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Abstract
Flower Pollination Algorithm (FPA) has increasingly attracted researchers’ attention in the computational intelligence field. 
This is due to its simplicity and efficiency in searching for global optimality of many optimization problems. However, 
there is a possibility to enhance its search performance further. This paper aspires to develop a new FPA variant that aims 
to improve the convergence rate and solution quality, which will be called modified global FPA (mgFPA). The mgFPA is 
designed to better utilize features of existing solutions through extracting its characteristics, and direct the exploration process 
towards specific search areas. Several continuous optimization problems were used to investigate the positive impact of the 
proposed algorithm. The eligibility of mgFPA was also validated on real optimization problems, where it trains artificial 
neural networks to perform pattern classification. Computational results show that the proposed algorithm provides satis-
factory performance in terms of finding better solutions compared to six state-of-the-art optimization algorithms that had 
been used for benchmarking.

Keywords Flower Pollination Algorithm · Computational intelligent · Optimization problems · Exploration · Artificial 
neural networks

1 Introduction

Algorithms inspired from nature are widely used in the opti-
mization field including, Genetic Algorithm (GA) [1], Par-
ticle Swarm Optimization (PSO) [2], Simulated Annealing 
(SA) [3], Artificial Bee Colony (ABC) [4], Cuckoo Search 
(CS) [5], Harmony Search Algorithm (HSA) [6], Firefly 
Algorithm (FA) [7], and Bat Algorithm (BA) [8].

Flower pollination is an intriguing process in the natu-
ral world. The evolutionary process characteristics inspired 
Yang [9] to propose a new optimization algorithms called 
Flower Pollination Algorithm (FPA). FPA belongs to bio-
inspired algorithms that simulate flower pollination behavior 
in nature, which is characterized by simple implementation, 

adaptability, flexibility, use of less control parameters, and 
an overall good search performance [9].

Versions of FPA Algorithm have been successfully 
applied in several real-world applications and optimiza-
tion problems, such as image segmentation [10, 11], feature 
selection [12, 13], benchmark optimization functions [9, 14], 
economic dispatch problems [15–17], constrained engineer-
ing optimization problems [18, 19], wireless sensor network 
[20, 21], and many others [22–24].

The success of the search behavior of FPA mainly relies 
on finding a suitable balance between exploitation and 
exploration forces. Exploitation involves an intensive search 
of existing solutions that have been explored previously, 
whereas exploration is the ability to search and discover new 
regions of the search space for further possibilities.

In this paper, a new FPA variant called modified global 
FPA (mgFPA) is proposed aiming to improve the exploration 
ability of FPA. The exploration part of mgFPA is adjusted to 
target specific search regions through utilizing the informa-
tion gathered from two randomly selected solutions during 
evolution process. This allows opportunities to the algorithm 
search process to investigate good search regions and con-
verge the search to global or near-global optima.
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To validate and assure the efficiency of mgFPA, we 
applied the algorithm on two different optimization prob-
lems, a set of 23 numerical benchmark functions, and in 
training the artificial neural network (ANN) for pattern clas-
sification problem. The results illustrate that the proposed 
mgFPA is approximate to or better than the results of six 
state-of-the-art optimization algorithms.

The paper is organized as follows: Sect. 2 presents the 
FPA and explains how it works. An overview of recent work 
in FPA is presented in Sect. 3. Section 4 presents the pro-
posed FPA. Experimental results and discussion are pre-
sented in Sect. 5. Thereafter, Sect. 6 provides the training 
artificial neural networks by mgFPA. Finally, Sect. 7 con-
tains some concluding remarks and suggests further work.

2  Flower Pollination Algorithm (FPA)

FPA, an optimization algorithm, was developed according to 
the natural process of flower pollination [9]. This algorithm 
has become popular due to its efficiency in solving a wide 
range of optimization problems from various disciplines and 
applications [22, 23].

The reproduction process is based on two basic forms 
of pollination: (1) biotic∖cross pollination, where the pol-
len is transferred to long distances via nature pollinators, 
such as bees, butteries, beetles, and bats and (2) abiotic∖
self-pollination, where the pollen is usually carried for short 
distances through wind and water diffusion.

The natural concepts of FPA are presented as follows [25]:

• Flowers represent the stored solutions in a population 
(pop), as shown in Eq. (1). 

 where the population includes n number of flowers∖
solution (i.e., ���⃗X1, ���⃗X2,… , ���⃗Xn ). ND is the number of deci-
sion variables, while f ( ���⃗Xk) represents the fitness function 
value for solution k = { 1, 2,… , n}.

• Biotic∖cross pollination represents the global search 
with the potential Lèvy flights properties which is used 
to update the solution positions, as shown in Eq. (2). 

where xi
t
 represents the solution at t iteration, x∗ is the 

best observed solution, � is a scaling factor, and L is the 
Lèvy distribution that corresponds to the strength of the 
pollination, as given in Eq. (3): 

(1)pop =

⎡⎢⎢⎢⎢⎣

���⃗X1 = [x1
1
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⎤⎥⎥⎥⎥⎦
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(2)xi
t+1

= xi
t
+ �L(x∗ − xi

t
),

where Γ is the standard gamma function, and this distri-
bution is valid for large steps s>0.

• Abiotic∖self-pollination represents the local search pro-
cedure that is based on modifying the solutions accord-
ing to two randomly selected solutions. The FPA local 
pollination is presented in Eq. (4): 

 where xa
t
 and xb

t
 are two solutions selected from two dif-

ferent flowers of the same species, and r1 represents the 
uniform random distribution between [0,1].

2.1  Fundamental Steps of FPA

Figure 1 shows the basic flowchart of FPA including the 
basic search steps which are described as follows:

• Step 1: Initialize FPA control parameters The control 
parameters are population size (n), maximum number of 
iterations (MaxItr), and switch probability (P).

• Step 2: Initialize the population The initial solutions 
X1,X2,… ,Xn are generated randomly according to the 
given bounded upper and lower bounds [LB, UB], and the 
fitness value for each solution is evaluated.

• Step 3: Obtain the best solution from initial popu-
lation The solution with the best fitness value ( X∗ ) is 
defined (according to minimizing or maximizing problem 
being optimized).

• Step 4: Generate new population The local or global 
search strategy is determined according to the value of 
switching probability P ∈ [0, 1] , such that 

• Step 5: Update the population and the best solution 
Replace the new solutions that have better quality than 
the stored solution and obtain the best solution X∗ , in 
terms of the fitness value.

• Step 6: Check the stopping criteria Steps 4 and 5 are 
repeated until the maximum iteration number is achieved.

3  Literature Review

FPA and its variants have been successfully adapted and 
applied to solve a wide range of optimization problems. This 
section presents an overview of recent research activities 
and findings.

(3)L ∼
�Γ(�) sin(Π�∕2)

Π

1

s1+�
,

(4)xi
t+1

= xi
t
+ r1 × (xa

t
− xb

t
),

(5)xi
t+1

=

{
xi
t
+ 𝛾L(x∗ − xi

t
), rand1 > P

xi
t
+ rand2 × (xa

t
− xb

t
), rand1 ≤ P.
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Kaur and Arora [21] studied the performance of four 
nature-inspired algorithms, namely, FPA, FA, Grey Wolf 
Optimization (GWO), and PSO to find the best location 
estimation of wireless sensor nodes. Results showed that 
FPA exhibits higher localization accuracy in estimating the 
position of nodes compared with other algorithms.

Abdel-Basset et al. [26] performed a comparative study 
between CS and FPA on ten numerical functions selected 
from CEC-2017 [27]. FPA exhibits better performance than 

CS in terms of computation speed, whereas the latter is 
better in obtaining best solutions. The authors recommend 
selecting an appropriate algorithm according to the require-
ments of a given problem (i.e., time vs. accuracy).

Zhou et al. [28] applied greedy search procedure and 
dynamic switching parameter to improve the local and 
global pollination of FPA by finding a good balance between 
exploration and exploitation abilities. The proposed method 
was tested on 18 numerical functions and two structural 

Fig. 1  Flowchart of the FPA
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engineering optimization problems from CEC-2018 [29]. 
The observed results show that the proposed method can 
find accurate solutions and display fast convergence with a 
high level of stability.

Abdelaziz et al. [17] adapted FPA to solve economic load 
and emission dispatch problems in a power system, where 
the cost function is limited by the output limits of genera-
tion units and transmission losses. FPA shows improved 
performance compared with 14 stochastic algorithms, such 
as PSO and differential HSA, in terms of solution cost and 
computational time.

The switch probability (P) manages the exploitation and 
exploration processes of FPA, such that, if the value of P 
is greater than 0.5, then the likelihood of using local pol-
lination procedure is higher than that of global pollination 
procedure. Salgotra and Singh [30] proposed a new FPA 
version that incorporated the use of dynamic switching of 
P value, new mutation operators, and adapting local search. 
The probability of the proposed switch is linearly decreased 
by algorithm iterations, starting from an initial P value equal 
to 0.8. The dynamic switching probability exhibits reliable 
performance in exploring and exploiting the search space. 
The statistical results on 17 standard benchmark functions 
show that the adaptive Lèvy FPA has superior performance 
compared to well-known methods including differential evo-
lution, ABC, BA, FA, and GWO.

Xu et al. [31] proposed an improved variant of FPA to 
minimize the cost of machine production by optimizing the 
parameter settings of multi-pass turning process. The pro-
posed algorithm replaces the randomized process of gener-
ating initial solutions utilizing good point set theory while 
using Deb’s heuristic rules [32]. The simulation experiments 
show that the results of proposed approach are comparative 
with other previously published results.

Alyasseri et al. [23] reported that hybridizing FPA with 
other algorithms has the most modifications that added to the 
original FPA. Wang et al. [10] proposed a hybrid FPA based 
on a modified randomized location for multi-threshold image 
segmentation. The proposed method was used to explore 
the optimal threshold values for maximizing Otsus objective 
functions [33] on eight medical images. The method shows 
high efficiency on the basis of stability, computation cost, 
and solution quality.

Abdel-Baset and Hezam [34] also modified the standard 
FPA, where it was hybridized with GA to improve the search 
accuracy. The experimental results over a set of constrained 
optimization problems show that incorporating GA to FPA 
improves the quality of produced solutions.

Another hybrid version of FPA was proposed to improve 
the exploitation capabilities of the basic FPA. In this version, 

the clonal selection algorithm was injected inside FPA and 
used to solve two different optimization problems, namely, 
numerical benchmark functions [14] and feature selection 
problem [13]. Further research can be found in [22–24, 35].

Several studies proof that the computational performance 
of such algorithm could be improved through utilizing the 
experience of previous search generation process, such as 
in [36–39]. This paper provides a new improvement to the 
search performance of FPA by allowing the current popula-
tion to guide the search process toward promising regions 
of search space and thus increase the chances of finding the 
optimal solution.

4  Proposed Method

The search efficiency of an algorithm can be ameliorated 
through the efficient use of exploration and exploitation 
search strategies. In this paper, the exploration part of FPA 
is modified, such that the good experience of current solu-
tions can be effectively utilized in generating new solutions. 
This modification can be achieved by guiding the explora-
tion search procedure into more promising areas that are 
previously explored by current solutions, thereby increasing 
the convergence rate.

The proposed modified global Flower Pollination Algo-
rithm (mgFPA) explores the search space of the problem 
domain by either selecting the basic global pollination 
(BGP) or heuristic bounded search space (HBSS) mecha-
nism. Both mechanisms present equally probability of selec-
tion during evolution. The proposed HBSS procedure nar-
rows the search process to a certain area of search space 
using the information of two randomly selected parents, as 
shown in Eq. 6:

where xijt  represents the jth variable of ith solution vector at 
t iteration, xa

t
 and xb

t
 are two randomly selected solutions, 

and r1, r2 represent the uniform random distribution between 
[0,1].

The search procedure of HBSS is focused on the most 
promising regions of the search space according to the 
experience of the current population. The BGP procedure 
is required to keep the algorithm from being trapped into 
local minima by exploring the entire search space. The steps 
of the proposed mgFPA can be summarized as the pseudo-
code shown in Algorithm 1.

(6)
x
ij

t+1
=
(
max

(
x
aj
t , x

bj
t

)
−min

(
x
aj
t , x

bj
t

))
⋅ r2 +min

(
x
aj
t , x

bj
t

)
,
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Algorithm 1 Pseudo code of mgFPA.
Begin
Initialize FPA control parameters
[number of flowers (n),max iteration (MaxItr), switch probability (P),
problem dimensions (ND)]

Initialize a population (pop) of n flowers
[pop= x1, x2, ..., xn ]

Observe the best solution x* ∈ pop
t ← 1
do
for each i ∈ (1, n) do
if U(0, 1) < P
for each j ∈ (1,ND) do \∗ Global Pollination
if U(0, 1) < 0.5
x
ij
t+1 = x

ij
t + γL(x∗ − x

ij
t )

else
x
ij
t+1 = (max(xaj

t , x
bj
t )−min(xaj

t , x
bj
t ))× U(0, 1) +min(xaj

t , x
bj
t )

\\ where a, b ∈ (1, n), a �= b
end if
end for

else
xi
t+1 = xi

t + U(0, 1)× (xc
t − xd

t ) \∗ Local Pollination
\\where c, d ∈ (1, n), c �= d

end if
if (f(xi

t+1) < f(xi
t)) then

update xi
t by xi

t+1
end if
if (fxi

t+1) < f(x∗)) then
update x∗ by xi

t+1
end if

end for
t ← t+ 1

Until t > MaxItr
End

5  Experiments and Results

Several types of optimization functions with different attrib-
utes were used to release the improvement effect of our pro-
posed method. The best mean and standard deviation and 
number of optimal solutions obtained for every function are 
reported over 30 runs.

5.1  Benchmark Functions

A set of 23 test functions, which were frequently used in 
the literature as benchmark, were used to validate the per-
formance of the proposed method [40, 41]. Table 1 presents 
the function expression, domain range, global minima, and 
properties for each test optimization function.

5.2  Experimental Setup

The control parameters of the proposed and compared algo-
rithms present the same values, which are set according to 
[14], where number of flowers (i.e., population size) n = 50 , 
number of iterations MaxIter = 1500,dimensionality d = 2 , 
switch probability P = 0.8 , and � = 0.01.

The proposed algorithm is coded in Matlab 2014 and the 
experiments are executed under Windows 7 operating sys-
tem, Intel core i5 CPU @ 3.4 GHz with a memory of 16.00 
GB.

5.3  Results and Discussion

This section presents the results of applying mgFPA on vari-
ous sets of test functions and provides a comparison between 
mgFPA and other rival optimization methods. mgFPA is 
compared against the basic FPA, Modified Flower Pollina-
tion Algorithm (MFPA), GA, BAT, FF, and SA algorithms 
[14].

As shown in Table 2, the mean values of mgFPA are 
higher than or equal to those of the original FPA and MFPA 
in 82.6 and 78.2% of the total experiment cases, respectively. 
mgFPA also achieves the best mean values in 95.6% of the 
cases compared with other competitive algorithms. Moreo-
ver, mgFPA achieves the best, or equal to the best, minimum 
values in 94.4% of the total experiment cases. Furthermore, 
the standard deviation values of mgFPA are typically lower 
than those of the other algorithms in most cases, indicating 
the higher stability of the proposed algorithm.

Average error rate (AER) was used to evaluate the per-
formance and stability of the compared methods (Table 3). 
AER is computed using Eq. 7:

where fi(x∗) is the optimal solution for a given function fi(x) , 
and fi(xbest) is the average of the best solution in 30 runs for 
a given optimization method. The best results reported have 
been highlighted in bold.

It can be observed from the table above that mgFPA 
exhibits the lowest AER values in 78.2% of the test func-
tions compared with the other algorithms. Meanwhile, FPA 
and MFPA present the lowest values in 39.1 and 65.2% of 
the cases, respectively. This finding demonstrates that the 
proposed mgFPA exhibits satisfactory search ability over 
other algorithms.

6  Training Artificial Neural Networks 
by mgFPA

Artificial neural network (ANN) is a simplified mathemati-
cal approximation of biological neural system in terms of 
structure and function. The most important part of ANN is 
the learning process (i.e., training algorithm), which focuses 
on adjusting the neuron weight values to minimize the error 
between the actual ANN output and the desired output[42].

Feed-forward ANN weights (including biases) are 
adjusted using mgFPA to solve a given classification prob-
lem. mgFPA is applied regularly until the training termina-
tion condition is met. Each ANN is represented by a vector, 
which forms the complete set of ANN structure with their 
corresponding weights and biases.

Each individual in the population (i.e., flower) repre-
sents an ANN network. The sum squared errors (SSE) is an 

(7)AER = |fi(x∗) − fi(x
best)|
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objective function that will be evaluated. The SSE should be 
minimized in accordance with Eq. 8. The bipolar sigmoid is 
considered the neuron activation function:

where: f (fi) : fitness value of an individual flower fi . P: num-
ber of patterns in the classification problem. Noutputs: num-
ber of output neurons at the output layer. Dx

p
 : the desired xth 

output of pth pattern. Ax
p
 : the actual xth output of pth pattern.

The merits of mgFPA are validated using five widely used 
classification problems. The classification problems obtained 
from UCI Machine Learning Repository [43], namely, Haber-
man, Iris, Glass, Wisconsin Breast Cancer, and Diabetes.

The ANN structure was designed based on three-layer 
architecture (input-hidden-output) [44, 45] as follows Haber-
man: 3-4-2, Iris:4-5-3, Cancer: 9-8-2, Diabetes: 8-7-2, Glass: 
9-12-6. Each problem is divided into two parts (80:20); that 
is, 80% of the data set is used for training ANN, and the 
remaining of 20% is used for testing the accuracy of ANN.

The performance of mgFPA is assessed using two 
metrics, namely, classification accuracy of ANN and the 
obtained SSE. The performance of mgFPA is compared 
against six training algorithms, namely, FPA, Mussels 
Wandering Optimization (MWO), GA, E-MWO, Harmony 
Search Best-to-Worst (HS-BtW), and Back Propagation 
(BP). The results of Enhanced-Mussels Wondering Optimi-
zation (E-MWO), MWO, HS-BtW, GA, and BP are taken 
from a previous work [44]. Both the mean and the best out 
of 20 run values are reported.

Table 4 shows the classification accuracy results of ANN 
trained by different optimization algorithms. Results show no 
superiority of one algorithm over others that can efficiently 
train the ANN to obtain the highest accuracy for all problems. 
This phenomenon can be explained by the help of No Free 
Lunch (NFL) theorem; that is, no such algorithm will per-
form equally and efficiently on all problems [46]. However, 
the comparison demonstrates the mgFPA is competitive to 
state-of-the-art algorithms. In addition, mgFPA achieves the 
highest accuracy in the Glass problem, which is a multi-class 
problem that is difficult to classify because of its complex and 
large dimensional space. Based on the observed mean results, 
mgFPA exhibits better or equal performance compared with 
the original FPA in 80% of the total experiment cases.

7  Conclusion and Further Work

FPA is a swarm-based algorithm that was introduced to 
solve various types of optimization problems. This work 
improves the exploration side of FPA by contributing 
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Table 2  Statistical results of mgFPA and other rival optimization algorithms

FPA mgFPA MFPA BAT FF GA SA

f1: Ackleys function
   Min 3.64153E−14 8.88178E−16 8.88178E−16 9.96441E−06 9.27835E−06 2.22971E−07 0.00000106
   Mean 2.07259E−12 8.88178E−16 8.88178E−16 2.36293 8.17798E−05 1.24595E−06 0.086127
   Std. 2.47204E−12 0 0 2.02684 3.15732E−05 1.2319E−06 0.471006

f2: Sphere function
   Min 9.52325E−33 8.8621E−116 2.98961E−70 7.14891E−13 1.10737E−12 7.33358E−16 0.000000706
   Mean 6.19243E−27 1.8262E−110 2.00588E−61 5.21099E−11 4.72459E−11 1.53934E−13 0.0000265
   Std. 2.81558E−26 6.9001E−110 1.09744E−60 7.47075E−11 3.72695E−11 1.6844E−13 0.000042

f3: Easoms function
   Min −1 −1 −1 −1 −1 −1 −0.99596
   Mean −1 −1 −1 −0.166696 −0.866667 −1 −0.08371
   Std. 0 0 0 0.379035 0.345746 2.7768E−13 0.240978

f4: Griewanks function
   Min 2.65431E−08 0 0 1.8846E−12 3.57752E−08 2.22045E−16 0.013878
   Mean 5.58634E−06 0 0 0.307127 0.000619655 1.16063E−13 0.182588
   Std. 1.40067E−05 0 0 0.305973 0.00188366 1.7023E−13 0.134813

f5: Rastrigins function
   Min 0 0 0 5.98135E−10 3.6469E−10 4.0145E−13 3.82E−08
   Mean 1.6982E−13 0 0 2.02308 9.2122E−09 0.0663306 0.657481
   Std. 5.8989E−13 0 0 2.22454 7.45866E−09 0.252429 0.749738

f6: Rosenbrock’s function
   Min 4.59E−10 8.93E−05 0 5.72513E−08 1.24204E−09 1.58342E−06 0.006559
   Mean 7.70E−07 5.74E−04 3.30336E−31 0.260185 1.93476E−07 2.40E−03 1.53167
   Std. 2.02E−06 5.50E−04 1.76315E−30 0.809771 1.75E−07 7.97E−04 2.3835

f7: Zakharov’s function
   Min 3.50262E−31 1.4817E−109 9.97878E−71 3.66828E−12 6.40746E−13 4.80241E−16 8.1E−09
   Mean 1.52229E−26 3.0781E−104 4.49272E−44 9.82549E−11 1.3912E−10 5.49697E−13 0.0000589
   Std. 4.79979E−26 1.5685E−103 2.46077E−43 7.86452E−11 1.34631E−10 7.621E−13 0.000249

f8: Michalewicz’s function
   Min −1.8013 −1.8013 −1.8013 −1.98795 −1.8013 −1.8013 −1.80128
   Mean −1.8013 −1.8013 −1.8013 −1.81228 −1.8013 −1.8013 −1.78277
   Std. 9.03362E−16 9.03362E−16 9.03362E−16 0.0519564 7.40769E−11 1.57E−11 0.075241

f9: Dixon and price’s function
   Min 7.26608E−15 3.69779E−32 3.69779E−32 1.40853E−11 2.63813E−11 2.35428E−14 2.84E−08
   Mean 1.99551E−11 3.69779E−32 3.69779E−32 2.88258E−10 6.09103E−10 3.52434E−11 0.000181
   Std. 6.00129E−11 0 0 2.84653E−10 5.42748E−10 5.5036E−11 0.000379

f10: Levy’s function
   Min 4.00861E−30 1.49976E−32 1.49976E−32 1.51025E−14 2.24749E−12 4.54259E−16 0.000011
   Mean 1.00577E−25 1.49976E−32 1.49976E−32 1.33682E−11 5.03791E−11 2.18392E−13 0.001214
   Std. 2.70703E−25 1.11348E−47 1.11348E−47 1.191E−11 5.03387E−11 3.9346E−13 0.002051

f11: Cross-in-tray function
   Min -2.06261 -2.06261 -2.06261 -2.06261 -2.06261 -2.05408 -2.06261
   Mean −2.06261 −2.06261 −2.06261 −2.06261 −2.06261 −2.0376 −2.06261
   Std. 8.58E−11 9.03E−16 9.03E−16 1.23E−11 1.4E−11 0.00567 0.00239

f12: Drop-wave function
   Min −1 −1 −1 −1 −1 −0.99996 −0.99998
   Mean −1 −1 −1 −0.93335 −1 −0.95722 −0.92983
   Std. 4.95E−10 0 0 0.030208 1.61E−09 0.030176 0.034068

f13: Eggholder function
   Min −959.641 −959.641 −959.641 −959.641 −959.641 −32.806 −956.366
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existing solutions in guiding the search process toward the 
good promising regions of search space. The performance 
of the proposed algorithm is evaluated on two optimization 
problems, numerical benchmark functions, and ANN weight 
adjustment.

For each optimization problem, the proposed algorithm is 
judged against six state-of-the-art optimization algorithms. 
The results of the benchmark problems show that the pro-
posed mgFPA algorithm exhibits better than or equal perfor-
mance to the original FPA and MFPA in 82.6 and 78.2% of 

Table 2  (continued)

FPA mgFPA MFPA BAT FF GA SA

   Mean −959.641 −959.641 −959.641 −831.837 −816.391 −30.9245 −542.529
   Std. 5.78E−13 5.78E−13 5.78E−13 105.893 105.934 0.474535 166.754

 f14: Holder table function
   Min −19.2085 −19.2085 −19.2085 −19.2085 −19.2085 −1.72536 −19.2085
   Mean −19.2085 −19.2085 −19.2085 −18.7184 −19.2085 −1.66777 −19.2085
   Std. 0.000000311 5.71E−15 7.81E−15 1.11466 1.44E−09 0.014743 0.000044

f15: Schaffer function N. 2
   Min 0 0 0 1.82E−14 1.1E−12 1.89E−11 0.00961
   Mean 0 0 0 0.034009 1.71E−11 0.0000114 0.082308
   Std. 0 0 0 0.037992 1.49E−11 0.0000313 0.060543

 f16: Shubert function
   Min −186.731 −186.731 −186.731 −186.731 −186.731 −69.9381 −186.731
   Mean −186.731 −186.731 −186.731 −173.261 −186.731 −24.3187 −186.731
   Std. 0.00000734 2.30E−14 5.28E−15 31.9251 8.55E−08 13.1135 0.000000925

 f17: Schwefel function
   Min 2.55E−05 2.54E−05 2.55E−05 2.55E−05 0.2.55E−05 830 2.62E−05
   Mean 2.55E−05 2.54E−05 2.55E−05 113.897 86.1969 830.075 385.901
   Std. 1.5E−09 0 0 86.0515 80.7233 3.93E−13 161.14

f18: Schaffer function N. 4
   Min 0.500091 0.500091 0.500091 0.5 0.500091 0.539118 0.500096
   Mean 0.500091 0.500091 0.500091 0.5 0.500091 0.539745 0.50011
   Std. 3.66E−09 1.17E−10 1.94E−08 0 2.09E−09 0.000243 0.0000121

f19: Beale function
   Min 7.11E−27 0 0 3.28E−12 4.5E−13 5.23E−14 0.00000311
   Mean 1.98E−21 0 0 0.117083 6.15E−11 1.6E−11 0.003245
   Std. 5.85E−21 0 0 0.239276 5.94E−11 2E−11 0.008865

f20: Rotated hyper-ellipsoid function
   Min 2.43E−29 1.18E−115 2.69E−67 6.37E−13 2.15E−10 4.41E−15 1.34E−09
   Mean 9.74E−26 5.18E−109 3.31E−62 7.86E−11 1.18E−08 2.78E−13 0.00000549
   Std. 2.79E−25 2.18E−108 1.07E−61 9.8E−11 1.18E−08 4.12E−13 0.0000105

f21: Matyas function
   Min 5.06E−34 3.13E−58 1.14E−68 3.63E−13 7.5E−13 1.63E−14 0.000000161
   Mean 6.92E−28 8.19E−55 2.08E−51 7.44E−12 1.56E−11 1.53E−12 0.00184
   Std. 3.32E−27 1.08E−54 1.02E−50 6.7E−12 1.35E−11 2.37E−12 0.00248

f22: styblinski-tang function
   Min −78.3323 −78.3323 −78.3323 −78.3323 −78.3323 −78.3323 −78.3323
   Mean −78.3323 −78.3323 −78.3323 −75.505 −78.3219 −58.5409 −78.2412
   Std. 1.45E−14 1.44E−14 1.45E−14 5.75136 0.056953 9.53754 0.499163

f23: De Jong function N05
   Min 0.998004 0.998004 0.998004 0.998004 0.998004 12.6705 0.998004
   Mean 0.998004 0.998004 0.0.998004 7.5505 1.48794 12.6705 5.67102
   Std. 1.3E−14 1.12E−16 1.8E−16 5.72583 0.609329 1.44E−13 5.5792
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the total experiment cases, respectively, and in 95.6% of the 
compared cases of other competitive algorithms. Moreover, 
the results of ANN weight adjustment show that mgFPA 
yields better or equal performance to FPA in 80% of the 
total experiment cases. Hence, the proposed mgFPA is very 
competitive to the other state-of-the-art algorithms.

Future work will be focused to verify the performance of 
the proposed mgFPA on other real-world optimization prob-
lems, such as timetabling problems, clustering and image 
processing.

Table 3  AER obtained for the 23 test functions

Algorithm FPA mgFPA MFPA BAT FF GA SA

f1 2.07259E−12 8.88178E−16 8.88178E−16 2.36293 8.17798E−05 1.24595E−06 0.086127
f2 6.19243E−27 1.8262E−110 2.00588E−61 5.21099E−11 4.72459E−11 1.53934E−13 0.0000265
f3 0 0 0 0.833304 0.133333 0 0.91629
f4 5.58634E−06 0 0 0.307127 0.000619655 1.16063E−13 0.182588
f5 1.6982E−13 0 0 2.02308 9.21223E−09 0.0663306 0.657481
f6 7.70467E−07 5.74E−04 3.30336E−31 0.260185 1.93476E−07 0.00240795 1.53167
f7 1.52229E−26 3.0781E−104 4.492E−44 9.825E−11 1.391E−10 5.4969E−13 0.0000589
f8 0 3.4101E−06 0 0.01098 0 0 0.01853
f9 1.99551E−11 3.697E−32 3.697E−32 2.88258E−10 6.09103E−10 3.52434E−11 0.000181
f10 1.0057E−25 1.49976E−32 1.49976E−32 1.33682E−11 5.03791E−11 2.18392E−13 0.001214
f11 0 1.87082E−06 0 0 0 0.02501 0.00159
f12 0 0 0 0.06665 0 0.04278 0.07017
f13 0.0003 3.727E−05 0.0003 127.8037 143.2497 928.7162 417.1117
f14 0 2.567E−06 0 0.4901 0 17.54073 0
f15 0 0 0 0.034009 1.71E−11 0.0000114 0.082308
f16 0.0001 8.831E−06 0.0001 13.4699 0.0001 162.4122 0.0001
f17 2.55E−05 2.545E−05 2.55E−05 113.897 86.1969 830.075 385.901
f18 0.207512 0.207512 0.207512 0.207421 0.207512 0.247166 0.207531
f19 1.98E−21 0 0 0.117083 6.15E−11 1.6E−11 0.003245
f20 9.74E−26 5.187E−109 3.31E−62 7.86E−11 1.18E−08 2.78E−13 0.00000549
f21 6.92E−28 8.191E−55 2.08E−51 7.44E−12 1.56E−11 1.53E−12 0.00184
f22 39.16631 39.16634 39.16631 36.33901 39.15591 39.37491 39.07521
f23 0.998004 0.998004 0.998004 7.5505 1.48794 12.6705 5.67102

Table 4  Classification Accuracy 
of ANN trained by mgFPA and 
another six algorithms

Dataset mgFPA FPA E-MWO MWO HS-BtW GA BP

Haberman
   Best 79.0 77.4 83.8 79.0 75.8 77.4 74.1
   Mean 73.9 71.7 78.0 77.1 69.3 74.1 71.8

Iris
   Best 96.6 96.6 100.0 100.0 96.6 96.6 96.6
   Mean 91.1 93.1 91.0 89.6 86.8 84.6 96.6

Cancer
   Best 98.5 98.5 98.5 98.5 99.2 99.2 97.8
   Mean 97.1 96.9 97.1 97.3 98.2 97.4 96.1

Diabetes
   Best 77.9 81.1 92.8 79 77.9 79.2 79.2
   Mean 75.5 75.5 78.0 74.5 75.3 73.8 75.4

Glass
   Best 100.0 66.6 95.3 60.4 72.0 62.7 72.0
   Mean 61.1 59.2 58.7 49.1 58.8 45.2 60.1
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