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Abstract. The minimum mean square estimate (MMSE) for a stochastic process driven simultaneously by

Wiener and Poisson processes is characterized by an infinite number of stochastic differential equations (even in

the simplest linear case), and so is not practically implementable. In this article, a practical approximation to

the solution is developed in terms of a computationally suboptimal filter for the estimation problem. Basically,

it detects and estimates the Poisson driving process using a Maximum A Posteriori (MAP) criterion, and then

reconstructs the entire system state using MMSE applied to a system approximating the original one.
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1. Introduction

The assumption that the disturbing noise for a dynamical system being Gaussian is not sat-

isfactory in many realistic applications. In particular when the system is exposed to sudden,

infrequent, highly localized changes or disturbances that occur in a short period of time such

as earthquakes, large random weather fluctuations, or occasional mass mortalities [6, 9].

Therefore, the dynamical system under study is modeled as a stochastic differential equation

(SDE) driven by a combination of Gaussian and marked Poisson processes. An application

of jump-diffusion processes is target tracking (cf., Miller et al. [18]). The Gaussian-driven

part represents continuous fluctuations or diffusion in the system [7, 10]. On the contrary,

Poisson-driven noise models have random discontinuities in the underlying state dynamics

[7, 23, 9]. The exact solution, if obtainable, depends on the driving processes which are

random in nature and, in addition, the “best” estimate based upon partial observations, that

are themselves contaminated by noise. Further, practical implementation, if at all possible,

is complicated when there are jumps in the observations as well as in the state dynamics. In

this research, a computationally, but suboptimal, filter will be developed that is practically

implementable.

Many approximate filters were developed for nonlinear systems, almost all for Gauss-

driven noise only. Developments have relied on three main approaches. The first is based

upon Taylor’s series expansion of system nonlinearities around a nominal trajectory. Per-

forming the expansion only up to the first order terms results in the linearized Kalman Filter
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[10]. This approach can further be improved by linearizing, again up to first order, about

the most recent estimate. By doing so, the well-known Extended Kalman Filter (EKF)

is obtained [10, 17, 21]. The truncated minimum-variance, modified minimum-variance,

and Gaussian filters are obtained when the expansion is carried out to second order terms

[10, 22, 16, 17]. In the second approach, the Conditional Probability Density Function

(CDF) is parametrized via a finite and small set of parameters. This parametrization im-

mediately suggests an orthogonal expansion (cf., Jazwinski [10] and Kwakernaak [15]).

Emara-Shabaik [5], and Ahmed and Radaideh [2] considered the nonlinear filtering prob-

lem from a different approach, by approximating the problem and solving the approximate

model. Emara-Shabaik [5] utilizes a nearly linear approximate model of a practical fil-

ter, while Ahmed and Radaideh [2] use a nearly deterministic approximate model in their

Modified Extended Kalman Filter. Au, Haddad and Poor [3] developed an approximate

suboptimal filter that is a combination of detection and estimation for a scalar, linear, and

Gauss-Poisson driven system observed via Gauss-driven observations. Kushner and Dupuis

[14] discuss the treatment of the nonlinear filter for the jump diffusion state using the Markov

chain approximation.

The aim here is to formally develop an approximate suboptimal filter for system and

observations that are both driven by Weiner and Poisson processes simultaneously. The

focus here in on the application of computational methods. In Section 2, the problem

formulation is presented. In Section 3, the suboptimal filter was derived by combining the

two schemes due to Au, Haddad and Poor [3] and to Emara-Shabaik [5]. In Section 4, several

numerical experiments with our approximate suboptimal filter are discussed. Conclusions

are given in Section 5.

2. Problem Formulation

The dynamical system under study is described by the n×1 state vector X(t) and observed

continuously via the m × 1 observation vector Z(t). Both the state and the observations

are governed by systems of stochastic differential equations:

dX(t) = [A1(t)X(t) + B1(X, t)] dt + G1(t)dW1(t) +

∫

U1

H1(t,U)P1(dt, dU), (1)

dZ(t) = [A2(t)X(t) + B2(X, t)] dt + G2(t)dW2(t) +

∫

U2

H2(t,U)P2(dt, dU), (2)

where the state coefficient set {A1, B1, G1, H1} has dimensions {n × n, n × 1, n ×
r1, n × 1} and the observer coefficient set {A2, B2, G2, H2} has dimensions {m ×
n, m × 1, m × r2, m × 1}, respectively. The ri × 1 zero-mean Wiener process Wi(t)
and space-time Poisson process Pi(t,u) are assumed to be mutually independent. Thus

E[dWi(t)] = 0,

Covar[dWi(t), dW
T
j (t)] = δi,jIridt;

E

[∫

Ui

Hi(X, t,U)Pi(dt, dU) | X(t) = x

]
= λidt

∫

Ui

Hi(x, t,u)φi(u)du; (3)
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Covar

[ ∫
Ui

HiPi(dt, dU),
∫
Uj

H
T
j Pj(dt, dU)| X(t) = x

]

= δi,jλidt
∫
Ui

HiH
T
i φi(u)du;

(4)

Covar [dWi(t),Pj(dt, dU)] = 0,

for i, j = 1, 2, where λi the Poisson intensity and φi(u) is the probability density function

of marks (Poisson amplitudes) U = u in the mark spaceUi corresponding to the ith Poisson

process.

The objective is to estimate the system state vector, X(t) based upon a prior set of

observations on (t0, t],

Zt = {Z(s); t0 < s ≤ t}.

It is a known [10] that the conditional mean, E[X(t)|Zt], minimizes the mean square error,

E[(X(t) − X̂(t))T (X(t) − X̂(t))|Zt]. Abu-Saris [1] has shown that the conditional mean

for this model is characterized by an infinite number of stochastic differential equations even

for the simplest scalar linear case, like the nonlinear case and unlike the original Kalman

filter [11, 12]. Hence, approximation and estimation are needed for realistic, physical

implementation. The essential part of current research begins here.

3. Suboptimal Filter

In addition to existence and uniqueness [7], the Lipschitz continuity of the nonlinear terms

in x, and the dominance of the linear terms [5] is assumed, i.e.,

|Bi,j(x, t)| < θ

∣∣∣∣∣

n∑

k=1

Ai,j,k(t)xk

∣∣∣∣∣ , (5)

for some 0 < θ < 1, for i = 1 to 2, and for all j = 1 to n. The assumption that

linear terms dominate implies that the nonlinear terms, B1 and B2, can be approximated

using a good guess X = X
∗, such that such that the nearly linear conditions in (5) are

satisfied. The question of the theoretical convergence of X
∗(t) to X(t) is beyond the

scope of the present study, but linear convergence would be anticipated provided the initial

iterate X
∗(t) is sufficiently close to the state X(t). Examples of numerical convergence for

the nearly linear approximate model with Gaussian noise only is given by Emara-Shabaik

[5] for several cases of a stochastically perturbed van der Pol oscillator. Related numerical

corroboration is given by Ahmed and Radaideh [2] for the nearly deterministic approximate

model with Gaussian noise only, illustrated by several quite different examples. Grewal

and Andrews [8] offer a long list of convergence and divergence difficulties in Kalman filter

implementations.

Thus, the system and observations equations (1, 2) can be approximated by {X̃(t), Z̃(t)}
using the following equations:



282 R.M. ABU-SARIS AND F.B. HANSON

dX̃(t) =
[
A1(t)X̃(t) + B1(X

∗, t)
]
dt+G1(t)dW1(t)

+
∫
U1

H1(t,U)P1(dt, dU),
(6)

dZ̃(t) =
[
A2(t)X̃(t) + B2(X

∗, t)
]
dt+G2(t)dW2(t)

+
∫
U2

H2(t,U)P2(dt, dU).
(7)

Integration of the dynamical equation (6) leads to

X̃(t) = Φ(t, t0)X̃(t0)+
∫ t

t0
Φ(t, s)B1(X

∗, s)ds +
∫ t

t0
Φ(t, s)G1(s)dW1(s)

+
∫ t

t0

∫
U1

Φ(t, s)H1(s,U)P1(ds, dU),
(8)

where Φ(t, s) is the linear state drift transition matrix, i.e., satisfying

∂Φ

∂t
(t, s) = A1 ·Φ(t, s); Φ(s, s) = In.

As can be seen from (8), the state approximation X̃(t) is a sum of two parts. The first part,

consisting of the first three terms of (8), is a solution to a jump-free and Gaussian-driven

stochastic differential equation, while the second part and last term is solely dependent on

the Poisson-driven part. Let

M̃(t) = E[X̃(t) | Z̃t,η1(t)]

be the mean value of X̃(t) conditioned on prior observations Z̃t as usual, but also on the

system Poisson component defined by

η1(t) =

∫ t

t0

∫

U1

H1(t,U)P1(ds, dU); η1(t0) = 0.

The conditional mean M̃(t) can be decomposed into

M̃(t) = M̃0(t) + M̃1(t),

where the second part of the decomposition is defined as

M̃1(t) =

∫ t

t0

∫

U1

Φ(t, s)H1(s,U)P1(ds, dU) =

∫ t

t0

Φ(t, s) dη1(s), (9)

explicitly depending on the additional system Poisson conditioning. The equation for the

remaining part of the conditional mean follows from the moment form of Kushner’s filter

equation (see [10] and [1]) modified for fixed X
∗ and additional conditioning on the current

state jump cumulative amplitude η1(t),

dM̃0(t) =
[
A1M̃0 + B1(X

∗, t)] dt + P̃A
T
2 R

−1

{
dZ̃(t) − A2(M̃0 + M̃1)dt

−B2(X
∗, t)dt− λ2

∫
U2

H2φ2(u)dudt

}
,

(10)
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The filter moment equation for the conditional covariance which is defined as

P̃(t) = E[(X̃(t) − M̃(t)) · (X̃(t) − M̃(t))T | Z̃t,η1(t)],

is given by

dP̃(t) =
[
A1P̃ + P̃A

T
1 + G1G

T
1 − P̃A

T
2 R

−1
A2P̃

]
dt. (11)

In the filter moment equations (10, 11),

R = R(t) = G2(t)G
T
2 (t)

is the covariance of the observer Gaussian term G2(t)dW2(t) upon dividing the result by

dt. Note that X̃(t) is Gaussian for given η1(t) so that its third centered moment is 0 and

consequently the innovative term containing dZ̃(t) in (10) does not appear in the condition

covariance equation (11).

The filter moment equation (10) can be formally integrated to yield

M̃0(t) = Ψ (t, t0)M̃0(t0) +

∫ t

t0

Ψ(t, s)B1(X
∗, s)ds

+

∫ t

t0

Ψ (t, s)P̃A
T
2 R

−1

{
dZ̃(s) − A2M̃1ds− B2(X

∗, s)ds (12)

− λ2

∫

U2

H2φ2(u)duds

}
,

where Ψ (t, s) is the M̃0(t) linear component transition matrix, i.e.,

∂Ψ

∂t
(t, s) =

[
A1 − P̃A

T
2 R

−1
A2

]
· Ψ (t, s); Ψ(s, s) = In.

Further isolation of η1 terms can by attained by introducing the refined decomposition:

M̃0(t) = M̃2(t) + M̃3(t),

so now

M̃(t) = M̃1(t) + M̃2(t) + M̃3(t), (13)

where

dM̃2(t) =
[
A1M̃2(t) + B1(X

∗, t)
]
dt

+P̃A
T
2 R

−1

{
dZ̃(t) − A2M̃2(t)dt− B2(X

∗, t)dt

− λ2

∫

U2

H2φ2(u)dudt

}
(14)

=
[
A1 − P̃A

T
2 R

−1
A2

]
M̃2(t)dt +

[
B1(X

∗, t) − P̃A
T
2 R

−1
B2(X

∗, t)
]
dt

+P̃A
T
2 R

−1

{
dZ̃(t) − λ2

∫

U2

H2φ2(u)dudt

}
,
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and

M̃3(t) = −

∫ t

t0

Ψ (t, s)P̃(s)AT
2 (s)R−1(s)A2(s)M̃1(s)ds. (15)

Further collecting M̃ terms depending on η1, let

M̃4(t) = M̃1(t) + M̃3(t), (16)

so from (9) and (15),

dM̃4(t) = dM̃1(t) + dM̃3(t)

=

{
A1M̃1(t)dt +

∫

U1

H1(t,U)P1(dt, dU)

}

+
{(

A1 − P̃(t)AT
2 R

−1
A2

)
M̃3(t)dt− P̃(t)AT

2 R
−1

A2M̃1(t)dt
}

=
(
A1 − P̃(t)AT

2 R
−1

A2

)
M̃4(t)dt +

∫

U1

H1(t,U)P1(dt, dU).

Thus,

M̃4(t) =

∫ t

t0

∫

U1

Ψ (t, s)H1(s,U)P1(ds, dU) =

∫ t

t0

Ψ (t, s) dη1(s). (17)

Observe that now

M̃(t) = M̃2(t) + M̃4(t), (18)

combining (13) and (16), where M̃2 is given by equation (14), and M̃4 is given by equations

(17, 19).

The jump component of the condition mean M̃4(t) can also be given a discrete represen-

tation with respect to the jumps of the space-time Poisson process, so (17) becomes

M̃4(t) =

N1(t)∑

j

Ψ (t, τ1j)H1(τ1j ,U1j), (19)

where N1, τ1j and U1j are the number of jumps over the interval [t0, t), the jump time and

mark vector of the system Poisson process, respectively. However, the jump times and marks

have to be determined for the filter being approximated. To estimate the jump times and

marks, the Maximum A Posteriori Estimation technique will be used (cf., Snyder and Miller

[23]). In other words, one needs to maximize the likelihood function of {η1(s); t0 < s ≤ t}

conditioned on the prior observations Z̃t = {Z̃(s); t0 < s ≤ t}.

The system Poisson input process, η1(t) can be specified over (t0, t] by giving the number

of jumps, N1(t), the set of ordered jump times, T̃1(t) = {τ1j ; j = 1, · · · , N1(t)} and the

corresponding set of ordered mark vectors, Ũ1(t) = {u1j ; j = 1, · · · , N1(t)}. Therefore

a likelihood function of η1(t) conditioned on the prior observations Z̃t can be taken to be
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L(η1 | Z̃t) = p
(
N1(t), T̃1(t), Ũ1(t) | Z̃(t) = z

)
,

since the system Poisson process, η1(t) is white. By Bayes’ rule relating mixed (i.e., con-

tinuous and discrete) conditional probabilities and since the mark vectors are stochastically

independent of the jump times, the likelihood function of η1(t) conditioned on the prior

observations Z̃t is

L(η1 | Z̃t) = p
(
Z̃(t) | N1(t) = n1, T̃1(t), Ũ1(t)

)
· p

(
T̃1(t) | N1(t) = n1

)

·p
(
Ũ1(t) | N1(t) = n1

)
· Prob [N1(t) = n1] /p (z, t) . (20)

The observation probability density function p(z, t) is a function of realizations of observa-

tions and does not depend explicitly on N1(t), T̃1(t) and Ũ1(t). Therefore, the denominator

p(z, t) in (19) can be omitted and the likelihood function of η1(t) conditioned on the prior

observations can be replaced by:

L̃(η1 | Z̃t) = p
(
Z̃(t) | N1(t) = n1, T̃1(t), Ũ1(t)

)
· p

(
T̃1(t) | N1(t) = n1

)

·p
(
Ũ1(t) | N1(t) = n1

)
· Prob [N1(t) = n1] .

Further, by a simple application of Bayes’ rule,

p
(
T̃1(t) | N1(t) = n1

)
= Prob

[
N1(t) = n1 | T̃1(t)

]
p

(
T̃1(t)

)
Prob [N1(t) = n1] ,

so that

L̃(η1 | Z̃t) = p
(
Z̃(t) | N1(t) = n1, T̃1(t), Ũ1(t)

)
p

(
Ũ1(t) | N1(t) = n1

)

·Prob
[
N1(t) = n1 | T̃1(t)

]
p

(
T̃1(t)

)
.

Observe that, when given the jump times T̃1(t), the

Prob
[
N1(t) = n1 | T̃1(t)

]
= Prob [N1(t) −N1(τ1,n1

) = 0] = e−λ1(t−τ1,n1
).

Also, the density of the jump times according to Snyder and Miller [23] is given by

p(T̃1(t)) = λn1

1 e−λ1(τ1,n1
−t0)H(t− τ1,n1

)

n1∏

j=1

H(τ1,j − τ1,j−1),

relying on the jump time ordering with τ1,0 = t0, where H(t) denotes the Heaviside step

function. Moreover, since, by assumption, the mark vectors are mutually independent and

identically distributed,

p
(
Ũ1(t) | N1(t) = n1

)
=

n1∏

j=1

φ1(u1j).



286 R.M. ABU-SARIS AND F.B. HANSON

Finally,

L̃(η1 | Z̃t) = λn1

1 e−λ1(t−t0)




n1∏

j=1

φ1(u1j)


 p

(
Z̃(t) | N1(t) = n1, T̃1(t), Ũ1(t)

)
,

where the domain defining Heaviside factors have been dropped assuming proper jump

time ordering.

The likelihood of Z̃(t) conditioned on both {η1(s); t0 < s ≤ t}, and

{
η2(s) =

∫ t

t0

∫

U2

H2(t,U)P2(ds, dU); t0 < s ≤ t

}

(see Au, Haddad and Poor [3]) is proportional to

J (Z̃ | η1,η2) = exp

(∫ t

t0

{
M̃

T
A

T
2 R

−1

[
dZ̃(s) − B2(X

∗, s)ds

−
1

2
A2M̃(s)ds−

∫

U2

H2P2

]})
.

Applying the expectation with respect to η2(t) (see Hanson and Ryan [9]), one gets

J (Z̃ | η1) = exp

(∫ t

t0

M̃
T
A

T
2 R

−1

[
dZ̃(s) − B2(X

∗, s)ds−
1

2
A2M̃(s)ds

])

· exp

(
λ2

[∫ t

t0

∫

U2

exp
(
−M̃

T
A

T
2 R

−1
H2

)
φ2(u)duds− (t− t0)

])
.

Therefore, the log-likelihood function can be taken to be

J̃ (Z̃ | η1) =

∫ t

t0

M̃
T
A

T
2 R

−1

[
dZ̃(s) − B2(X

∗, s)ds−
1

2
A2M̃(s)ds

]

+λ2

∫ t

t0

∫

U2

exp
(
−M̃

T
A

T
2 R

−1
H2

)
φ2(u)duds− (t− t0).

Note that in M̃(t) of (18), M̃2(t) of (14) does not depend upon the jump parameter sets,

T̃1(t) and Ũ1(t), since it depends on E[dη2(t)] rather than dη1(t), but the dependence on

dη1(t) is only in M̃4(t) of (17).

Since the nonlinearities are Lipschitz continuous in X, then as X
∗(t) approaches X̃(t),

the approximate description, approaches the original system. Finally, choosing X
∗(t) to

be M̃
(1)
2 (t) from (14), the suboptimal filter is given by equation (18), where M̃4 is given

by (17, 19), and reusing (14) to obtain another iteration,

dM̃
(2)
2 (t) =

[
A1 − P̃A

T
2 R

−1
A2

]
M̃

(2)
2 dt

+
[
B1(M̃

(1)
2 , t) − P̃A

T
2 R

−1
B1(M̃

(1)
2 , t)

]
dt (21)

+P̃A
T
2 R

−1 ·

{
dZ̃(t) − λ2

∫

U2

H2φ2(u)dudt

}
,
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with P̃ satisfying (11).

The jump parameter sets T̃1(t) and Ũ1(t) are determined by maximizing

J̃ (2)(Z̃ | η1) =
∫ t

t0
M̃

T
A

T
2 R

−1
[
dZ̃(s) − B2(M̃

(2)
2 , s)ds− 1

2A2M̃
(2)(s)ds

]

+λ2

∫ t

t0

∫
U2

exp
(
−M̃

T
A

T
2 R

−1
H2

)
φ2(u)duds− (t− t0).

(22)

4. Numerical Experiments

Partitioning the interval, (t0, t] into subintervals of length ∆ such that:

λ1∆ ≪ 1, (23)

so that the probability of more than one jump is negligible in a ∆-interval. Further, let

N̂1, τ̂1, and û1 denote the MAP estimate of the one jump parameters N1, τ1, and u1,

respectively. Then

Ĵ [N̂1, τ̂1, û1] = max
N1,τ1,u1

[
Ĵ [N1, τ1, u1]

]

= max
N1

[
max
τ1,u1

[
Ĵ [N1, τ1, u1]

]]

= max
N1

[
Ĵ [N1, τ̂1, û1]

]
.

This means one can assume a value for N1and maximize with respect to τ1 and u1, since τ1
and u1 are pre-conditioned on the existence of jumps. With high probability, the number

of jumps in each subinterval, [tn, tn + ∆) can take one of only two values 0 or 1 for

sufficiently small ∆. Therefore, J needs to be maximized only for one set of τ1 and u1 on

each subinterval.

The testing data are generated by a Runge-Kutta scheme for Itô SDEs due to N. Newton

[19], modified by Kloeden and Platen [13], and modified again here for Poisson noise. The

Wiener noise is generated by means of Box-Muller transformation method, whereas the

Poisson noise is generated via a rejection method (see Press et al. [20]).

The likelihood function Ĵ is maximized by a form of the conjugate-direction method of

Powell with modifications due to Brent combined with golden section search [20]. This

modified form avoids the computation of the derivatives.

Four single-state and single-observation dimensional examples were used to test the

suboptimal filter. The first illustrate the linear case with stationary coefficients. The second

also deals with linear case, but the coefficients are nonstationary. The third and the fourth

illustrate the nonlinear, nonstationary case.

• Example 1 (λ1 = 1.5; λ2 = 3.0):

dX(t) = −4X(t)dt + 0.05dW1(t) + 0.5dP1; X(0) = 0,

dZ(t) = X(t)dt + dW2(t) + dP2(t); Z(0) = 0.
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• Example 2 (λ1 = 0.1; λ2 = 2.5):

dX(t) = e−tX(t)dt + t2dW1(t) + t/2dP1; X(0) = 0,

Z(t) = tX(t)dt + (5 + t2)dW2(t) + (1 + t)dP2(t); Z(0) = 0.

• Example 3 (λ1 = 6.5; λ2 = 5.5):

dX(t) = (X + t sin(X))dt + tdW1(t) + t2dP1(t); X(0) = 0,

dZ(t) = tXdt + dW2(t) + dP2(t); Z(0) = 0.

• Example 4 (λ1 = 3.4; λ2 = 1.2):

dX(t) = X(1 + X cos(X))dt + dP1(t); X(0) = 0,

dZ(t) = X

(
1 +

X

exp(t) + X

)
dt + dW2(t) + dP2(t); Z(0) = 0.

The suboptimal filter was solved numerically on an IBM ES/3090VF 300J main frame us-

ing an asymptotically consistent, stochastic Runge-Kutta method originally due to N. New-

ton [19]. For random numbers generated on the computer, the performance of the filter

was extremely good, provided the jump times are known or predicted correctly. First, the

jumps are detected and then estimated using the maximum a posteriori technique. After

that the state vector is estimated using the optimal filter equations conditioned on the system

Poisson process.

The simulated state process X(t), the suboptimal filter Ma with the jump times assumed

known, and another suboptimal filter Mb with jump times estimated are compared in Fig. 1

for the linear, stationary coefficient Example 1. All results for X(t), Ma, and Mb were

obtained by stochastic Runge-Kutta methods. Observe that the estimates Ma and Mb are

very close to the state X(t) simulations. Also there are few discrepancies in jump times of

Ma and Mb.

In Fig. 2, the corresponding results for the linear, nonstationary coefficient Example 2 are

somewhat different from the prior example, in that the estimate Ma with given jump times

is not distinguishable from the state simulations X , but the estimate Mb, with estimated

jump times, exhibits an essentially zero response. In this linear, nonstationary coefficient

example, the detection part is very weak.

In Fig. 3, the corresponding results for nonlinear, nonstationary coefficient Example 3

again exhibit good correspondence between the state computation X(t) and the state es-

timates Ma and Mb, except for a slow growth in overestimation for long times. Both

suboptimal estimates work well in this case, independent of whether the jump times are

prescribed or estimated.

Finally in Fig. 4, the results for the other nonlinear, nonstationary coefficient Example 4

exhibit good agreement between the state computation X(t) and the state estimates Ma

and Mb only for short times, while both suboptimal filters predict a similar underestimate

of the state for longer times. This example shows that our suboptimal estimation method

relies on the importance of dominance of the linear terms. Thus both suboptimal estimates

fail to track the state for long times. The nearly quadratic nonlinearity of Example 4 is more

dominant than the nearly linear nonlinearity of Example 3, so that the tracking failure of

the estimates for Example 4 are greater.
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The need for a computationally implementable, approximate filter in real world applica-

tions was the motivation for the present work. The equations satisfied by the optimal filter

were used and derived formally a computational but suboptimal filter conditioned on the

partially observed system Poisson process. It is a combination of detection and estimation.

First, the jumps are detected and then estimated using the MAP technique. After that the

state vector is estimated using the optimal filter equations conditioned on the system Poisson

process applied to an approximation of the system and observation SDEs.

However, the false prediction of jump times affected the performance heavily. In addition,

some discrepancies in the estimates arise when the nonlinear part significantly dominates,

rather than the linear part dominating. This leaves the question for a better prediction

technique open. Otherwise, the current method works quite well.
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