charac-
ters that are composed of several parts or for under-segmentation
when the overlapping between adjacent characters exists.

Zheng et al. (2004), proposed a segmentation algorithm of
machine-printed Arabic character that employs a vertical projection
method with some rules. These rules based on the four kinds of fea-
tures, which are independent of the text size and easily computed.
Shaikh et al. (2009) suggested an algorithm for Sindhi text segmen-
tation, which is an Arabic style scripting language, using Height Pro-
file Vector (HPV). The algorithm starts by finding the HPV of the
primary stroke of a sub-word, then the HPV analyzed to determine
the locations of the Possible Segmentation Points (PSPs). Marwa
Amara and Zidi (2016) developed a segmentation method that is
based on histogram projection along with some contextual topogra-
phies properties of Arabic writing. The potential segmentation
points found uses vertical projection. These points are then filtered
to find the correct segmentation points based on some structural
properties of the Arabic language and their positions regarding
baselines. Anwar and Adiwijaya (2015) proposed a segmentation
method of Arabic character with “Harakat”. Firstly, the image con-
verted into a morphed form, then the locations where the projection
profile value equal exactly two pixels are identified. Therefore, the
image split in the middle of the occurrences of such locations more
than three successive rows. The process repeated until the whole
subword/word segmented. Mousa et al. (2017) employed a profile’s
amplitude filter to find the separation between two connected char-
acters which considered as a constant amplitude in the profile. In
addition to that, he used a simple edge method to determine
whether it is a correct character’s connection or not.

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

4 A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx

2.1.2. Contour tracing methods

In contour-tracing methods (Omidyeganeh et al., 2005; Bushofa
and Spann, 1997a; Mehran et al., 2005), the pixels that form the
outer shape of the word, sub-word, or character are traced and
then extracted. Contour-based methods provide a clear description
of the shape of the characters which can solve the under segmen-
tation problem caused by characters overlapping (Alginahi, 2013).
Besides, it reduces the errors generated when extracting baselines
since there is no need to adjust the baselines many times. How-
ever, this kind of segmentation suffers from over-segmentation
and also is sensitive to the existence of noise and characters brakes,
which needs to do image enhancements.

Bushofa and Spann (1997a) proposed a segmentation algorithm
based on the contour of the main body of the words. The algorithm
starts by finding the start and the end-point of the upper contour of
the word/sub-word. Then, the upper contour segmented into parts
through the curvature of the same sign. To eliminate noise sensi-
tivity, Bushofa applies a low pass filter on the contour points.
Mehran et al. (2005) investigate the segmentation and recognition
of Persian/Arabic scripts. They employed three basic features
including vertical projection of the line image, the first derivative
of the upper contour, and the distance of the tip of the pen from
the baseline to identify the junction points of the upper contour
of the primary stroke of sub-words called PAWs. Omidyeganeh
et al. (2005) presented a new segmentation algorithm for multi-
font Farsi/Arabic texts. The algorithm based on conditional labeling
for up and down contours and the contour of sub-word measured
by using a convolution kernel with Laplacian edge detection
method. The algorithm goes through several steps including con-
tour labeling of each sub-word, contour curvature grouping to
improve the segmentation results, character segmentation, adap-
tive local baseline detection, and post-processing. Mazen
Bahashwan and Sheikh (2017) employed a contour-based detector
method to detect the corners as candidate segmentation points
(e.g. branch points, ross points, and corner points). Then, they
removed incorrect segmentation points by using a set of heuristic
rules. Sari and Sellami (2005) developed a segmentation method to
split up the isolated handwritten words into perfectly separated
characters based on topological rules which constructed at the fea-
ture extraction phase.

2.1.3. Morphological and thinning methods

Morphological operations include a set of methods to extract
image components, which used in the representation and descrip-
tion of region shape, such as boundaries, and skeletons. Most of the
Arabic characters connected to baseline, therefor, Morphological
segmentation allows us to break words into smaller units by apply-
ing morphological operation such as closing and opening (Alfonse
et al., 2010). Besides, the skeleton of the words generated by mor-
phological thinning method provides essential information about
character shape, which simplifies the text shape and thus reducing
the amount of data to handle. However, In many cases, the shape of
characters after applying thinning operation differs from the orig-
inal one, making the segmentation process more difficult. Also, it
will not get sufficient results if it is not supported or combined
with other techniques.

Timsari (1996) employed a hit-or-miss morphological method
to segment words into its characters where the word described in
terms of predefined patterns. The approach searches the database
which is holding the description of all characters, for possible
matches of characters using the hit-or-miss method. Cowell
(2001) used an iterative based thinning method to generate the
skeleton of isolated Arabic characters. Also, the authors discussed
the problems of thinning Arabic characters for poor-quality images.
Besides, he used a post-processing method to enhance the gener-
ated skeleton. Fitriyatul Qomariyah and Mahmudy (2017) proposed

a segmentation method using an interesting point based on a set of
rules to separate the connected Arabic character. The interest
points were used as the coordinate reference to split each character.

2.1.4. Template matching methods

Template matching (Elnagar and Al-Kharousi, 1997; Margner,
1992; Saabni, 2014) is usually used to find a small part of an image
that matches a predefined template image. In character segmenta-
tion, it usually applies a sliding window over the baseline and
searches for a match with the characters or segments that are cho-
sen manually and stored to use for comparison. As a result, when
matching noticed, then the center pixel in the sliding window is
considered as a cutting point. A major limitation of this method
is that the performance decreases as the number of predefined seg-
ments increases when using more font types and styles. Besides,
this approach takes more time to check all templates of the prede-
fined segments, especially with many font styles and sizes. More-
over, the existence of noise in the input image sufficiently
decreases the performance.

Margner (1992) proposed a segmentation method which
searches for occurrences of an angle formed by the joining of two
characters at the baseline. The method starts by finding the loca-
tion of the baseline, then scanning the baseline from right to left
using a 7 = 7 window to find the candidate segmentation points.
Therefore, the central pixel of the window is chosen to be a candi-
date point if the current window matches the pattern. Besides, the
author employed some rules to avoid having wrong segmentation
points such as avoiding segmenting inside a hole. Saabni (2014),
proposed character segmentation approach that uses a partial seg-
mentation method and Hausdorff distance. The algorithm takes a
word/subword as input and starts calculating the size and the font
type using Stroke Width Transform (SWT) method to define a set of
multi-size sliding windows to search and identify characters
within a given shape of a word/subword. The authors employed
a novel method which uses Hausdorff distance to measure the sim-
ilarity between character and sliding window image taking into
account different sizes and locations of sliding windows.

2.2. Implicit segmentation

In implicit segmentation, there is no need for an accurate char-
acter segmentation points. It based on searching the image for
components that match classes in its alphabet. Radwan and
Khalil (2016) proposed a character segmentation approach based
on the multichannel neural network. The system recognizes the
features of segmentation window to predict the likelihood of the
current window to a segmentation area. To increase the network
input context, the authors employed another two windows as an
input to a multichannel neural network one as a previous window
with respect to the current window and the other as a next win-
dow. In Rosenberg (2012), the authors employed a local feature
extracted by SIFT algorithm for character classification. Each word
scanned with increasing window sizes; thus, segmentation points
set where the classifier achieves maximal confidence. Bushofa
and Spann (1997b) used a combination of a heuristic algorithm
and a neural network-based technique to identify incorrect seg-
mentation points by employing a set of structural features. Naz
et al. (2016b) proposed implicit segmentation of printed Urdu
text-lines written in the Nasta’liq writing style using Multi-
dimensional Long Short-Term Memory (MDLSTM) Recurrent Neu-
ral Networks with an output layer designed for sequence labeling
for recognition.

Gouda and Rashwan (2004) proposed a segmentation method
for printed Arabic character using Hidden Markov Models HMMs.
In this method, after removing the secondary stroke from the word,
each line scanned from right to left using a sliding window. Then, a

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx 5

set of features extracted from the windows then fed into the HMM
models to predict the character in the current window where M
different numbers of HMMs constructed for each character or liga-
ture. Al-Muhtaseb et al. (2008) proposed a technique for automatic
recognition of off-line printed Arabic text using HMMs. The
authors employed a variable size of overlapping and non-
overlapping hierarchical windows to extract a set of simple and
effective features from each vertical sliding strip. Radwan and
Khalil (2016) proposed a character segmentation approach based
on the multichannel neural network. The system recognizes the
features of the segmentation window to predict the likelihood of
the current window to a segmentation area. To increase the net-
work input context, the authors employed another two windows
as an input to a multichannel neural network one as a previous
window concerning the current window and the other as a next
window. In Rosenberg (2012), the authors employed a local feature
extracted by the SIFT algorithm for character classification. Each
word scanned with increasing window sizes; thus, segmentation
points set where the classifier achieves maximal confidence.
Bushofa and Spann (1997b) used a combination of a heuristic algo-
rithm and a neural network-based technique to identify incorrect
segmentation points by employing a set of structural features.
Naz et al. (2016b) proposed implicit segmentation of printed Urdu
text-lines written in the Nasta’liq writing style using Multi-
dimensional Long Short-Term Memory (MDLSTM) Recurrent Neu-
ral Networks with an output layer designed for sequence labeling
for recognition. Gouda and Rashwan (2004) proposed a segmenta-
tion method for printed Arabic character using HMMs. In this
method, after removing the second stroke from the word, each line
scanned from right to left using a sliding window. Then, a set of
features extracted from the windows fed into the HMM models
to predict the character in the current window where M different
numbers of HMMs constructed for each character or ligature. Al-
Muhtaseb et al. (2008) proposed a technique for automatic recog-
nition of off-line printed Arabic text using HMMs. The authors
employed a variable size of overlapping and non-overlapping hier-
archical windows to extract a set of simple and effective features
from each vertical sliding strip.

3. Proposed work

In this section, an indirect, character segmentation-based
approach for printed Arabic text is presented. The proposed
approach takes a binary line image as an input and produces an
output of a set of binary images consisting of one character or liga-
ture of the input line image. In our algorithm, the segmentation
performed at two levels: word segmentation and character
segmentation. Word detection performed by employing a vertical
projection of the word image along with using Interquartile Range
(IQR) while Character segmentation a baseline dependent method
and is performed by using a projection profile method along with a
set of statistical and topological features to identify the right seg-
mentation points from a set of all potential segmentation points.

3.1. Word segmentation

Word Segmentation is the process of converting lines of text
into separated words. Each word then recognized directly as in
segmentation-free approach or further segmented into characters
as in segmentation-based approach. Word segmentation is usually
used as a previous stage of the character segmentation and also
employed as a post-processing method to enhance the recognition
accuracy by incorporating language dictionaries and spell-checks

method. Word segmentation in the literature review is mainly
based on the analysis of the geometric relationship of adjacent
characters and addresses two main aspects including (i) the way
the distance of adjacent characters calculated, and (ii) classifying
the previously calculated distances as either between word-gaps
or within word-gaps (Louloudis et al., 2009).

Word segmentation in Arabic depends primarily on the separa-
tion distance between words and sub-words and can be used to
separate lines of text into words by cutting vertically where the
vertical projection equals zero. However, the resulted gaps could
be either word-gaps or within word-gaps. Therefore, to classify
these gaps independently of the font type, size, and style, three
hypotheses regarding Arabic script must be taken into considera-
tion: (i) the length of word-gaps is fixed for single text line and
depends on the font type and on the text alignment, (ii) the length
of the within word-gaps is variable for one font type and for differ-
ent font types, which depend on the location of the space and the
surrounding letters, and (iii) the length of word-gaps is larger than
the length within word-gap. According to these hypotheses, most
of the Arabic word segmentation methods are based on a prede-
fined threshold value which depends on the font variations.
Fig. 3 shows the vertical projection of Arabic text line written in
three different fonts: Naskh, Traditional Arabic, and Andalus
respectively, where vertical projection zero-valued indicates a
potential candidate for word separation. It observed that regard-
less of the font type, the gap between words is enormously notice-
able, fixed in the same line, and larger than spaces between sub-
words.

The suggested word segmentation method is font invariant and
computationally simple. The method consists of three steps as
shown in Algorithm1: (i) Identifying all gaps and calculate their
length, (ii) Classifying each gap as a word gap or within word
gap, and (iii) Extracting word images from the line input image
used by character segmentation and recognition stage. In the first
step, all gap spaces inside the line are found by calculating the ver-
tical projection of the input line image. Vertical projection can be
easily computed by finding the number of pixels having binary
value one for each bin in the vertical direction formulated as:

n-1
V[j] =) Binarylmagel[i,] 1)
i-0
Where V(i) is the horizontal projection of the image for column j,
and the Binarylmageli,j] is the pixel value at [i,j]. The zero value
inside the vertical projection indicates the locations of all spaces
that could be a potential word separation. The length of all spaces
measured as shown in Algorithm 2, where consecutive pixels having
zero projection value considered as one gap.

Algorithm1 Word segmentation

: INPUT: L as a binary line image

: SET G as List of gaps

: SET L as List of gaps length

: SET Words as a list of segmented words

: [G,L] < GapLocationAndTheirLength(Linelmage)
: [G, L] « gapkFiltration(G, L)

:SETi—1

: while i < length(G) do

wordStartindex — GIi]

10: wordEndIndex — G[i + 1]

11: Words.add(L.extract(wordStartindex, wordEndIndex))
12: end while

13: OUTPUT: Words

OO D WN =

©

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

A. Qaroush et al. /Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx

Cpbanll] s el Ll 560 g i) K padal) Quaih g Al) i 5 il

15 T T T T T
w0f | h o l ’ , }
5 1‘,/{".1 ”“H M }" h'\“ l, \r | “ /\ jl| l"""ﬂ,} n ‘J_h‘” Li{\ ILHI' ’.M i’m\ ﬁ| J‘uil"~ I A. ."\ ” ’l f Ll l"'” " ".‘)"‘\’”
0 ll ' l n l‘ l L 1 4 h |
0 100 200 300 400 50
(a)
Cosbinal® i o Al L 5] il g Ayl Z#thlt m$ 2.;31,.,9:.:13..:;54\ 5 il
15 T T T
or | | } I \ |f u ']
I A ,'] } \h
. —flﬂ"mq'fl‘lll 'fu' ”'4‘ 1”\ \ {h ""I\'w M ﬂ'\u ’Jl" ﬂ"-" "‘ "u |\‘ "‘ rr"-‘ }'\ ”4\ JV"‘ i"‘(’
% 100 200 300 400 600
(b)
daly £) p dualy Imlﬂidl} dasjall L8 aqgalafl durjay dgilypadll danall dgle
15 T T T
W I hi\ ’l'- Vo f N il v‘»” ; A !‘. ., |” vq
z—l‘w Ju(' ‘Ji| ‘|U '“4'; , 1W A Wl! ” ”M fl ‘.”J\' h", M "-Jt.r'”h" 'm)“ I\ 1“ v. ”‘m’ Ii lW

100

300 400 500

(c)

Fig. 3. Text Line written in three font types with their vertical projection, (a) Naskh, (b) Traditional Arabic, and (c) Andalus.

Algorithm 2 Finding gap space location

1: INPUT: Line

2: SET G as a list of gaps

3: SET L as a list of gaps length

4: VP — verticalProjection(Line)

5: SET flag +— O

6: SET i« 1

7: while i < length(VP) do

8: if (VP[i] == 0 && flag == 0) then
9: G.add(i)

10: L.add(G[i] — G[i — 1])

11: flag —1

12: else if (VP[i]! = 0 && flag == 1) then
13: flag — 0

14: end if

15: end while
16: OUTPUT {G, L}

To differentiate between word and sub-word gap spaces, some
further filtrations are required, taking into consideration the
hypothesis mentioned earlier to be font independent. The proposed
filtration method is performed at two levels as shown in Algo-
rithm 3. In the first level, all gaps with a length less than Interquar-
tile Range (IQR) value of the list of gap space values are obtained
from the previous step considered as a sub-word space and then
removed from the list. Interquartile Range (IQR) is a statistical test
method, used to identify and penalize outliers. IQR is preferable in

this situation because the spaces between words are identical
within a margin of 1px difference and the spaces inside the words
differ depending on the surrounding letters. This step helps to
remove very small gaps but does not fully differentiate between
the word gap and sub-word gap. In the second level, since all small
gaps were removed and the word-space is larger than sub-word
space, the mean of the filtered list of gaps will be greater than
sub-word gaps. Thus, all gaps with a length less than the mean of
the filtered list of gaps removed. Finally, each word image is
extracted from the input line image using the word gap.

Algorithm3 Gap length filtration

: INPUT: {G, L}
SET iqrValue — IQR(L)
SET i« 1
while i < length(L) do
if (L[i]! = 0&& L[i] < iqgrValue) then
G.remove(i)
L.remove(i)
end if
: end while
10: SET meanValue — mean(L);
11: SETi 1
12: while i < length(L) do
13: L[i] < meanValue
14: G.remove(i)
15: end if
16: end while
17: OUTPUT {(G, L}

O oo U b WN =

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx 7

Table 1 shows the gap length values along with their IQR value
of the image text lines shown in Fig. 3. After applying first level fil-
tration, all gaps with a length less than IQR value (i.e. less than five
in Naskh as shown in Table 1) removed. The next step to finding
the mean value of the length of the remaining gaps and then, the
gap length which is less than mean value (less than five in Naskh,
less than five in Traditional, and less than eight in Andalus as
shown in Table 1) removed. Thus, values larger than the mean con-
sidered as a gap word separation. Fig. 4 shows the output after
applying the Word segmentation algorithm on the text line images
of Fig. 3.

3.2. Character segmentation

The proposed algorithm provides an indirect segmentation-
based method to handle most of the challenges caused by the cur-
sive nature of Arabic script, including the existence of different
shapes of the same character in addition to character overlapping
problem. The algorithm which is baseline dependent method
employs a projection profile method to find all potential segmen-
tation points. Besides, it uses a set of rules to find the correct seg-
mentation points with the optimal separation of connected
adjacent characters. The algorithm generalizes to ensure working
for several font variations. The proposed character segmentation
algorithm consists of four sequencing stages as shown in Fig. 5.
The algorithm takes an input of a binary word image along with
its binary line image and produces a set of binary images of one
character or ligature. The character segmentation algorithm is per-
formed from word level and uses line-level because the algorithm
calculates several measures to improve segmentation results such
as baseline index, which computed more accurate from the line
level.

3.2.1. Baseline detection
The baseline considered as one of the distinctive features of
Arabic script. It defined as the line with the most pixel density

/ Line and Word Image
)
Baseline Detection
Identifying all Potential Segmentation Points
Potential Segmentation Points Filtration
Extracting Character
T

[]
/ Characters or Ligatures /

Fig. 5. Character segmentation main stages.

along with the whole line where most letters on a horizontal seg-
ment with a constant width. Usually, Arabic characters connected
through baseline. Therefore, identifying the location of the baseline
is important for determining potential segmentation points, skew
normalization and feature extraction (AL-Shatnawi and Omar,
2008). The suggested baseline detection method begins with
applying the morphological thinning operation on the input line
image based on the method proposed in Deng et al. (2000) to iden-
tify the baseline more accurately, and also to create sharp peaks for

Table 1
Gaps length values for the image text lines of Fig. 3.
Font Type Gaps Length IQR Value
Naskh 7 6 6 1 6 1 6 1 5 5 1 5 2 1 6 1 5 . . 5
Traditional Arabic 3 6 5 5 1 5 1 1 5 5 1 6 1 5 1 5 1 6 1 1 6 4
Andalus 5 13 9 9 9 9 9 9 9 9 2 0
Remaining Gaps After Level One Filtration using IQR Mean
Naskh 7 6 6 6 6 5 5 5 6 6 5 4 . . 5
Traditional Arabic 6 5 5 5 5 5 6 5 5 6 5
Andalus 5 13 9 9 9 9 9 9 9 9 9 2 8
Remaining Gaps After Level Two Filtration (Word Gap Length)
Naskh 7 6 6 6 6 5 5 5 6 6 5 . . .
Traditional Arabic 6 5 5 5 5 5 6 5 5 6 .
Andalus 13 9 9 9 9 9 9 9 9 9
hline

s e Y 0 P sy e S
o] s b gl 2illf dasul] 2] gl fensus] il desial 250

Fig. 4. Output after word segmentation of Fig. 3.

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

8 A. Qaroush et al. /Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx

the horizontal projection inside the line itself. Then, a Horizontal
Projection (HP) method applied to the thinned line image followed
by a smoothing operation to reduce the number of peaks. The hor-
izontal projection method reduces the 2D of data to 1D based on
the pixels of the text image. The horizontal projection profile
defined as:

n-1
H[i) = Binarylmageli,])
i—0
where H(i) the horizontal projection of the image for row is i, and
the Binarylmageli,j] is the pixel value at [i,j]. Finally, the maximum
peak after applying these sequential operations found which repre-
sents the index of the baseline. Algorithm4 shows the procedure of
detecting baseline for Arabic text line, where the algorithm takes a
binary line image as an input and returns the index of the baseline
as an output. Fig. 6 shows the location of the detected baseline (red
lines) of the text lines image in Fig. 3.

Algorithm4 Baseline detection

: Input: Line

: SET HP as an empty List

: SET PV as an empty List

: thinedLine — imageThinning(Line);
: HP — horizontalProjection(thinedLine);
: HP — smoothing(HP);

: PV « findPeakValues(HP);

: SET BaseLinelndex — 0

: SET MAX — 0

10: SETi 1

11: while i < length(PV) do

12: if PV[i] > MAX then

13: MAX — PVI[i]

14: BaseLinelndex — index(i)

15: end if

16: end while

17: OUTPUT: BaseLinelndex

OO U A WN =

3.2.2. Potential segmentation points identification

The most challenging task in the segmentation of cursive script
language such as Arabic script is to find and identify the right seg-
mentation points. These points will be used to determine the loca-
tion of separation or the borderline between consecutive
connected characters. The proposed approach to identify these
points is an indirect-segmentation method consisting of two main
steps where the task of the first step is to find all potential segmen-
tation points, while the purpose of the second step is to reduce the
over-segmentation problem.

The shape of the Arabic characters varies and depends on the
location of the character and font type. However, in Arabic script,
most of the Arabic characters connected through baseline, where
a vertical transition above the baseline is usually an indication of
a new character. This hypothesis is font independent. Therefore,
we define the separation region between two consecutive con-
nected characters as the baseline area between two consecutive

vertical transitions and the segmentation point usually located
around the middle of this region.

To find all potential separation regions, first, we need to locate
the maximum number of vertical transitions above the baseline.
This done by searching for the horizontal line with the maximum
number of pixel value change (transition from 1 to 0 or from 0 to
1). The search starts from the baseline index to the height of the
binary line image and from right to left for each horizontal line.
Thus, for each horizontal line, we count the number of transitions
which defined as changing the pixel value from black to white or
vise versus. Identifying the maximum number of transitions above
baseline can ensure findings of all potential separation regions, in
addition to minimizing the number of ligatures as much as possi-
ble. However, an over-segmentation might occur because some
of the characters like “SEEN SHEEN SAD DAD” have two or three
transitions above baseline. In Fig. 6 the green lines represent the
index of the maximum transition line, while the red lines represent
the baseline index. Algorithm5 summarizes the procedure of
detecting the horizontal line index with the maximum number of
transitions. The algorithm takes a binary line image and the base-
line index as an input and returns the index of the line with the
maximum number of transitions.

Algorithm 5 Finding maximum transitions

: INPUT: Line, Baselinelndex

: SET MaxTransitions « 0

: SET MaxTransitionsIndex «— Baselinelndex

: SET i «+ Baselinelndex

: while (i < height(Line)) do

SET CurrentTransitions < 0

SET FLAG «— 0

SETj — 1

: while j <= Width(Line) do

10: if (Line(i,j) == 1&& FLAG == 0) then

11: CurrentTransitions + +

12: FLAG — 1

13: end if (Line(i,j)! = 1 & FLAG == 1) then
14: FLAG — 0

15: end if

16: end while

17: if CurrentTransitions >= MaxTransitions then

OO UL A WN =

o]

18: MaxTransitions «— CurrentTransitions
19: MaxTransitionsIndex « i
20: end if

21: end while
22: OUTPUT MaxTransitionsIndex

After finding the maximum transition index, we need to identify
each separation region by three indices: start index which repre-
sents the beginning of separation region, end index which repre-
sents the ending of separation region, and cut index which
represents the borderline between consecutive characters such that
the character segment which can be defined by the area between
two consecutive cut indexes as shown in Fig. 7c. Therefore, tracing
through the maximum transition horizontal line index and detect-

S IS PTE W PPN | L E ST ¥ F RV A

-

Fig. 6. Baseline index in red and maximum transition index in green for lines in Fig. 3.

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx 9

End Index StartIndex Start Index

End Index

Separation Region Cut Index

Cut Index

(f)

Cut Index
(d)

Character Segment

SRS] Y

Cut Index after Opening Cut Index

(8) (h)

Fig. 7. Some examples on separation region indexes.

ing changes provides the starting and ending indices of each sepa-
ration region. Indeed, changing the pixel value from white to black
represents the start index of the separation region, while changing
the pixel value from black to white represents the end of the sepa-
ration region as shown in Fig. 7a. Based on the shape of the Arabic
characters, the cut index is in the area between the start and end of
the separation region. The cut index needs to be optimized to pre-
serve the shape of the character, especially when the overlapping
exists and also when aiming at decreasing false positive of the iden-
tified regions. Indeed, for neither connected nor overlapped charac-
ters, the best separation location should be the point where the
vertical projection equals zero and is selected around the middle
of the separation region as shown in Fig. 7d.

For connected characters, the best separation location should be
the point where no vertical intersect is found with the structure of
the character itself or the next character, but with the baseline only.
Thus, the cut index is at the middle of the separation region if the
vertical projection at the middle equals the baseline thickness
which computed as the mode value (the Most Frequent Value
MEFV) of the vertical projection of the input binary line image as
shown in Fig. 7b. If the vertical projection at the middle is greater
than MFV value, then an overlapping is found either with the previ-
ous or next character or with the dots. In this case, we search for a
point from the middle of the separation region towards the end of
the separation region and the cut index will be the first point having
a vertical projection equal MFV value as shown in Fig. 7e. For some
cases and especially in small font size there is no point between
middle and end indexes of the separation region having a vertical
projection equal MFV value. To overcome this problem we apply
morphological opening operation with (2*2) structure element to
the line image before computing vertical projection to remove the
overlapping between dots and the next character as shown in
Fig. 7e. If there is no point having a vertical projection equal MFV
between mid and start index, we search for a point from the middle
of the separation region towards the start of the separation region
and the cut index will be the first point having a vertical projection
equal MFV value as shown in Fig. 7f. Finally, if there is no point hav-
ing a vertical projection equal MFV value, the cut index will be at
the middle of the separation region which can be treated as an inva-
lid separation region like the point inside as shown in Fig. 7f. Algo-
rithm 6 summarizes the procedure to identify all separation regions

within the input line. The algorithm takes a binary line image, word
image, and Max transition index as an input, and returns the list of
all identified separation regions. Fig. 71 show the location of the
indexes of the identified separation regions.

Algorithm6 Cut point identification

1: INPUT: Line, Word, MTI
2:SETi—1

3: SET FLAG — 0

4: Linelmage «— open(Line)

5: VP — verticalProjection(Line)
6

7

8

: SET MFV — mode(VP)
: while i <= Width(Word) do
if (Word(MTI,i) == 1 && FLAG == 0) then

9: SET SR — newSeparationRegions()
10: SR.EndIndex « i
11: FLAG — 1
12: else if (Word(MTI,i)! = 1 && FLAG == 1) then
13: SR.Startindex « i
14: MidIndex «— (EndIndex + Startindex)/2

15: if there exists VP[k] == zero between start and
16: end indexthen

17: SR.CutIndex « the nearest k to mid index
18: end if VP[MidIndex] == MFV then

19: SR.CutIndex + mid index

20: end if there exists VPlk] <= MFV

21: and end index then

22: SR.CutIndex « the nearest k to mid index
23: end if there exists VP[k] <= MFV

24: between start and mid index then

25: SR.CutIndex « the nearest k to mid index
26: else

27: SR.CutIindex — MidIndex

28: end if

29: SeparationRegions.add(SR)
30: FLAG — 0

31: endif

32: en while

33: OUTPUT: SeparationRegions

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

10 A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx

3.2.3. Separation regions filtration

Employing the maximum number of transitions above the base-
line to identify borderlines between consecutive characters can
ensure findings of all potential segmentation points. However, it
may cause an over-segmentation in some characters because some
characters have two or three transitions above baseline, which
need further processing to decide whether the region is a valid sep-
aration region or not. The proposed method in handling false pos-
itive is caused by over-segmentation which relies on a set of
statistical and topological features that are independent of font
variations.

The proposed algorithm starts with checking the vertical pro-
jection at the cut index of the separation region. Therefore, if it
equals zero, then the separation region is valid as in Fig. 8a.
Besides, the separation region is valid if there is no connected path
between the start and the end index of a current region as in
Fig. 8b. Usually, the separation between connected characters in
Arabic script occurs in the baseline in most of the cases.
However, since some transitions caused by a change in the same
character, the separation region is invalid in the following
special cases: (i) if the segment/character which defined
between the cut index of the previous region and the cut
index of the next region as in Fig. 8c has a Hole like
(- b i gmta ha (in () characters. In this
case, the cut index located inside the character, (ii) if there is no
baseline between the start and end index and the sum of horizon-
tal projection below baseline is greater than the sum of horizontal
projection above baseline like < ¢ (& ¢ (¢ O ¢ 3= o) charac-
ters as in Fig. 8d, and (iii) if it is the last region or if the vertical pro-
jection at the cut index of the next region equals zero and the
height of the top-left pixel of the region is less than half the

distance between baseline and the top pixel of the line like
(@= (8= (&m (Cm = ¢d) as in Fig. 8g and h. For the second
case, if the sum of horizontal projection above baseline is greater
than the sum of horizontal projection below the baseline and the
vertical projection at the cut index is equal to MFV, then the
region is valid as in Fig. 8e, otherwise the region is not valid as
in Fig. 8f.

After passing the above rules, if the segment/character is not a
stroke, then the region is valid as in Fig. 8i. Otherwise, it could
be one of the following characters (—— (== (—i— (—t—t=) O
part of one of the following characters (% ((2 ¢ —a).
Indeed, the segment is a stroke if it meets the following features:
(i) single connected component, (ii) the sum of horizontal projec-
tion above baseline is greater than the sum of horizontal projection
below baseline, (iii) the height of the segment is less than twice the
second peak value of the horizontal projection, (iv) the mode value
of the horizontal projection is equal to MFV value, and (v) the seg-
ment has no Holes. Fig. 8j shows an example of a segment that
meets these requirements. Therefore, if the current segment is a
stroke and has a dot/s below or above baseline, then the region
is valid and the segment represents one of the following characters
(¢t — % «Z) as in Fig. 8k and L. On the other hand, if
the current segment, next segment, and/or after next segment is
strokes without dots, then the current region, next region, and
the after next region are valid which represent the (u+) character
as in Fig. 8m. Otherwise, if the current segment, after next seg-
ment, strokes without dots while the second segment is a stroke
with dots, then the current region, next region, and the after next
region are valid which represent the (%) character as in Fig. 8n.
Finally, if the next segment is not a stroke or stroke with dot/s, then
the current region is invalid which represent one of the following

(k) M

(m) (n)

Fig. 8. Some examples on separation region filtration.

(o) (p)

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx 11

two characters (—<a— (—w«a) as in Fig. 8o and p. To detect the dot/s
and their location, we divide the stroke segment into two sub-
segments where the first one is located above baseline index and
the other below the baseline index as shown in Fig. 8j. Thus, if
the two sub-segments contain more than two connected compo-
nents, then the stroke has a dot/s and is located in the segments
that have two or more connected component. Otherwise, the
stroke didn’t have a dot/s.

Algorithm7 summarizes the proposed method of separation
region filtration. It takes as an input the line image, word
image, SRL, baseline index, max transitions index and MFV
value. The algorithm was written to eliminate false positive as
much as possible besides optimizing computational time. There-
fore, the false-positive was divided into four main cases and
they ordered based on (i) their frequency in Arabic script, and
(ii) the discrimination power of the employed features/rules
and (iii) their computation time. In the algorithm, SRL repre-
sents separation region list, SR: current separation region, HP:
horizontal projection of SR, VP: vertical projection of SR, SHPA:
sum of HP above baseline index, SHPB: sum of HP below base-
line index, SEGP: the segment between previous cut index and
next cut index, SEG: the segment between current cut index
and next cut index, SEGN: the segment between next cut index
and after next cut index, SEGNN: the segment between after
next cut index and after next cut index, Seg Index: the index
of left top pixel of SR, and Line Index: the index of left top pixel
of Line Image.

3.3. Character extraction

The final stage after separation region filtration is the actual
separation of the characters. Depending on the location of the
optimized cut index, there are two types of separation, vertical
cut method, and connected component method. Vertical cut
method is simple because no further processing is required
and used in the following cases: (i) when there is no overlapping
and the vertical projection at cut index is equal zero as in
Fig. 9a, (ii) when there is no overlapping and the vertical projec-
tion at cut index is equal MFV value as in Fig. 9b, and (iii) when
there is an intra-overlapping where the vertical projection at cut
index is non-zero and there is a connected path between start
and end index as in Fig. 9c. This case happens in some font type
and only with some cases like (_s_) character at the middle of
the word and (f— ¢z— ¢g— ¢@— ¢&=) characters at the end of
the word, or in the second type of separation, the connected
components of the segment after previous cut index is taken
to ensure the extraction of the full shape of the character which
improves the performance of the recognition phase. It used
when an inter-overlapping where the vertical projection at cut
index is non-zero and there is no connected path between start
and end index as in Fig. 9d.

Algorithm 7 Separation region filtration

1: INPUT: Line, Word, SRL, Baselinelndex,
MaxTransitionsIindex, MFV

2:SETi—0

3: while i is less than length of SRL do
: SR« SRL(i)

if VP[SR.CutIndex] equal zero then
ValidSeparationRegions.add(SR),i «— i+ 1

else if no path between start and end index then
ValidSeparationRegions.add(SR),i «— i+ 1

9: else if SEGP has a Hole then

10: i—i+1

11: else if no baseline between start and end index then

12: if SHPB > SHPA then

N2 R

13: i—i+1

14: else if VP|SR.Cutindex] less than MFV then
15: ValidSeparationRegions.add(SR),i «— i+ 1
16: else

17: i—i+1

18: end if

19: else if SR is the last region or cut
index of next regionis equal zero and
20: height of the segment is less than half line heightthen
21: i—i+1
22: else if SEG is not a Stroke then

23: if
no baseline between start and end index of next region and

24: cut index of next region is less than or equal MFV
then

25: i—i+1

26: else

27: ValidSeparationRegions.add(SR),i — i + 1

28: end if

29: else if SEG is stroke with dots below or above then
30: ValidSeparationRegions.add(SR),i — i+ 1

31: else if SEG is stroke without Dots then

32: if SEGN stroke without Dots then

33: ValidSeparationRegions.add(SR),i — i+ 3
34: end if
35: if
SEGN stroke with Dots and SEGNN stroke without Dots then
36: ValidSeparationRegions.add(SR),i — i+ 3
37: end if
38: if SEGN is Not Strok or Strok with Dots then
39: i—i+1
40: end if
41: end if

42: end while
43: OUTPUT: ValidSeparationRegions

Author / Journal of King Saud University - Computer and Information Sciences 00 (2016) 000-000

Fig. 9. Some examples on character extraction cases.

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

12 A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx

4. Experiments and results

In this section, the effectiveness of our proposed method evalu-
ated by using a well-known published dataset and performance
measurement. In addition, the obtained results are discussed,
besides comparing them with other related methods.

4.1. Dataset description

Several datasets are available for Arabic character recognition
(Lawgali, 2015). The proposed algorithm was tested with Arabic
Printed Text Image Database (APTI) (Slimane et al., 2009). APTI
dataset is a standard large-scale benchmark used in Arabic Recog-
nition Competition: Multi-font Multi-size Digitally Represented
Text held in the context of the 11th International Conference on
Document Analysis and Recognition (ICDAR2011). It has a variabil-
ity in the generation procedure of text images including different
font types (Andalus, Arabic Transparent, Advertising Bold, Diwani
Letter, DecoType Thuluth, Simplified Arabic, Tahoma, Traditional
Arabic, DecoType Naskh, and M Unicode Sara) as shown in
Fig. 10 (Slimane et al., 2009), sizes (6, 7, 8, 9, 10, 12, 14, 16, 18,
and 24 points), and styles (plain, italic, bold and combination of
italic and bold). The images in the dataset are 72 dpi resolution
images. Besides, it includes very large open-vocabulary, various
forms of ligatures, overlapping characters, low-resolution images,
and variability of the height of each word image. Moreover, APTI
covers all styles that are widely used in computer typing, newspa-
pers, magazines, and books.

i s lalZl 2bly Bl 2ol laa @ asis

e SlalSl by 32018 Caal) Jhe 8 S

oy Lol S iy Baelh ool 138 b pidi
Gre e it celiiiy o

Fas e blhieb el D 3 -

Ay e SalSl by oo Caal 128 3 a3

e Slals) oy 822 ol 1o (a9 e |

i o LS DUy 308 o) 1A 3200

TITQm m U aow »

i e oo lbsasbiodl n f’(ﬁ I
e Olals) SUly 5acb Sad) 1w wb pass | J
Fig. 10. Fonts used in APTI Database: (A) Andalus, (B) Arabic Transparent, (C)

Advertising Bold, (D) Diwani Letter, (E) DecoType Thuluth, (F) Simplified Arabic, (G)
Tahoma, (H) Traditional Aatbic, (I) DecoType Naskh, (J) M Unicode Sara.

4.2. Experiment setup and results

This section presents the results of conducted experiments
using API dataset. We used MATLAB to implement and then exper-
iment our proposed method because MATLAB platform provides
well-implemented toolbox in image processing. The performance
measured in terms of word/character segmentation accuracy
which is computed by the ratio of the number of word/character
that correctly segmented to the total number of input word/
character.

4.2.1. Word segmentation results

The results of the words segmentation stage in terms of word
segmentation accuracy reported in Table 2. The proposed word
segmentation method experimented with 1800 lines (around
24,816 words) with ten font types, three styles, and 10 font sizes
with an average accuracy of 97.7%. In general, the results show that
the algorithm has almost the same performance when varying font
type, style, and size except for Thulth, Diwani, and Naskh fonts.
Indeed, these fonts have lower accuracy than other fonts due to
the overlapping between consequent words which leads to under
segmentation in most cases as shown in Fig. 11a. For other font
types, under segmentation usually caused by the existence of noise
in the input images as in Fig. 11c and form the absence of space
after punctuation marks between words, which results in miss
classifying the space or reduce the value of spaces between words
as shown in Fig. 11b. On the other side, the over-segmentation in
all fonts as reported in Table 2 are negligible and mostly caused
by the existence of noise in the input images.

4.2.2. Character segmentation results

The results of the character segmentation stage in terms of
character segmentation accuracy are reported in Table 3. The pro-
posed method experimented with 24,00 words (around 100,000
characters) with ten font types, three styles, and ten font sizes.
The accuracy of character segmentation reported in two ways:
first, the accuracy defined as the ratio of the total number of cor-
rectly segmented characters (without including ligatures) to the
total number of input characters. In general, the results show that
the algorithm achieves similar accuracy with an average of 91.77%
when varying font type, style, and size except for Thulth, Diwani,
and Naskh especially for the under segmentation problem. Because
the structure of these fonts produces lots of ligatures that consist of
two or three characters due to the intra-overlapping problem as
shown in Fig. 12a (Naz et al., 2013). The second way, accuracy
defined as the ratio of the total number of correctly segmented
characters and well-known ligatures to the total number of input
characters. Indeed, most Arabic OCR systems treated ligatures as
new classes since segmenting them are very hard because the

Table 2

Word segmentation results.
Font Type #Input Words #Words Correctly Segmented #Over Segmentation #Under Segmentation Accuracy
Tahoma 2319 2305 1 13 99.4%
Advertising Bold 1773 1750 2 21 98.7%
Andalus 2833 2811 4 18 99.2%
Thulth 2648 2495 6 147 94.2%
Diwani 3548 3299 3 246 92.9%
M Unicode Sara 3090 3074 3 13 99.5%
Naskh 2921 2808 5 108 96.1%
Simplified Arabic 2884 2850 5 29 98.8%
Traditional Arabic 2800 2764 4 32 98.7%
Arabic Transparent 2860 2837 3 20 99.1%
Average Accuracy 97.7%

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

Table 3

A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx 13

Character segmentation results.

(b)

Fig. 11. Some examples on word under segmentation.

Font Type #Input #Correctly Segmented #0ver #Under Accuracy Exculding Accuracy Including
Characters Characters Segmentation Segmentation Ligatures Ligatures
Tahoma 12,262 11,892 278 92 96.98% 97.00%
Advertising Bold 7,896 7,307 176 413 92.54% 94.70%
Andalus 14,032 13,193 406 433 94.02% 96.31%
Thulth 11,582 9682 311 1,589 83.59% 92.40%
Diwani 18,329 16,951 518 860 92.48% 95.13%
M Unicode Sara 14,589 13,500 306 783 92.54% 95.07%
Naskh 12,585 11,345 342 898 90.02% 94.52%
Simplified Arabic 13,572 12,383 379 810 91.24% 96.10%
Traditional Arabic 12,751 11,860 320 571 93.00% 95.50%
Arabic Transparent 13,120 12,630 215 275 91.24% 96.26%
Average Accuracy 91.77% 95.30%

EESEEERRESSE
SEEEmIEEmAmEE
I s e e
o3 e S) sl

Fig. 12. Some examples on character segmentation results, (a) some examples on
ligatures, (b) some examples on segmentation errors, (¢) some examples on
character segmentation stage.

characters overlapped vertically and do not touch each other
which lead to un-clear segmentation point. In this case, the pro-
posed character segmentation method achieves an average accu-
racy of 95.3%. Besides, the proposed method reduces the total
number of ligatures compared to the list of ligatures defined in
w3c (2001).

In contrast, most of the segmentation errors cases which are
common with all fonts happened in (% «) characters especially
when small font size like 6, 7, 8, and 9 which rarely used in Arabic
typing. In small font size, segmentation points may not be visible
and thus cannot be detected because the transition above baseline
is very small. Besides, things get worse in terms of under and over-
segmentation with the existence of lower resolution images, noise
and binarization problems as shown in Fig. 12b. This makes some
isolated characters, which can be detected in a larger size, may not
be detected in a smaller size. Therefore, excluding these very small
sizes, the algorithm achieves an average accuracy of 97.51%
Fig. 12¢ shows some output of the character segmentation stage.

Table 4
Comparing with other related works.
Reference Segmentation Method Data-set Font Types Font Sizes Font Styles Accuracy
Zheng et al. (2004) Vertical histogram and 500 samples of Arabic text Simplified Arabic and 12, 14, 16, 18, 20 Plain 94.8
some structural Arabic Transparent and 22
characteristics rules
Mousa et al. (2017) Projection-based using 50,931 words, 224,781 Not reported Not reported Not reprted 98%
profile’s amplitude filter characters
Anwar and Adiwijaya Vertical Projection 127 sentences composed of Traditional Arabic 70pt Not 97.55%
(2015) 1061 letters reported
Marwa Amara and Zidi Histogram projection and APTI: 500 samples of Arabic Advertising Bold 10pt Plain, Bold, 85.6%
(2016) contextual topographies words Italic
Radwan and Khalil Multichannel Neural APTI Arial, Tahoma, Thuluth, 18 Plain 95.5%
(2016) Networks and Damas
Proposed Method Projection profile method APTI: around 100,000 Andalus, Transparent, 10, 12, 14, 16, 18, Pain, Italic, 97.51%
with statistical and characters Advertising Bold, Diwani, and 24 Bold

topological features

Thuluth, Simplified,
Tahoma, Traditional,
Naskh, and M Unicode
Sara

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

https://doi.org/10.1016/j.jksuci.2019.08.013

14 A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx

4.2.3. Comparison with related work

Table 4 shows our method compared with previous related
works in terms of the segmentation method, used Dataset, font
types, styles, sizes, and accuracy. Indeed, it is fairer to compare
with other related works using the same dataset (same font types,
sizes and styles). However, most of the authors tested their work
on their own collected data and didn’t make it public. In addition,
the implementation code of the proposed methods in the related
work is not available and sometimes it is difficult to write the code
since it may depend on parameters, hypothesis, tools and APIs that
are not mentioned clearly in published paper. Therefore, we tested
our method using APTI benchmark dataset in order to make some
fair comparisons with other related works. As shown from the
Table 4 and other methods summarized in section two this method
has one or more of the following weakness: (i) some of these meth-
ods are font type, style, and size-dependent, (ii) parameterized
method, (iii) handle simple font types and styles, and (iv) tested
on a small and unpublished standard dataset. On the other side,
the proposed method has the following effectiveness: (i) Font type,
style, and size-independent, (ii) Non-parametric method, (iii) han-
dles simple and complex font types and styles, (iv) solves the prob-
lem of inter overlapping between sub-words, (v) optimizes the
location of the cut point to save character shape, (vi) reduces the
number of ligatures, and (vii) tested on large and publish dataset.
Besides, we proposed a simple, efficient, font invariant and
parameter-free word segmentation approach that can employed
at the recognition stage as a post-processing method to enhance
the recognition performance.

5. Conclusion

Character segmentation of cursive text such as Arabic text is
error-prone and treats as the most critical stage for any OCR Sys-
tem. It is the stage where most of the errors occur that affect
directly the result of feature extraction and recognition stages. In
this paper, an efficient word and character segmentation algorithm
for printed Arabic text is proposed. The algorithm is based on using
vertical projection along with Interquartile Range (IQR) method for
word segmentation and based on using vertical projection method
along with a set of statistical and topological shape features for
character segmentation. The proposed algorithm developed such
that the segmentation is done in such a way to minimize under
and over-segmentation problems and to maximize the recognition
rate by saving the character’s shape. The algorithm was able to seg-
ment characters of complex Arabic fonts where the overlapping
between characters exists. The algorithm experimented on the
APTI dataset which has variability in the generation procedure of
text images including different font types, font size, and styles.
The experimental results showed the reliability of our algorithm
in segmenting words and characters correctly with an average
accuracy of 97.7% and 97.51% respectively. Compared with the
previously-proposed approach, our algorithm has the following
points of strength: (i) promising results with variability of font
types, sizes, and styles, (ii) non-parametric method, (iii) facilitating
the recognition stage by saving the shape of the extracted charac-
ters as much as possible, (iv) reducing number of ligatures, and (v)
proposing an efficient word segmentation which can be used to
enhance the accuracy of the recognition stage through incorporat-
ing language dictionaries and spell-checks method.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Ahmed, P., Al-Ohali, Y., 2000. Arabic character recognition: progress and challenges.
J. King Saud Univ.-Comput. Inf. Sci. 12, 85-116.

Alfonse, M., Almorsy, M., Samir, Barakat M., 2010. Eastern arabic handwritten
numerals recognition. Int. J. Comput. Electr. Eng., 277-282.

Alginahi, Y.M., 2013. A survey on arabic character segmentation. Int. J. Document
Anal. Recogn. 16 (2), 105-126.

Al-Muhtaseb, H., Mahmoud, S., Qahwaji, R., 2008. Recognition of off-line printed
arabic text using hidden markov models. Signal Process. 88, 2902-2912.

AL-Shatnawi, A., Omar, K., 2008. Methods of arabic language baseline detection -
the state of art 8. .

Anwar, K., Adiwijaya, Nugroho H., 2015. A segmentation scheme of arabic words
with harakat. In: 2015 IEEE International Conference on Communication,
Networks and Satellite (COMNESTAT), pp. 111-114.

Bushofa, B.M.F., Spann, M., 1997a. Segmentation of arabic characters using their
contour information. Proceedings of 13th International Conference on Digital
Signal Processing, vol. 2, pp. 683-686.

Bushofa, B., Spann, M., 1997b. Segmentation and recognition of arabic characters by
structural classification. Image Vis. Comput. 15 (3), 167-179.

Casey, R.G., Lecolinet, E., 1996. A survey of methods and strategies in character
segmentation. [EEE Trans. Pattern Anal. Mach. Intell. 18 (7), 690-706. https://
doi.org/10.1109/34.506792.

Cowell, J.H.F., 2001. Thinning arabic characters for feature extraction. In: Proceeding
of SPIE. Document Recognition III, pp. 181-185.

Deng, W., lyengar, S.S., Brener, N.E., 2000. A fast parallel thinning algorithm for the
binary image skeletonization. Int. J. High Perform. Comput. Appl. 14 (1), 65-81.

Elnagar, A.F.,, Al-Kharousi, S.H., 1997. Handwritten arabic and hindi numerals
recognition based on a decision tree classifier. In: IEEE International Conference
on Systems, Man and Cybernetics, pp. 983-988.

Elnagar, A., Harous, S., 2003. Recognition of handwritten hindu numerals using
structural descriptors. J. Exp. Theor. Artif. Intell. 15 (3), 299-314.

Fitriyatul Qomariyah, F.U.,, Mahmudy, W.F., 2017. The segmentation of printed
arabic characters based on interest point. J. Telecommun. Electron. Comput.
Eng. 9, 19-24.

Gouda, A.M., Rashwan, M.A., 2004. Segmentation of connected arabic characters
using hidden markov models. In: 2004 IEEE International Conference on
Computational Intelligence for Measurement Systems and Applications, 2004
CIMSA, pp. 115-119.

Han, Jiawei, Kamber, Micheline, Pei,]., 2012. Data Mining Concepts and Techniques .

Islam, N., Islam, Z., Noor, N., 2007. A survey on optical character recognition system.
CoRR. arXiv:1710.05703.

Lawgali, A., 2015. A survey on arabic character recognition. Int. J. Signal Process.
Image Process. Pattern Recogn. 8 (2), 401-426.

Lorigo, L.M., Govindaraju, V., 2006. Offline arabic handwriting recognition: a survey.
IEEE Trans. Pattern Anal. Mach. Intell. 28 (5), 712-724.

Louloudis, G., Gatos, B., Pratikakis, I., Halatsis, C., 2009. Text line and word
segmentation of handwritten documents. Pattern Recogn. 42 (12), 3169-3183.

Mahmood, A., 2013. Arabic & urdu text segmentation challenges & techniques. Int. J.
Comput. Sci. Technol. 4, 32-34.

Margner, V., 1992. Sarat-a system for the recognition of arabic printed text. In: 11th
International Conference on Pattern Recognition Methodology and Systems, pp.
561-564.

Marwa Amara, K., Zidi, K.G.S.Z., 2016. New rules to enhance the performances of
histogram projection for segmenting small-sized arabic words. In: International
Conference on Hybrid Intelligent Systems.

Mazen Bahashwan, S.A.B., Sheikh, U., 2017. Efficient segmentation of arabic
handwritten characters using structural features. Int. Arab J. Inf. Technol. 14.

Mehran, R., Pirsiavash, H., Razzazi, F., 2005. A front-end ocr for omni-font persian/
arabic cursive printed documents. In: Digital Image Computing: Techniques and
Applications (DICTA’05), pp. 56-56.

Mousa, M.A.A,, Sayed, M.S., Abdalla, M.I., 2017. Arabic character segmentation using
projection based approach with profile’s amplitude filter. ArXiv:abs/1707.
00800.

Naz, S., Hayat, K., Imran Razzak, M., Waqas Anwar, M., Akbar, H., 2013. Arabic script
based language character recognition: Nasta’liq vs naskh analysis. In: 2013
World Congress on Computer and Information Technology, WCCIT 2013, pp. 1-
7. ISBN 978-1-4799-0460-0.

Naz, S., Umar, AL, Ahmed, S.B., Shirazi, S.H., Razzak, M.I, Siddiqi, I., 2014. An ocr
system for printed nasta’liq script: a segmentation based approach. In: Multi-
Topic Conference (INMIC), 2014 IEEE 17th International. IEEE, pp. 255-259.

Naz, S., Umar, Al, Shirazi, S.H.,, Ahmed, S.B., Razzak, M.I, Siddiqi, I., 2016a.
Segmentation techniques for recognition of arabic-like scripts: a
comprehensive survey. Educ. Inf. Technol. 21 (5), 1225-1241.

Naz, S., Umar, A., Ahmad, R., Razzak, M., Rashid, S.F., Shafait, F., 2016. Urdu nasta’liq
text recognition using implicit segmentation based on multi-dimensional long
short term memory neural networks 5.

Omidyeganeh, M., Nayebi, K., Azmi, R., Javadtalab, A., 2005. A new segmentation
technique for multi font farsi/arabic texts. In: ICASSP, pp. 757-760.

Radwan, M.A,, Khalil, M.LA.H., 2016. Predictive segmentation using multichannel
neural networks in arabic ocr system. In: Artificial Neural Networks in Pattern
Recognition. Springer International Publishing, Cham, pp. 233-245.

Rehman, A., Mohamad, D., Sulong, G., 2009. Implicit vs explicit based script
segmentation and recognition: a performance comparison on benchmark
database 2.

Rosenberg, A., 2012. Using sift descriptors for ocr of printed arabic. .

Please cite this article as: A. Qaroush, B. Jaber, K. Mohammad et al., An efficient, font independent word and character segmentation algorithm for printed
Arabic text, Journal of King Saud University - Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.08.013

http://refhub.elsevier.com/S1319-1578(19)30815-8/h0005
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0005
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0010
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0010
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0015
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0015
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0020
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0020
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0030
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0030
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0030
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0035
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0035
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0035
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0040
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0040
https://doi.org/10.1109/34.506792
https://doi.org/10.1109/34.506792
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0050
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0050
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0055
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0055
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0060
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0060
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0060
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0065
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0065
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0070
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0070
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0070
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0075
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0075
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0075
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0075
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0090
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0090
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0095
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0095
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0100
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0100
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0105
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0105
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0110
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0110
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0110
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0115
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0115
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0115
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0120
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0120
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0125
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0125
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0125
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0135
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0135
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0135
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0135
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0140
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0140
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0140
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0145
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0145
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0145
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0155
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0155
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0160
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0160
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0160
https://doi.org/10.1016/j.jksuci.2019.08.013

ARTICLE IN PRESS

A. Qaroush et al./Journal of King Saud University - Computer and Information Sciences xxx (XxXx) Xxx 15

Saabni, R., 2014. Efficient recognition of machine printed arabic text using partial
segmentation and hausdorff distance. In: 2014 6th International Conference of
Soft Computing and Pattern Recognition (SoCPaR), pp. 284-289.

Sabbour, N., Shafait, F., 2013. A segmentation free approach to arabic and urdu ocr.
Proc. SPIE Int. Soc. Opt. Eng. 8658. https://doi.org/10.1117/12.2003731.
86580N-86580N.

Sari, T., Sellami, M., 2005. Cursive arabic script segmentation and recognition
system. Int. J. Comput. Appl. 27, 161-168.

Shaikh, N.A., Mallah, G.A., Shaikh, Z.A., 2009. Character segmentation of sindhi, an
arabic style scripting language, using height profile vector. Aust. J. Basic Appl.
Sci. 3 (4), 4160-4169.

Slimane, F. Ingold, R., Kanoun, S. Alimi, A.M., Hennebert, J., 2009. A new
arabic printed text image database and evaluation protocols. In: 2009

10th International Conference on Document Analysis and Recognition,
pp. 946-950.

Timsari, B.F.H., 1996. Morphological approach to character recognition in machine-
printed persian words. In: Proceeding of SPIE. Document Recognition III.

w3c, 2001. The unicode standard 3.1. In: w3c.

Zeki, A.M., Zakaria, M.S., 2004. Challenges in recognizing arabic characters.
International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia,
National University of Malaysia (UKM), Bangi, Selangor, Malaysia.

Zeki, A.M., Zakaria, M.S., Liong, C.Y., 2011. Segmentation of arabic characters: a
comprehensive survey. Int.]. Technol. Diffus. 2 (4), 48-82.

Zheng, L., Hassin, A.H., Tang, X., 2004. A new algorithm for machine printed arabic
character segmentation. Pattern Recogn. Lett. 25 (15), 1723-1729.

http://refhub.elsevier.com/S1319-1578(19)30815-8/h0175
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0175
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0175
https://doi.org/10.1117/12.2003731
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0185
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0185
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0190
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0190
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0190
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0195
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0195
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0195
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0195
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0200
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0200
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0210
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0210
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0210
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0215
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0215
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0220
http://refhub.elsevier.com/S1319-1578(19)30815-8/h0220
https://doi.org/10.1016/j.jksuci.2019.08.013

	An efficient, font independent word and character segmentation algorithm for printed Arabic text
	1 Introduction
	2 Related work
	2.1 Explicit segmentation
	2.1.1 Projection profile methods
	2.1.2 Contour tracing methods
	2.1.3 Morphological and thinning methods
	2.1.4 Template matching methods

	2.2 Implicit segmentation

	3 Proposed work
	3.1 Word segmentation
	3.2 Character segmentation
	3.2.1 Baseline detection
	3.2.2 Potential segmentation points identification
	3.2.3 Separation regions filtration

	3.3 Character extraction

	4 Experiments and results
	4.1 Dataset description
	4.2 Experiment setup and results
	4.2.1 Word segmentation results
	4.2.2 Character segmentation results
	4.2.3 Comparison with related work

	5 Conclusion
	Declaration of Competing Interest
	References

