Communications in Algebra

On divided commutative rings

Ayman Badawi

To cite this article: Ayman Badawi (1999) On divided commutative rings, Communications in Algebra, 27:3, 1465-1474, DOI: 10.1080/00927879908826507

To link to this article: https://doi.org/10.1080/00927879908826507

Published online: 27 Jun 2007.

Submit your article to this journal

Article views: 142

View related articles

Citing articles: 15 View citing articles

ON DIVIDED COMMUTATIVE RINGS

```
        Ayman Badawi
Dept. of Mathematics and Computer Science
    Birzeit University, Box 14
Birzeit, West Bank, Palestine, via Israel
    E-Mail : abring@math.birzeit.edu
```


Abstract

Let R be a commutative ring with identity having total quotient ring T. A prime ideal P of R is called divided if P is comparable to every principal ideal of R. If every prime ideal of R is divided, then R is called a divided ring. If P is a nonprincipal divided prime, then $P^{-1}=\{x \in T: X P \subset P\}$ is a ring. We show that if R is an atomic domain and divided, then the Krull dimension of $R \leqslant 1$. Also, we show that if a finitely generated prime ideal containing a nonzerodivisor of a ring R is divided, then it is maximal and R is quasilocal.

INTRODUCTION

Through out this paper, R denotes a commative ring with 1 and T denotes the total quotient ring of R. Given a ring R, then $Z(R)$ denotes the set of zerodivisors of R, and N denotes the set of nonunits of R. D. Dobbs in [8] studied divided domains. Our main purpose is to generalize the study of divided domains to the context of arbitrary rings where possibly $Z(R)$ is nonzero. Our definition of divided rings is the same as that one given in [8] for integral domains.

We start with the following definitions : Definition. A prime ideal P of a ring R is called divided if P is comparable to every principal ideal of R. If every prime ideal of R is divided, then R is called a divided ring.

Definition. Recall from [6], a prime ideal P of R is called strongly prime if $a p$ and $b R$ are comparable for every $a, b \in R$. If every prime ideal of a ring R is strongly prime, then R is called a pseudo-valuation ring (PVR).

The first part of the following result is clear by the definition of divided rings, and the second part is also clear by $[6$, Lemma $1(a)]$ where it was shown that if a prime ideal P of R is strongly prime, then it is comparable to every principal ideal of R and therefore it is divided.

Proposition 1. (a). If R is a divided ring, then the prime ideals of R are linearly ordered and therefore R is quasilocal. (b). If R is a PVR, then R is a divided ring.

In [5, Proposition 2] we gave several characterizations of divided domains. In view of the proof of [5, proposition 2], we see that these characterizations still valid for an arbitrary ring R. Thus, we state them here without proof.

Proposition 2. The Eollowing statements are equivalent for a ring R.
(1) R is a divided ring.
(2) For every pair of proper ideals I, J of R, I and $\operatorname{Rad}(J)$ are comparable, where $\operatorname{Rad}(J)$ denotes the radical of J.
(3) For every $a, b \in R$, the ideals (a) and $\operatorname{Rad}(b)$) are comparable.
(4) For every $a, b \in R$, either $a \mid b$ or $b \mid a^{n}$ for some $n \geq 1$.

```
    In light of Proposition 2(4), we have the following
result.
Corollary 3. Any homomorphic image of a divided ring is divided. In particular, if \(R\) is divided and \(I\) is an ideal of \(R\), then \(R / I\) is divided.
```

The following result is a generalization of [8, Lemma 2.2 (a)]. Our proof is different than that given in [8].

Proposition 4. Any localization of a divided ring is divided. Proof. Let S be a nonzero multiplicatively closed subset of R and $x, y \in R_{s}$. Then $x=a / s$ and $y=b / s$ for some $s \in S$ and $a, b \in R$. Since R is divided, $a \mid b$ or b / a^{n} for some $n \geq 1$ by Proposition $2(4)$. Hence, $b=c a$ or $a^{n}=g b$ for some $c, g \in R$. Thus, $b / s=c(a / s)$ or $a^{n} / s^{n}=\left(g / s^{n \cdot 2}\right)(b / s)$. Thus, $x \mid y$ or $y \mid x^{n}$. Therefore, R is divided by Proposition $2(4)$.

In [7, Theorem 1], we proved that R is a PVR if and only if for every $a, b \in R, b R$ and $a N$ are comparable. The following result is an analog of this fact.

Proposition 5. The following statements are equivalent for a ring R 。
(1) R is divided.
(2) For every $a, b \in R$, there is an $n \geq 1$ such that $b R$ and $a^{n} N$ are comparable.

Proof. $(1) \Longrightarrow(2)$. Suppose that $b R \notin a^{m} N$ for every $m \geq 1$. Then either a and b are associative in R or a does not divide b in R. If a and b are associative, then
$b \mid a$ and therefore $a N \subset b R$. If a does not divide b in R, then $b \mid a^{n}$ for some $n \geq 1$ by Proposition $2(4)$ and hence $a^{n} N \subset b R$. (2) $\Rightarrow(1)$. Let $a, b \in R$. By proposition $2(4)$ we need show that either $a \mid b$ or $b \mid a^{n}$ for some $n \geq 1$. Now, if $b R \subset a^{n} N$ for some $n \geq 1$, then $a \mid b$. If $a^{m} N \subset b R$ for some $m \geq 1$, then $b \mid a^{m+1}$. Thus, R is a divided ringt.

A consequence of the above result is the following corollary.

Corollary 6. Let R be a quasilocal ring with the maximal ideal M. The following statements are equivalent.
(1) R is divided.
(2) For every $a, b \in R$, there is an $n \geq 1$ such that $b R$ and $a^{n} M$ are comparable.

Recall that if I is an ideal of R, then $I^{-1}=$ $\{x \in T: X I \subset R\}$ and $I: I=\{x \in T: X I \in I\}$. We leave the proof of the following lemma to the reader.

Lemma 7. Let I be a nonprincipal ideal of R. Then $x I \subset N$ for every $\mathrm{x} \in \mathrm{I}^{-1}$.

The following lemma is needed in the next result.

Lemma 8. Let P be a divided prime ideal of R containing a nonzerodivisor of R. Then $Z(R) \subset P$.

Proof. Let $s \in P$ be a nonzerodivisor of R. Suppose that there is a $z \in Z(R) \backslash P$. Since P is divided, $P \subset(z)$ and in particular $z \mid s$ which is impossible. Thus, $Z(R) \subset P$.

The following result is a generalization of the first part in [4, Proposition 6].

Proposition 9. Let P be a nonprincipal divided prime ideal of R. Then $P^{-1}=P: P$ is a ring.

Proof. Suppose there is an $x \in P^{-1} \backslash R$. Write $x=a / b$ for some $a \in R$ and a nonzerodivisor $b \in R$. Suppose that for some $p \in P,(a / b) p=c \in R \backslash P$. Then $a p=b c$ in R. Hence, $(a / b)(p / c)=1$ in T. Since P is prime and $C \in R \backslash P, b \in P$. Hence, $Z(R) \subset P$ by Lemma 8. Thus, C is a nonzerodivisor of R. Since P is divided and $C \in R \backslash P, P / C \in P$. But $(\mathrm{a} / \mathrm{b})(\mathrm{p} / \mathrm{c})=1$ which is a contradiction by Lemma 7. Thus, $\mathrm{P}^{-1}=P: P$ is a ring.

The following is a generalization of [4, Proposition 7].

Proposition 10. Let I be a proper ideal of R containing a nonzerodivisor of R. The following statements are equivalent.
(1) I is a nonprincipal divided prime ideal.
(2) I^{-1} is a ring and I is comparable to every principal ideal of R.

Proof. (1) \Rightarrow (2). This is clear by Proposition 9 and the definition of divided prime. (2) $\Rightarrow(1)$. Since I Contains a nonzerodivisor of R and it is comparable to every principal ideal of R, we see that $Z(R) \in I$. since I^{-1} is a ring and I contains a nonzerodivisor of R, I is monprincipal. For, if I is principal, then $I=(s)$ for some nonzerodivisor $s \in R$. Hence, $I / s \in I^{-1}$. Since I^{-1} is a ring, $I / s^{2} \in I^{1}$. But $\left(1 / s^{2}\right) s=1 / s \notin R$, a contradiction. Now, we show that I is prime. Let $S=R \backslash I$ and $x, Y \in S$. Since $Z(R) \in I$, neither x nor y is a zerodivisor of R. since I is comparable to every principal ideal of $R, I / x$ and $1 / Y$ are in I. Since I^{-1} is a ring, $(1 / X)(1 / Y)=1 / X y \in I^{-1}$. since I is
nonprincipal and $1 / X Y \in I^{-2}$, $X Y \in S$. Thus, S is a multiplicatively closed subset of R and therefore I is prime

The following example shows that the hypothesis that I contains a nonzerodivisor of R is crucial.

Example 11. Let $R=Z_{8}$ and $I=(2)$. Then $I^{-1}=R$ is a ring and I is divided but I is principal.

In view of Example 11, we have the following result.

Proposition 12. Let I be a proper ideal of R such that $Z(R) \subset I$. If I^{-1} is a ring and I is comparable to every principal ideal of R, then I is prime.

Proof. To show that I is prime, see the argument given in the proof of Proposition 10.

The following example shows that the hypothesis $Z(R) c$ I is crucial in the above proposition.

Example 13. Let $R=Z_{8}$ and $I=(4)$. Then $I^{-1}=R$ is a ring and I is comparable to every principal ideal of R but I is not prime.

The first part of the following lemma is taken from [5, Theorem 11.

Lemma 14. (a). The prime ideals of a ring R are linearly ordered if and only if the radical of every proper principal ideal of R is prime if and only if for every $a, b \in R$, either $a \mid b^{n}$ or $b \mid a^{m}$ for every $n, m \geq 1$. (b). If $a, b \in R$, then $\operatorname{Rad}((a))=\operatorname{Rad}((b))$ if and only if there are $n, m \geq 1$ such that $a \mid b^{n}$ and $b \mid a^{m}$.
Proof. (b). Just observe that $\operatorname{Rad}((a))=\operatorname{Rad}(b))$ iff $a \in$
$\operatorname{Rad}(\{b))$ and $b \in \operatorname{Rad}((a))$ iff there are $n, m \geq 1$ such that $a \mid b^{n}$ and $b \mid a^{m}$.

Recall that a ring B is called an overring of R if $R \subset$ $B \subset T$. A prime ideal P of R contains a nonzerodivisor element of R is called a minimal regular prime ideal of R if whenever $Q 5 P$ for some prime ideal Q of R, then $Q \subset Z(R)$.

Proposition 15. Suppose that the prime ideals of a ring R are linearly ordered, and B is an overring of R containing an element of the form $1 / s$ for some nonunit nonzerodivisor $s \in R$. Furthermore, suppose that $R a d((s))$ is a minimal regular prime ideal of R, then $B=T$. In particular, if R is divided, then $B=T$ is divided.

Proof. To show that $B=T$, it suffices to show that $1 / d \in B$ for every monzerodivisor $d \in R$. Let d be a nonzerodivisor of R. We consider two cases : Case 1. Suppose that $d \in$ $R \backslash \operatorname{Rad}((s))$. Then $d \mid s^{n}$ for some $n \geq 1$ by Luemma 14 (a). Hence, $s^{r}=d k$ for some $k \in R$. Thus, $k / s^{n}=1 / d$ in T. Since $1 / s \in B, k / s^{n}=1 / b \in B$. Case 2. Suppose that $d \in$ $\operatorname{Rad}((s))$. Since $\operatorname{Rad}(\langle s))$ is a minimal prime ideal of R and $\operatorname{Rad}((d))$ is prime by Lemma $14(a), \operatorname{Rad}((s))=\operatorname{Rad}((d))$. Hence, $d \mid s^{n}$ for some $n \geq 1$ by Lemma 14 (b). Now, a similar argument as in case 1 , we conclude that $1 / d \in B$. Thus, $B=$ T. The remaining part is clear by Proposition 4.

In light of the above Proposition, we have the following.

Corollary 16. Let R be a quasilocal ring of a Krull
dimension 1 containing a nonunit nonzerodivisor element. Then T is the only overring of R containing an element of the form $1 / s$ for some nonunit nonzerodivisor $s \in R$.
D. Dobbs in $[9$, Proposition 2.2 (a)] proved that if P is a divided prime ideal of a domain R, then P^{n} is a p-primary ideal of R, for every $n \geq 1$. The following is a generalization of this fact.

Proposition 17. Let p be a divided prime ideal of R such that $Z(R) \subset P$. Then p^{n} is p-primary, for every $n \geq 1$. Proof. We show that if $a, b \in R$ satisfy $a b \in P^{n}$ and $a \notin$ $\operatorname{Rad}\left(P^{n}\right)=P$, then $b \in P^{n}$. Consider an element of the form $Y=$ $p_{1} p_{2} \ldots p_{n}$ in p^{n} where the $p_{i} ' s$ are in P. To show $b \in P^{n}$, it suffices to show that $y / a \in P^{n}$, since b is a finite sum of element of the form of Y. Since $Z(R) \subset P$ and a $\notin P$ and P is divided, a is a nonzerodivisor of R and $p / a \in P$ for every $p \in P$. Thus, $y / a=\left(p_{2} / a\right) p_{2} \ldots p_{n} \in p^{n}$. Hence, $b \in p^{n}$. Therefore, p^{n} is p-primary.

The following example shows that the hypothesis $Z(R) \subset P$ In the above Eroposition is crucial.

Example 18. Let $V=Z_{\{2\}}+X Q[\{X]]$, a two dimensional valuation domain with prime ideals (0) $\subset P=X Q[[X]] \subset M=$ $2 Z_{(2)}+X Q[[X]]$. Let $R=V / X^{2} V$. Then R is a PVR (see $[6$, Example $10(b)]$, with prime ideals $G=P / X^{2} V$ and $Z(R)=N=$ $M / X^{2} V$. Then G is divided. Now, $\left(2+X^{2} V\right)\left(X^{2} / 2+X^{2} V\right) \in G^{3}=$ $\left[P^{3}+X^{2} V\right] / X^{2} V=0$ in R. But neither $2+X^{2} V \in \operatorname{Rad}\left(G^{3}\right)=G$ nor $X^{2} / 2+X^{2} V \in G^{3}$ since $I / 2 \notin X^{2} V$. Hence, G^{3} is not $G-$ primary of R.

Proposition 19. Let R be an atomic domain. Then R is divided if and only if R is quasilocal of Krull dimension 1. Proof. Suppose that R is divided with maximal ideal M. Suppose that there is a nonzero prime ideal P of R such
that $P \notin M$. Then there are atoms a, b of R such that $a \in P$ and $b \in M \backslash P$. Since P is divided, b / a which is a contradiction. The converse is clear.

The following lemma is well-known. See for example $[10$, Theorem 15]. We state it here without proof.

Lemma 20. Let s be a nonunit nonzerodivisor element of R. Then $1 / s$ is never integral over R.

It is easy to see that if P is a divided prime ideal of R, then $P \in J(R)$ where $J(R)$ is the Jacobson radical of R. In the following result, we show that if a finitely generated prime ideal containing a nonzerodivisor of R is divided, then P is maximal and therefore R is quasilocal.

Proposition 21. Let P be a finitely generated prime ideal containing a nonzerodivisor of R. If P is divided, then P is maximal and therefore R is quasilocal.

Proof. Deny. Then there is an $s \in N \backslash P$. Since p contains a nonzerodivisor of $R, Z(R) \subset P$ by Lemma 8 . Hence, s is a nonzerodivisor of R. Since P is prime and divided, $(1 / s) P \subset P$. Since P contains a nonzerodivisor of R, the annihlator of P in T is 0 . Hence, by [10, Theorem 12], $1 / s$ is integral over R. A contradiction by Lemma 20.

ACRNOWLEDGEMENT

I am grateful to the referee for his many comments.

REFERENCES

[1] D. F. Anderson, Comparability of ideals and valuation overrings, Houston J. Math. 5(1979), 451-463.
[2] D. F. Anderson, when the dual of an ideal is a ring, Houston J. Math. 9(1983), 325-332.
[3] D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Can. J. Math. $32(1980)$, 362-384.
[4] A. Badawi, A visit to valuation and pseudo-valuation domains, Zero Dimensional Commutative Rings, Lecture Notes Pure Appl. Math., Vol. 171, 151-161, Marcel Dekker Inc., New York/Basel, 1995.
[5] A. Badawi, On domains which have prime ideals that are Iinearly ordered, Comm. Algebra 23 (1995), 4365-4373.
[6] A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudovaluation rings, Proceedings of The Second International Conference on Commatative Rings, Lecture Notes Pure Appl. Math., Vol. 185, 57-67, Marcel Dekker Inc., New York/Basel, 1996.
[7] A. Badawi, on comparability of ideals of commutative rings, Comm. Algebra 26 (1998), 793-802.
[8] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67(1976), 353-363.
[9] D. E. Dobbs, On flat divided prime ideals, Factorization In Integral Domains, Lecture Notes Pure Appl. Math., Vol. 189, 305-315, Marcel Dekker Inc., New York/Basel, 1997.
[10] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974.

