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ON 2-PSEUDO-VALUATION RINGS II

AYMAN BADAWI
Communicated by Klaus Kaiser

ABSTRACT. A commutative ring R with identity 1 # 0 is called a pseudo-
valuation ring (PVR) if for every a,b ¢ R,either a | bin R or blac in R
for every nonunit ¢ of R. Also, R is called a & -pseudo-valuation ring if
Nil(R) (the set of nilpotent elements of R) is a divided prime ideal of R and
for every a,b € R\Nil(R)either a divides b in R or b divides ac for every
nonunit ¢ of R. In this paper, we will show that for any n > 0 {possibly
infinite] there is a ®—~PVR of Krull dimension n that is not a PVR.

1. INTRODUCTION

We assume throughout that all rings are commutative with 1 # 0. we begin
by recalling some back ground material. As in (9], an integral domain R, with
quotient field K, is called a pseudo-valuation domain (PVD) in case each prime
ideal P of R is strongly prime, in the sense that zy € P,z € K ¥ € K implies
that either z € Pory € P. In (4], Anderson, Dobbs and the author generalized
the study of pseudo-valuation domains to the context of arbitrary rings (possibly
with nozero zerodivisors). Recall from (4] that a prime ideal of R is said to
be strongly prime (in R) if aP and bR are comparable for all a,b € R. A ring
R is called a pseudo-valuation ring (PVR), see Proposition 1.1(5). A PVR is
necessarily quasilocal [[4], Lemma 1(b)]; a chained ring is a PVR if and only if it
is 2 PVD; a chained ring is a PVR [[4], Corollary 4]; an integral domain is a PVR
if and only if it is a PVD (cf. [[1], Proposition 3.1], [[2], Proposition 4.2], and
([6], Proposition 3]). Recall from [8] and [7] that a prime ideal P of R is called
divided if it is comparable to every ideal of R. A ring R is called a divided ring if
every prime ideal of R is divided. In [5], the author gave another generalization
of PVDs to the context of arbitrary rings (possibly with nonzero zerodivisors).
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b fa® (in D) by Proposition 2.5(2). Thus, a | b (in D). Hence, (0,1) = (c,d)(z,1)
for some (c,d) € D. Thus, z¢ = 0in R and zd+¢ = 1 in B. Since dz is a nonunit
of B and B is quasilocal, ¢ = 1 — zd is a unit of B. Since ¢? = ¢ — zed = c—0=c¢
in B and c is a unit of B and 1 is the only unit of B that is an idempotent
of B, ¢ = 1in B. Hence, for some z € R\ Nil(R) we have z{c—=1) = 0 in
R. Since Nil(R) is prime and z € R\ Nil(R), c ~1 = w € Nil(R). Hence,
¢=1+wis aunit of R. A contradiction, since z # 0 in R and zc = 0. Hence,
a Abin D. Thus, our denial is invalid. Thus, D is not a PVR. Now we show
that D is a $~PVR. First, recall that Nil(D) = Nil(R){(+)B by Proposition
2.5(3), and Nil(D) is prime by Proposition 1.2(1). Let a := (e,d) € D\ Nil(D),
and b := (z,y) € Nil(D). Then, c € R\ Nil(R) and z € Nil(R). Since R is
divided by Proposition 1.1, ¢ | z in R. Hence, a | b in D by Proposition 2.5(3).
Thus, Nil(D) is a divided prime ideal of D. Now, let a := (¢,d) € D\ Nil(D),
b:= (z,y) € D\ Nil(D), and f := (m,g) be a nonunit of D. Then m is a
nonunit of R by Proposition 1.2(3) and ¢,z € R/Nil(R). Suppose that a Abin
D. Then ¢ fz in R by Proposition2.5(1). Hence, = | em by Proposition 1.1(6).
Thus, b | af in D by Proposition 2.5(2). Hence, R is a —PVR by Proposition
1.1(6). By Proposition 1.2(1), dim(D) = dim(R) = n. O

In light of the proof of the above Theorem, we have the following corollaries.

Corollary 2.7. Let d > 2, and let R be ¢ PVR of Krull dimension n > 0 such
that 2% # 0 in R for some z € Nil(R), and let B := Ryq(ry as an R-module.
Then D := R(+)B is a ®—PVR of Krull dimension n that is not a PVR, and
y? # 0 in D for some y € Nil(D).

Corollary 2.8. Letn > 2 and d > 2. Then there is a ®~PVR D with mazimal
ideal M and Krull dimension n that is not a PVR such that 7 (D) is properly
contained between Nil(D) and M, and 2% # 0 in D for some z € Nil(D).

PROOF. Let R be as in Corollary 2.3 and D as in Theorem 2.6. O

Corollary 2.9. Letd > 2. Then there is a 8~ PVR D with mazimal ideal M and
infinite Krull dimension that is not a PVR such that Z (D) is properly contained
between Nil(D) and M, and z* # 0 in D for some z € Nil(D).

PROOF. Let R be as in Proposition 2.4 and D as in Theorem 2.6. D

3. ZERO DIMENSIONAL &— PVRs AND PVRs

We start with the following proposition.
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Proposition 3.1. Let R be a quasilocal ring with mazimal ideal M, and B :=
R/M as an R-module. Set D := R(+)B. Then

1. Z(D) = M(+)B.

2. D is a chained ring if and only if R is a field.

3. D is a PVR if and only if M* =0 in R.

Proor. 1. This is clear by Proposition 1.2(2).

2. If R is a field, then it is easy to see that D is a chained ring. Hence, assume
that R is not a field. Let z be a nonzero element in M. Then neither of
(z,1) and (0, 1) divides the other in D. Hence, D is not a chained ring.

3. Suppose that D is a PVR. Let a := (z,1) € D and b := (y,1) € D for
some z € R. Then a /b in D by the same argument as in (1). Hence,
b | ac for each nonunit ¢ of D by Proposition 1.1 (5). Thus, 0| zy in R for
each nonunit y of R. Hence, zy = 0 in R for each nonunit y and z of R.
Thus, M2 = 0 in R. Now, suppose that M? = 0 in R. Let a,b be nonunit
elements of D and assume that a fb in D. Let ¢ Be a nonunit element of
D. Then ac = (0,0) since M? = 0in R. Thus, b | ac. Hence, D is a PVR
by Proposition 1.1(5).

O

Proposition 3.2. Let H be a field. Then there is a PVR D with mazimal ideal
M that is not a chained ring such that D/M =~ H, and there is a ®~PVR F with
magzimal ideal N that is not a PVR such that F/N =~ H.

Proor. Consider R := H[z]/(z?), W = H[z]/(z*), and B := H[z]/(z) as an
R—module and W—module. Set D := R(+)B and F := W{(+)B. Then D is a
PVR with maximal ideal M := (z)/(2?)(+)B by Proposition 3.1(3), and it is not
a chained ring by Proposition 3.1(2). It is easy to see that D/M =~ H. Now, since
Nil(F) = (z)/(z®)(+)B is the maximal ideal of F, F' is a ~PVR by proposition
1.1(6). Also, F' is not a PVR by Proposition 3.1 (3). Once again, it is clear that
F/N ~ H. O

It is easy to see that Z,, (the ring of integers module n) is a chained ring iff it
is a PVR iff it is a ®~PVR iff n = P™ for some prime P > 0 of Z and m > L.
For finite rings we have the following result.

Proposition 3.3. Let H be a finite field. Then there is a finite PVR D with
mazimal ideal M that is not a chained ring such that D/M ~ H, and there is a
finite ®— PVR F with mazimal ideal N that is not a PVR such that F/N ~ H.
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Proor. Let R, W, B, D, F as in the proof of Proposition 3.2. Then D and F are
the desired rings. 0
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