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ON DIVIDED COMMUTATIVE RINGS 

Ayman Badawi 
Dept. of Mathematics and Computer Science 

Birzeit University, Box 14 
Birzeit, West Bank, Palestine, via Israel 

E-Mail : abring@math.birzeit.edu 

ABSTRACT. Let R be a commutative ring with identity having 
total quotient ring T. A prime ideal P of R is called 
divided if P is comparable to every principal ideal of R. 
If every prime ideal of R is divided, then R is called a 
divided ring. If P is a nonprincipal divided prime, then 
P-' = { x 6 T : xP c P ) is a ring. We show that if R is an 
atomic domain and divided, then the Krull dimension of R 5 1. 
Also, we show that if a finitely generated prime ideal 
containing a nonzerodivisor of a ring R is divided, then it 
is maximal and R is quasilocal. 

INTRODUCTION 

Through out this paper, R denotes a commutative ring with 1 

and T denotes the total quotient ring of R. Given a ring 

R ,  then Z ( R )  denotes the set of zerodivisors of R, and N 

denotes the set of nonunits of R. D. Dobbs in 181 studied 

divided domains. Our main purpose is to generalize the study 

of divided domains to the context of arbitrary rings where 

possibly Z ( R )  is nonzero. Our definition of divided rings 

is the same as that one given in [ e l  for integral domains 

We start with the following definitions : 

Definition. A prime ideal P of a ring R is called divided if 

P is comparable to every principal ideal of R. If every prime 

ideal of R is divided, then R is called a divided ring. 

Copyright 0 1999 by Marcel Dekker. Inc 
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Definition. Recall from [ 6 1 ,  a prime ideal P of R is 

called strongly prime if aP and bR are comparable for 

every a,b E R .  If every prime ideal of a ring R is strongly 

prime, then R is called a pseudo-valuation ring (PVR). 

The first part of the following result is clear by the 

definition of divided rings, and the second part is also clear 

by [ 6 ,  Lemma l(a)] where it was shown that if a prime ideal P 

of R is strongly prime, then it is comparable to every 

principal ideal of R and therefore it is divided. 

Proposition 1. (a). If R is a divided ring, then the prime 

ideals of R are linearly ordered and therefore R is quasi- 

local. (b). If R is a PVR, then R is a divided ring. 

In ; 5 ,  Proposition 21 we gave several characterizations of 

divided domains. In view of the proof of [ 5 ,  Proposition 21, 

we see that these characterizations still valid for an 

arbitrary ring R. Thus, we state them here without proof. 

Proposition 2. The following statements are equivalent for a 

ring R. 

(I) R is a divided ring. 

(2) For every pair of proper ideals I, J of R, I and 

Rad(J) are comparable, where Rad(J) denotes the radical of 

J. 

( 3 )  For every a,b € R, the ideals (a) and Rad( (b)) 

are comparable. 

(4) For every a,b € R, either a / b  or b/an for some 

n a 1. 
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In light of Proposition 2(4), we have the following 

result. 

Corollary 3. Any homomorphic image of a divided ring is 

divided. In particular, if R is divided and I is an 

ideal of R, then R / I  is divided. 

The following result is a generalization of [ E l ,  Lemma 2.2 

(a) 1 . Our proof is different than that given in [Ell . 

Proposition 4. Any localization of a divided ring is divided. 

proof. Let S be a nonzero multiplicatively closed subset of 

R and x,y E R,. Then x = a/s and y = b/s for some s E S 

and a,b 6 R. Since R is divided, a1 b or b ( a n  for some 

n a 1 by Proposition 2 ( 4 ) .  Hence, b = ca or an = gb for 

some c,g E R. Thus, b/s = c(a/s) or an/sn = (g/sn'i (b/s). 

Thus, x 1 y or y / xn. Therefore, R is divided by 

Proposition 2 (4) . rn 

In [ 7 ,  Theorem 11, we proved that R is a PVR if and only 

if for every a,b E R, bR and aN are comparable. The 

following result is an analog of this fact. 

Proposition 5. The following statements are equivalent for 

a ring R. 

(1) R is divided. 

( 2 )  For every a,b E R, there is an n 2 1 such that b~ 

and anN are comparable. 

Proof. (1) - ( 2 )  . Suppose that bR amN for every m a 1. 

Then either a and b are associative in R or a does 

not divide b in R. If a and b are associative, then 
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b / a  and therefore aN c bR. If a does not divide b in 

R, then bl an for some n r 1 by Proposition 2 ( 4 )  and hence 

anN c bR. 2 1 Let a,b E R. By proposition 2 ( 4 )  we 

need show that either alb or bla" for some n s 1. Now, 

if bR c anN for some n 2 1, then alb. If amN c bR for 

some m 2 1, then bl am+'. Thus, R is a divided ringt. 

A consequence of the above result is the following 

corollary. 

Corollary 6. Let R be a quasilocal ring with the maximal 

ideal M. The following statements are equivalent. 

(1) R is divided. 

( 2 )  For every a,b E R, there is an n 2 1 such that bR 

and anM are comparable. 

Recall that if I is an ideal of R, then 1~' = 

{ X E ? :  XI c R  } and I : I =  { X E T  : X I  c I ) .  We leave 

the proof of the following lemma to the reader. 

Lemma 7. Let I be a nonprincipal ideal of R. Then XI c N 

for every x E I-'. 

The following lemma is needed in the next result 

Lemma 8. Let P be a divided prime ideal of R containing a 

nonzerodivisor of R. Then Z(R) c P. 

proof. Let s E P be a nonzerodivisor of R. Suppose that 

there is a z E Z(R) \ P .  Since P is divided, P c (z) and in 

particular zls which is impossible. Thus, Z ( R )  c P. I 

The following result is a generalization of the first part 

in [ 4 ,  Proposition 61 . 



DIVIDED COMMUTATNE RlNGS 1469 

proposition 9. Let P be a nonprincipal divided prime ideal 

of R. Then P-' = P: P is a ring. 

Proof. Suppose there is an x E P-'\R. Write x = a/b for 

some a E R and a nonzerodivisor b E R. Suppose that for 

some p E P ,  (a/b)p = c € R\P. Then ap = bc in R. Hence, 

(a/b) (p/c) = 1 in T. Since P is prime and c E R\P, b E P. 

Hence, Z(R) c P by Lemma 8. Thus, c is a nonzerodivisor of 

R. Since P is divided and c E R \ P ,  p/c E P. But 

(a/bi (p/c) = 1 which is a contradiction by Lemma 7. Thus, 

P-' = P:P is a ring. 

The following is a generalization of [4, Proposition 71. 

Proposition 10. Let I be a proper ideal of R containing a 

nonzerodivisor of R. The following statements are 

equivalent. 

(1) I is a nonprincipal divided prime ideal. 

1 2 )  I-' is a ring and I is comparable to every principal 

ideal of R. 

Proof. (1) + ( 2 ) .  This is clear by Proposition 9 and the 

definition of divided prime. 2 1 Since I Contains 

a nonzerodivisor of R and it is comparable to every princi- 

pal ideal of R, we see that Z(R) c I. Since I-' is a ring 

and I contains a nonzerodivisor of R, I is nonprincipal. 

For, if I is principal, then I = (sl for some nonzerodivi- 

sor s E R. Hence, l/s E 1~'. Since 1.' is a ring, l/s2 E I I .  

But (l/s2)s = l/s E R, a contradiction. Now, we show that I 

is prime. Let S = R\I and x,y E S. Since Z(R) c I ,  

neither x nor y is a zerodivisor of R. Since I is compa- 

rable to every principal ideal of R, l/x and l/y are in I '  

Since I~' is a ring, (l/x) (l/y) = l/xy E 1~'. Since I is 
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nonprincipal and l/xy 6 I-', xy E S.  Thus, S is a multiplica- 

tively closed subset of R and therefore I is prime 

The following example shows that the hypothesis that I 

contains a nonzerodivisor of R is crucial. 

Example 11. Let R = Z, and I = ( 2 )  . Then 1.' = R is 

a ring and I is divided but I is principal. 

In view of Example 11, we have the following result 

Proposition 12. Let I be a proper ideal of R such that 

Z(R) c I. If I is a ring and I is comparable to every 

principal ideal of R, then I is prime. 

Proof. To show that I is prime, see the argument given in 

the proof of Proposition 10. 

The following example shows that the hypothesis Z ( R )  c I 

is crucial in the above Proposition. 

Example 13. Let R = Z, and I = ( 4 ) .  Then 1.' = R is 

a ring and I is comparable to every principal ideal of R 

but I is not prime. 

The first part of the following lemma is taken from [5 ,  

Theorem 11 . 

Lemma 14. (a). The prime ideals of a ring R are linearly 

ordered if and only if the radical of every proper principal 

ideal of R is prime if and only if for every a,b € R, 

either ajb" or bjam for every n,m r 1. (b). If a,b E R, 

then Rad((a)) = Rad((b)) if and only if there are n,m 2 1 

such that a\ bn and bj am. 

Proof. (b). Just observe that Rad((a)) = Rad((b)) iff a E 
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Rad((b)) and b €Rad((a)) iff there are n,m z 1 such 

that albn and b/am. I 

Recall that a ring B is called an overring of R if R c 

B c T. A prime ideal P of R contains a nonzerodivisor element 

of R is called a minimal regular prime ideal of R if whenever 

Q 5 P for some prime ideal Q of R, then Q c Z(R). 

Proposition 15. Suppose that the prime ideals of a ring R 

are linearly ordered, and B is an overring of R containing an 

element of the form l/s for some nonucit nonzerodivisor 

s E R. Furthermore, suppose that Rad((s) is a minimal 

regular prime ideal of R, then B = T. In particular, if R 

is divided, then B = T is divided. 

Proof. To show that B = T, it suffices to show that l/d E B 

for every nonzerodivisor d E R. Let d be a nonzerodivisor 

of R. We consider two cases : case 1 .  Suppose that d 6 

R\Radi(s)). Then dlsn for some n 2 1 by Lemma 14 (a). 

Hence, s" = dk for some k E R. Thus, k/sn = l/d in T. 

Since l/s E B, k/sn = l/b € B. Case 2. Suppose that d E 

Rad((s)). Since Rad((s)) is a minimal prime ideal of R and 

Rad((d)) is prime by Lemma 14 (a), Rad((s)) = Rad((d)). 

Hence, dl s" for some n r 1 by Lemma 14 (b) . Now, a simllar 

argument as in case 1, we conclude that l/d E B. Thus, B = 

T. The remaining part is clear by Proposition 4. I 

In light of the above Proposition, we have the following. 

Corollary 16. Let R be a quasilocal ring of a Krull 

dimension 1 containing a nonunit nonzerodivisor element. Then 

T is the only overring of R containing an element of the 

form l/s for some nonunit nonzerodivisor s E R. 
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D. Dobbs in 19, Proposition 2.2 (a) 1 proved that if P is 

a divided prime ideal of a domain R, then Pn is a P-primary 

ideal of R, for every n 2 1. The following is a generaliza- 

tion of this fact. 

Proposition 17. Let P be a divided prime ideal of R such 

that Z ( R )  c P. Then P" is P-primary, for every n 2 1. 

Proof. We show that if a,b € R satisfy ab E Pn and a 8 

Rad(Pn) = P, then b E Pn. Consider an element of the form y = 

p,p,. . .p, in Pn where the p,'s are in P. To show b € Pn, it 

suffices to show that y/a E Pn, since b is a finite sum of 

element of the form of y. Since Z (Rj c P and a 6 P and P 

is divided, a is a nonzerodivisor of R and p/a E P for 

every p E P. Thus, y/a = (p,/a)p2. . .p, € P". Hence, b E P". 

Therefore, Pn is P-primary. 

The following example shows that the hypothesis Z(R) c P 

In the above Proposition is crucial. 

Example 18. Let V = Z,,, + XQ [ [XI I , a two dimensional 

valuation domain with prime ideals (0) c P = XQ[[X]] c M = 

22 , , ,  + XQ [ [XI 1 . Let R = V/XZV. Then R is a PVR (see [ 6 ,  

Example lO(b) J j wlth prime ideals G = P/X2V and Z!R)  = N = 

M/X~V. Then G is divided. Now, (2 + X2V) iX2/2 + X2V) E G3 = 

[p3  + x2v] / X2v = 0 in R. But neither 2 + X2V E Rad(G3) = G 

nor X2/2 + XZv E G3 since 1/2 6 X2V. Hence, G3 is not G- 

primary of R. 

Proposition 19. Let R be an atomic domain. Then R is 

divided if and only if R is quasilocal of Krull dimension 1 

Proof. Suppose that R is divided with maximal ideal M. 

Suppose that there is a nonzero prime ideal P of R such 
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that P e M. Then there are atoms a,b of R such that 

a E P and b E M\P. Since P is divided, bla which is a 

contradiction. The converse is clear. rn 

The following lemma is well-known. See for example [lo, 

Theorem 151. We state it here without proof. 

Lemma 20. Let s be a nonunit nonzerodivisor element of R. 

Then l/s is never integral over R. 

It is easy to see that if P is a divided prime ideal of 

R, then P c J(R) where J(R) is the Jacobson radical of R. 

In the following result, we show that if a finitely generated 

prime ideal containing a nonzerodivisor of R is divided, 

then P is maximal and therefore R is quasilocal. 

Proposition 21. Let P be a finitely generated prime ideal 

containing a nonzerodivisor of R. If P is divided, then P 

is maximal and therefore R is quasilocal. 

Proof. Deny. Then there is an s E N\P.  Since P contains 

a nonzerodivisor of R, Z(R1 c P by Lemma 8. Hence, s is a 

nonzerodivisor of R. Since P is prime and divided, 

(l/s)P c P. Since P contains a nonzerodivisor of R, the 

annihlator of P in T is 0. Hence, by [lo, Theorem 121, 

l/s is integral over R. A contradiction by Lemma 20. m 
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