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Abstract. We present an approximate analytic solution to the time-dependent ScMidinger 
equation of a charged harmonic oscillator in the presence of a strong laser field, based upon 
the technique advanced recently by Prasca The resulting wavefunction is then used to W v e  
expressions for the suMval probability of the ground state and the probability of transition to 
an arbihary higher state, 

1. Introduction 

Numerical integration of the timedependent Schrodinger equation in space and rime, made 
possible by the availability of powerful computing techniques, is by far the most reliable 
means of extracting information about the evolution of quantum mechanical sysierns in the 
presence of strong time-dependent perturbations [l]. Standard perturbation theory has had 
very little success in this area. 

By introducing a change of time scale, Frasca [2] has recently advanced an asymptotic 
series solution to the time-dependent Schrodinger equation of a strongly perturbed quantum 
system. The resulting series for the wavefunction of the system is basically an interaction 
picture series with the roles of the time-dependent perturbation and unperturbed Hamiltonian 
interchanged. In the same publication, Frasca demonstrated the usefulness of his technique 
by treating a few simple examples. He later employed the same procedure [3] to 
find the wavefunction of a quantum harmonic oscillator subjected to the perturbation 
V ( x ,  t )  = q4 cos(kx -ut), where q is the electric charge and 4 is the electrostatic potential. 
In this example, Frasca shows that, to order zero, the oscillator ground-state wavefunction 
evolves into a superposition of coherent states. 

In this paper, a slightly modified model of the system just described is considered. 
Instead of the spatio-temporal perturbation, we consider an oscillating electric field polarized 
parallel to the direction of motion of the charged oscillator and with a large and uniform 
amplitude. We evaluate the time-evolved wavefunction to order two as opposed to Frasca’s 
zero-order calculation. We then employ the approximate wavefunction in a calculation 
of the survival probability of the ground state and the probability of transition to the nth 
oscillator state, all as functions of the time. 

Our choice of the harmonic oscillator is motivated by its simplicity. It is hoped that its 
study will give us important clues on how a more complicated system with a few bound 
states and a continuum, like a model ion or atom, may be treated. Conclusions on how 
the wavefunction of the oscillator will evolve in time as a result of the timsdependent 
perturbation, may motivate researchers to apply the same program to real atoms, ions and 
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molecules under similar conditions. From the time-evolved wavefunction, observahles may 
be calculated which may subsequently be compared with experimental findings. 

The choice is further motivated by the fact that an exact solution to the problem is 
possible employing the interaction pictire [4]. We also develop this solution and compare 
it with the approximate solution based upon Frasca's approach. 

The subject of the present paper may also prove to be very useful in understanding the 
classical problem of stochastic heating [5]. The example we study in this paper represents the 
quantum analogue of such a problem. Furthermore, the Mossbauer effect [6] can be thought 
of as the three-dimensional version of precisely this example. In the Mossbauer effect the 
oscillator is a nucleus vibrating about its equilibrium position in a crystal. Absorption, 
by the nucleus, of the gamma photons takes place when the field frequency matches the 
frequency of transition from an initial state. to one of the higher oscillator states. 

The rest of the paper is organized as follows. In the next section the technique advanced 
recently by Frasca for the approximate solution of a strongly-perturbed system will be 
reviewed. This will be used in section 3 to calculate the time-evolved wavefunction of a 
quantum harmonic oscillator. The exact solution to the problem will also be presented in 
the same section. Section 4 will be devoted to the derivation, using Dirac oscillator creation 
and annihilation operators, of an expression for the probability that the oscillator ground 
state will survive the effect of the intense laser field after it has been tuned on for time t .  
The probability of transition from the ground state to higher states will also be calculated 
under similar conditions. In the last section, the approximate solution will be compared 
indirectly with the exact one and some comments and conclusions will be given. 

2. The theory 

Frasca's original proposal [2] to solve approximately the time-dependent Schrodinger 
equation 

a* [Ho + eV(r)]@ = %- 
at 

is based upon the change of time scale t + t / c  and the subsequent substitution 

In equation (1). HO is the unperturbed (free) Hamiltonian and V ( t )  is the perturbation. c is 
introduced here as a development parameter and is assumed to be large in order to ensure 
convergence of the series (2). When the substitution (2) is used in equation (l), together 
with the suggested change of time scale, the following set of painvisecoupled differential 
equations emerges, as one makes an order by order comparison 
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The order zero equation can be integrated formally and yields +@)(t) .  When + ( O ) ( t )  is then 
used in the equation of order one, it too admits a formal solution @(')(t) .  This process can, 
in principle, be continued and, to kth order, one gets 

where 

To@) = exp [ -; V (r) dt'] (7) 

and 

Hh(t) = To(f)-'H&(t) (8) 

and @(f) = +(x, t ) ,  . . . etc. The assumption common to all the equations above is that the 
perturbing field is turned on at f = 0 while the system is in the state @(O) belonging to the 
domain of the unperturbed Hamiltonian, namely 

H o N 2  = E @ ( @ .  (9) 

As is evident from equations (6t(8), the technique is effectively an interaction picture 
[7] with the roles of the perturbation and unperturbed Hamiltonian interchanged. 

3. The time-evolved oscillator wavefunction 

We study a charged harmonic oscillator of mass m, charge e and frequency W. prepared in its 
ground state and subjected, beginning at f = 0, to an oscillating electric field E = €0 cos(ot), 
polarized in the direction of motion of the oscillator. CO is the field amplitude, assumed 
large and uniform. This monochromatic plane wave of frequency o is oRen used to model 
ideally the electric component of the radiation field of a laser. 

The free Hamiltonian of the oscillator is given by 181 

(10) 

where at and a are the creation and annihilation operators, respectively. In the dipole 
approximation, the perturbation is given by 

H~ = fioo(ata + ?) I 

~ ( t )  = -etox cos(wt) = -eE0 (11) 

We first develop the exact solution to the time-dependent Schrodinger equation of the given 
system. This is done in the following subsection. 
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3.1. The exact solution 
Assume that the system has been prepared in its ground state 10) at t = 0, at which instant 
the perturbation, written as V ( x ,  t) = W ( t ) ( a  - ta t ) ,  is turned on. An exact solution to the 
timedependent Schrijdinger equation in the interaction picture exists [4]. According to it, 
the system evolves in time into the coherent state I@) the parameter of which is given as a 
function of the time by 

f 
@(t) = -i / eiwo(f-f')F(t') dt' 

0 

or 

(12) eEo WO(COS ut - cos W t )  + i(o sinot - 00 sin mot) - 
-JZizi$ o: - 0 2  

The parameters q and r ,  in equation (13), will be defined below and t = of. 

3.2. The approximate solution 

We now apply the technique outlined in section 2 to the same system. The result will be 
an approximate analytic wavefunction for the quantum harmonic oscillator. In the presence 
of the exact solution developed above, the approximate wavefunction is, of course, not 
very useful. Nevertheless, since we are looking for clues on how real atomic systems 
behave under similar conditions, for which no exact analytic solutions exist, the pursuit 
of an approximate solution for the simple system of a driven harmonic oscillator, remains 
desirable. Now, equations (6) and (7) yield 

where 

sin(ot). 

Recall that the Glauber 191 coherent state has the following number representation 

In order to move on to the next level of approximation, we need to evaluate the following 
operator, using well known identities [IO] 
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The time dependence in equation (17) is all in a(t). Assuming that the system is 
IO), the following integrals will be prepared initially (at t = 0) in its ground state I@(O)) 

needed 

Before moving on to the explicit construction of I@(')), according to equation (6), let 
us introduce a few dimensionless parameters, borrowed from the general literature on 
laser-atom interactions. Those parameters are q E,/Eo and r Eph/Eo, where 
E, = (e&)z/4m02 is the average classical energy of oscillation (quiver energy) of the 
particle in the given field, EO is the binding energy (in our case EO is the ground-state 
energy $Am) and Eph is the photon energy of the h e r  field. In terms of these parameters, 
equation (17) takes the form 

H@) = (HO + E ~ )  - E, cos(zot) + i2Ji?&sin(ot)(at -a).  (20) 

With the help of equations (lSt(ZO), the integrals needed to evaluate the first few corrections 
to the oscillator ground-state wavefunction turn out to be straightforward. For example, 

(21) 

for all k > 1. Equations (20) and (21) are central to the calculation of &e wavefunction to 
all orders. Hence, with the help of (21) one arrives without difficulty at 

eirr(o+ot) 
le(1)) = - ' r  (4fisinz (+t) (at -a) + i [+q sin(zwt)(q+ 1)(0t)]~ 10). (22) 

Also, multiplying the right-hand sides of (20) and (21) and carrying out another time 
integration, we get the second-order correction to the wavefunction. The algebra involved 
is quite elaborate. We give the result below without the details of the calculation. 

I@"(t)) = yz [ [ ;q (q  + 1)(0t) sin(2ot) - ,+(q + l)'(ot)' - iq2sin2(20t) 
eia(a++o) 

+ Sq sin4(;wt)(a+ -a)'.] + i2&[sin2(+or)[q sin(2wt) - ~ ( q  + ~ ) ( w t ) ~  

x (at - a)  + 2[sin(ot) - (wt)l(at +a) ] }  IO). (23) 

We proceed to express the timeevolved wavefunction in terms of coherent stit&. This 
will be followed by a calculation of the survival probability of, and the probability of 
transition from, the ground state. 
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Putting (14). (22) and (23) together, the approximate time-evolved wavefunction may 
be written in terms of the coherent state [ia) as 
I+(r)) = { I + ;  1 ~ ~ s i n ’ ( ~ ) ( a + + i a ) + i [ f q s i n 2 - c - ( q + l ) r ] ]  

1 
r2 ’ + - - [ ~ q ( q  + 1)rsinzr - i ( q  + 1)’7’- ~ q ’ s i n ~ ~ r  

where 7 = W t .  

4. Applications 

Using the well known properties of the coherent states [lo], the approximate time-evolved 
oscillator state function may be used to calculate any observable pertraining to the system. 
In particular, the survival probability (or population) of the oscillator ground state~can be 
calculated as the square of the modulus of the following amplitude 

&(r) = (O]$) =exp(-$qsin27) 1+- [4qs inrs in2f7+~qs in2r - (q+1)~]  1 :  
+ ; i . [ ~ q ( q + l ) r s i n 2 r - f ( q + l ) ’ r ’  1 

-2qsinr[sin2+r[qsin25-2(q+ 1)r1+2(sinr - r ) l ] + ~ ( - ) } .  1 

- $4’ sin’ 2s - 8q(1+ q sin’ 7) sin4 i 7  

r3 

(25) 

(olp(r)) = exp1-i IB(~) I* I .  (26) 
In figure 1, we show the ground-state population as a function of the time over approximately 
16 field cycles. Note that agreement between the predictions of the exact solution (26) and 
the approximate one (25) is almost complete over approximately 10 field cycles. 

On the other hand, projecting the nth oscillator state onto I+), we obtain the,following 
amplitude 

&,.(r) = (nl+) = -exp(-gsinzs) 

This is to be compared with the exact amplitude 

(iay 1 

4% 

r 

x ~q(q+1)rs in2~- f (q+1) ’ t2 -~qZs in’2r+8qs in4fr  L’ 
+tan f s (n  - q sin’ r )  n(n -1) 2n-1-qs in  5-- 

q sin’ 7 1 
x[qs in2r-2(q+l)r]+2(s inr-r )  + O  - . 1 ( r 4  
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Figure 1. The ground-state population plotted over approximately 16 field cycles. Note thal 
agxement between Lhe exact solution (light curve) and the approximate one (bold curve) is 
almost complete over 6 1 0  field cycles. The peak field strengths used are: (a) 0.01, @) 0.04, 
(c) 0.16 and (d) 0.64 an. For all plots ut = 0.01 and U = 1 an. 

The square of the modulus of &,.(r) gives the probability of transition from the initial 
ground state to the nth state at time t .  Note that d+,.(r) reduces to &(7) in the appropriate 
limit (n + 0), as expected. Close inspection of equation (27) reveals also that the leading 
term in A,, gives the following transition probability 

a Poissonian with mean and variance equal to a2 = q sin’ 5, characteristic of a coherent 
state. On the other hand, the exact amplitude corresponding to &+.(t) is 
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This corresponds to the transition probability 

a Poissonian with mean and variance equal to !PI2. Note that for high-field frequencies, 
o >> WO. the terms involving WO in both numerator and denominator of equation (12) may 
be dropped. This leaves us with the following limit 

p ( t )  + i&sinot = i&) (31) 

and equations (28) and (30) become identical. Thus, at least for high-field frequencies, the 
approximate and exact solutions give similar transition probability distributions. 

5. Discussion and conclusions 

Our main concern in this paper has been the application of a new perturbative technique 
for the analytic treatment of a strongly perturbed quantum system, the harmonic oscillator. 
Fortunately, such a system admits an exact analytic solution. How well the approximate 
solution agrees with the exact one can be found out from expanding Ip(r)) and comparing 
the resulting series with [@(r)) ,  term by term. This may be possible but is certainly far 
from being straightforward. Instead, a graphical comparison of the exact and approximate 
ground state populations may be sufficient. This is shown in figure 1. Furthermore, in order 
to determine the time region over which the approximate solution approaches the exact one 
closely enough, we will calculate the probability that the approximate solution will be the 
coherent state Ip(r)). In other words, we will calculate the square of the modulus of the 
following inner product 

++)}. 
Here, too, in the limit of high-field frequencies leading to equation (31), which also implies 
r >> 1 and amounts to retaining only the first term in equation (32). the exponential term 
approaches unity, and so does the probability 

p ( r )  = l(p(r)[@(r))12. (33) 
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Figure 2 The overlap probability I(p(f)l@(t))lz shown here over approximately 19 field cycles 
and for peak field strengths, field frequency and oscillalor M t d  frequency similar to figure 1. 

In the rest of this paper, P ( T )  will be referred to as the overlap probability. Acceptability 
of the approximate solution will depend on how close to unity this probability is. We show 
P ( t )  over about 19 field cycles in figure 2. 

As has been remarked by Frasca [Z], the technique employed in this work is not limited 
to strong perturbations. It is also potentially applicable to the treatment of model and real 
atoms and ions interacting with fields having any strength. On the other hand, the series (2) 
may turn out to be neither analytical nor convergent in the field strength. The choice of a 
large development parameter E has been made in order to ensure convergence of the series 
giving the time-evolved wavefunction. In the analysis leading to equation (24), however, 
E has been set equal to one, just like in non-relativistic, non-degenerate, timeindependent 



1138 Y I Salamin 

perturbation theory [SI. Thus, convergence of the series in the field strength may no longer 
be guaranteed. Nevertheless, the main results, especially equation (B), seem to suggest 
that @(x.  t )  does converge for values of the parameter r > I, or equivalently, for field 
frequencies in excess of 12, where 00 is the oscillator’s natural frequency. It must be 
maintained, of course, that no clear decision on convergence of the series, or lack of it, may 
be based on just three terms. 

For high field intensities [ 111, the electron of a real atom leaves the interaction region, 
a spot of the order of a few micrometres, in typically 30 ps following ionization. With the 
effect of the binding potential diminishing, away from the centre of the interaction region, 
the electron is most suitably described~by a Volkov state [12,13]. Outside the interaction 
region, however, the electron travels towards the detector as a free particle. The evolution 
from the ground state to the Volkov state and finally to the free-particle state necessitates 
a clear specification of the time region over which a particular solution is claimed to hold. 
Many authors [ 141 have been reporting results calculated numerically from the evolution 
of the states of real and model atoms over typically ten to a few hundred field cycles. 
In these publications, the time region over which the calculation is made is important 
especially when pulsed laser fields are used. Field --on and turn-off effects have direct 
impact on the ensuing dynamics of the ejected electron 1141. In the case of a harmonic 
oscillator, an infinite number of evenly spaced bound states exists and no continuum is 
involved. Continued irradiation by laser light results in a continued climbing of the energy 
level ladder, as long as the oscillator is within the interaction region. Thus, the solution 
presented in this article holds from the instant the field is turned on at t = 0 until the 
oscillator has left the interaction region. If, however, the oscillator is somehow confined to 
the interaction region, then our solution should be taken to hold for time regions dictated 
by plots similar to the ones exhibited in figure 2. 

References 

Fa id  F H M and Scanzano P 1992 Phys. Rev. Lett. 68 2909 and references therein 
Fmca M 1992 Phys. Rev. A 45 43 
Frasca M 1992 Nuovo CimenIo 107B 845 
Gardiner C W 1991 QKMIK~Z Noise (Berlin: Springer) section 4.3.2 
Kamey C F F 1977 Phys. Rev. ktt .  39 550 
De Benedelti S 1960 Sci. Am 202 72 
Herber R H 1971 Sei. Am 225 86 
Cohen-Tannondji C, DIU B and Laloe F 1977 QKantwn Mechanics (New York Wiley) 
Liboff R L 1980 lntmdmlory Quantum Mechanics (San Francisco: Holden-Day) 
Glaukr R G 1963 Phys. Rev. 130 2529; 1963 Phys. Rev. 131 2766 
Meyestre P and Sargent M III 1990 Elements of Quantum Optics (Berlin: Springer) 
Mainfray G and Manus C 1991 Rep. Pmg. Phys. 54 1333 
Eberly J, Javanainen J and Rzazewski K 1991 Phys. Rep. 204 331 
Volkov D M 1935 2 Phys. 94 250 
Sung C C and Li Y Q 1990 Phys. Rev. A 41 6114 
Sanpera A and Roso-Franco L 1991 J. Opt. Soc. Am. B 8 1568 
Pen Ue-Li and Jiang T F 1992 Phys. Rev. A 46 4297 
Sanpera A, Su Q and Roso-Franco L 1993 Phys. Rev. A 47 2312 


