
Contour-based character
segmentation for printed Arabic text
with diacritics

Khader Mohammad
Aziz Qaroush
Muna Ayesh
Mahdi Washha
Ahmad Alsadeh
Sos Agaian

Khader Mohammad, Aziz Qaroush, Muna Ayesh, Mahdi Washha, Ahmad Alsadeh,
Sos Agaian, “Contour-based character segmentation for printed Arabic text with diacritics,”
J. Electron. Imaging 28(4), 043030 (2019), doi: 10.1117/1.JEI.28.4.043030.

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Contour-based character segmentation for printed Arabic
text with diacritics

Khader Mohammad,a,* Aziz Qaroush,a Muna Ayesh,a Mahdi Washha,a Ahmad Alsadeh,a and Sos Agaianb

aBirzeit University, Electrical and Computer Engineering Department, Birzeit, Ramallah, Palestine
bCity University of New York, College of Staten Island and the Graduate Center, New York, United States

Abstract. Current developments in sensors open new possible uses across numerous real-life applications,
including optical character recognition (OCR). An OCR system requires incorporation of text processing tools
into the sensor functionality. The most critical stage in OCR systems is the segmentation stage. It refers to the
challenge of subdividing a text image into characters, which can be individually processed using a classifier. The
cursive nature of the Arabic script such as the existence of different shapes for each character according to its
location in the word besides the existence of diacritics makes Arabic character segmentation a very challenging
task. A robust offline character segmentation algorithm for printed Arabic text with diacritics is developed based
on the contour extraction technique. The algorithm works through extracting the up-contour part of a word and
then identifies the splitting areas of the word characters. Then a postprocessing stage is used to handle the over-
segmentation problems that appear in the initial segmentation stage. The proposed scheme is benchmarked
using the APTI dataset and a manually collected dataset consisting of image texts varying in font size, type, and
style for more than 38,000 words. The experiments show that the proposed algorithm is able to segment Arabic
words with diacritics with an average accuracy of 98.5%. © 2019 SPIE and IS&T [DOI: 10.1117/1.JEI.28.4.043030]

Keywords: optical character recognition; character segmentation; Arabic words with diacritics.

Paper 190219 received Mar. 7, 2019; accepted for publication Jul. 30, 2019; published online Aug. 30, 2019.

1 Introduction
The Arabic language is one of the most structured. It is
the world’s 5th most spoken language with a little over
350 million speakers.1 The existence of information retrieval
systems, search engines, editing old documents, and data
entry applications increase the need for a reliable Arabic
optical character recognition system day by day.

Optical character recognition (OCR) is the process of
transferring text image into an editable form to avoid
retyping.2 Developing an OCR system passes through five
classical stages, beginning with image acquisition and end-
ing with the recognition stage and passing through prepro-
cessing, segmentation, feature extraction, and recognition.
According to image acquisition way, OCR systems are clas-
sified into online OCR systems, in which the input image is
taken by pen writing on a tablet or smartphones and offline
OCR systems, in which the input is usually stored as an
image taken by camera, scanner, or other optical devices.2

Within the last couple of years, scanning and sensing
systems have gained significant attention due to the need for
monitoring the quality of images and products by reading
labels in important areas, such as home automation, indus-
trial automation, medical aids, mobile health-care, elderly as-
sistance, automotive, traffic management, and many others.
Additionally, smart sensors have integrated circuits that can
perform one or more of the logic functions, two way com-
munications, and make decisions. Storing information for
future analysis is becoming an integral part of the intelligent
and scanning system performing functions that previously
could not be performed or were not economically viable.3

Additionally, key technologies that will drive the future

Internet of Things (IoT) will be related to smart sensor tech-
nologies, including wireless sensor networks, nanotechnol-
ogy, and miniaturization of sensing devices.4,5 So choosing
the right sensor technology for scanning or capturing input
images is essential and it affects processing and segmenta-
tion as the sensors are normally employed to gather physical
or chemical information from different mediums. In this
research, this is also important since the goal of the IoT is
to uniquely identify, recognize, signify, and access things for
day-to-day life anytime, anywhere, and allow them to be
controlled as far as possible through the Internet.4,5 So the
need will be to use the right sensors technology in the differ-
ent scanners such as in cell phone, the scanner itself to use up
to date technology.

The segmentation stage is the most critical stage in build-
ing OCR systems. It can be viewed as the main source of
errors that can appear in the recognition stage.6 OCR systems
use two different approaches for segmentation: segmentation
free approach (holistic approach) and segmentation-based
approach (analytical approach). In the segmentation free
approach,7 the recognition is performed without segmenting
the words into its low-level segments like characters and dia-
critics; however, it uses some patterns and look-up dictionary
for a certain number of words. This approach is usually used
when targeting to recognize particular words like numbers
and cities’ names. On the other hand, the analytical approach
segments each word into low-level segments like characters
and diacritics.8 In this approach, more processing is needed;
however, more accurate results can be obtained compared
with the segmentation free approach.

Performance of the character segmentation-based OCRs
systems is highly dependent on the nature of language.

*Address all correspondence to Khader Mohammad, E-mail: khamadawwad@
birzeit.edu 1017-9909/2019/$28.00 © 2019 SPIE and IS&T

Journal of Electronic Imaging 043030-1 Jul∕Aug 2019 • Vol. 28(4)

Journal of Electronic Imaging 28(4), 043030 (Jul∕Aug 2019)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/1.JEI.28.4.043030
https://doi.org/10.1117/1.JEI.28.4.043030
https://doi.org/10.1117/1.JEI.28.4.043030
https://doi.org/10.1117/1.JEI.28.4.043030
https://doi.org/10.1117/1.JEI.28.4.043030
https://doi.org/10.1117/1.JEI.28.4.043030
mailto:khamadawwad@birzeit.edu
mailto:khamadawwad@birzeit.edu
mailto:khamadawwad@birzeit.edu

In the Arabic language, the cursive nature of scripts increases
the complexity of the segmentation task. Additional factors
make the Arabic character segmentation task more challeng-
ing, summarized in Refs. 9–11: (i) the availability of differ-
ent font types and styles as in Fig. 1(a); (ii) the existence of
diacritics as in Fig. 1(b); and (iii) the variation of character
shape based on its location in the word (at the beginning,
middle, end, or separated) as in Fig. 1(c). These properties
constitute a major problem in finding the right segmentation
point between two consecutive and/or connected characters.
Moreover, the presence of diacritics on Arabic characters
increases the probability of the under segmentation problem.

Several methods have been presented in the literature
to address the Arabic character segmentation problem.
However, the challenging nature of the Arabic text (e.g.,
cursive structure, having complex font types, overlapping
between characters, and the existing diacritics) makes
character segmentation a very challenging and crucial stage
for segmentation-based OCR systems. In addition, previous
related works have the following weaknesses: (i) limited
works address the segmentation problem when the diacritics
exist, (ii) most of them are designed for simple and certain
font types, size, or style, and (iii) some of them are tested
on small and simple unpublished datasets. In this paper,
we present a character segmentation algorithm for printed
Arabic text with diacritics using a contour-based tracing
technique. The presented algorithm takes a text-line image as
an input and consists of three main stages: line segmentation,
word segmentation, and character segmentation. Contour
extraction method has many advantages over other segmen-
tation methods such as having a clear description of character
shape and extracting details for small fonts.12 Also the errors
that are produced when extracting baselines are eliminated
and there is no need to adjust the baselines many times.
Moreover, the existence of diacritics complicates the process
of other segmentation methods like morphological methods,
template matching, and artificial neural networks. In addi-
tion, it will make an under segmentation problem when using
projection-based methods. Hence, the main contributions of
this paper are as follows: (i) the proposed method is font-
independent in terms of type, size, and style; (ii) solve the
problem of overlapping between characters and between

subwords; (iii) efficiently handle segmentation of lines,
words, and characters for Arabic text with the existence of
diacritics; and (iv) finally, in the evaluation stage, experimen-
tal results on the collected and APTI dataset prove that our
method achieves better performance than the state-of-the-art
methods.

The reminder of this paper is organized as follows.
Section 2 presents related work about the character segmen-
tation methods designed for Arabic documents. Section 3
describes in details the proposed method. Section 4 shows
the dataset used in the experiments and the results of the pro-
posed method. Finally, the conclusion is given in Sec. 5.

2 Related Work

2.1 Word Segmentation
Word/subword segmentation is an important step in the
segmentation phase for segmentation-based Arabic OCR
(AOCR) systems since it facilitates working on the character
segmentation stage. In addition, it can be employed as a
postprocessing stage after character recognition to increase
the recognition rate.

Cheung et al.13 introduced a segmentation algorithm that
uses a technique in which the overlapping Arabic words/sub-
words are horizontally separated; they also used a feedback
loop between the character segmentation stage and final
recognition stage. AlKhateeb et al.14 proposed a method for
baseline detection and employed it to extract the connected
components of each subword. After detection of the baseline,
an iterative process was used to detect the connected com-
ponents based on the connected black pixels in the subword.
Shaikh15 employed a horizontal projection for line segmen-
tation, and then each subword from the extracted line was
segmented using a connected components method. The algo-
rithm failed in the case of overlapped characters. Aljarrah
et al.16 proposed an algorithm for word/subword segmenta-
tion based on vertical projection technique where the thresh-
old value should be determined before. The small segments/
parts like dots and Hamza have to be removed, which is com-
putationally expensive; also it does not deal with diacritics
and different font sizes. In addition, Alipour17 proposed
an algorithm for word/subword segmentation based on the
vertical projection profile and using a predefined constant k,
which is equal to half of the line height. The problem in this
method is the using of a predefined value, which will not be
suitable for all different word sizes and styles.

2.2 Character Segmentation
OCR systems use two different approaches for segmentation:
segmentation-based approach (analytical approach) and
segmentation-free approach (holistic approach). In segmen-
tation-based approach, the words are segmented into low-
level segments like characters, ligature, and diacritic.8 In this
approach, more processing is needed; however, more accu-
rate results can be obtained. On the other hand, segmentation
free approach holistic approach handles the whole word as a
unified unit7 and the recognition is performed without seg-
menting the words into its low-level segments like characters
and diacritics; however, it uses some patterns and look-up
dictionary for a certain number of words. This approach is
usually used when targeting to recognize particular words
like numbers and cities names.

Fig. 1 Arabic text properties: (a) example of fonts varying in type and
style, (b) diacritics in Arabic script, and (c) different shapes of the
same character.

Journal of Electronic Imaging 043030-2 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2.2.1 Segmentation-based

Segmentation-based method can be classified into: (i) projec-
tion profile; (ii) character skeleton based; (iii) contour tracing
based; (iv) template matching based; (v) morphological
operations based; and (vi) segmentation based on neural
networks.2,12 Projection profiles methods18–20 are usually
used for the purpose of lines, words, subwords, and charac-
ters segmentation specifically when there is a clear gap
between lines, words, subwords, and characters. Indeed,
horizontal projection is used for line segmentation, whereas
vertical projection is usually used for word, subword, and
character segmentation. Applying these types of methods
directly for Arabic character segmentation results in over-
segmentation problem since the segmentation region in
Arabic words is thinner than round regions. In the skeleton
method,15,21 different thinning techniques are employed for
this purpose. In many cases, the shape of characters after
applying thinning operation differs from the original one,
making the segmentation process more difficult. In contour
tracing methods,22–26 the pixels that form the outer shape of
the character or word are extracted. Researchers used many
ways to determine the cutting points on the contour. In gen-
eral, contour-based methods avoid the problems that appear
when applying thinning methods because they depend on
extracting the structure of the word, which gives a clear
description of it. This kind of method is sensitive for noise,
which requires one to perform some enhancements as a pre-
processing step. Morphological methods27–29 employ a set of
morphological operations for the purpose of segmentation.
Usually, closing followed by opening operations is applied.
This method is a dependent method, meaning that other tech-
niques have to be used in addition to segmentation. Template
matching methods30,31 usually apply a sliding window over
baselines. If any match is noticed then the center pixel in the
sliding window is considered as a cutting point. The major
limitation in this method is that if the cutting point locates
under the baseline. Finally, in neural networks (NNs) seg-
mentation, NNs are used to verify the valid segmentation
points by training the NNs over manually classified valid
segmentation points from the database of scanned images
using features such as black pixel density and holes.

Zeng et al.19 proposed a machine printed Arabic character
segmentation algorithm that employs a vertical projection
method and some rules or features including structural char-
acteristics between background regions and character com-
ponents and the characteristics of isolated Arabic characters
to find real segmentation points. Cheung et al.13 introduced
a segmentation algorithm that uses a technique in which
the overlapping Arabic words/subwords are horizontally sep-
arated, they also used a feedback loop between the character
segmentation stage and final recognition stage. In the seg-
mentation stage, a sequence of tentative lines has been
produced in two processes, the first process uses Amin’s
character segmentation algorithm,32 and the second process
uses the convex dominant points detection algorithm devel-
oped by Bennamoun.33

Shaikh et al.15 suggested an algorithm for Sindhi text seg-
mentation. The height profile vector (HPV) was employed
for the characters’ extraction. The extra analysis was done
over HPV to determine the locations of the possible segmen-
tation points (PSPs), in some cases the algorithm failed by
performing under or oversegmentation.

Omidyeganeh et al.22 presented a segmentation algorithm
based on conditional labeling for up and down contours, and
the algorithm was developed for multifont Farsi/Arabic texts.
The contour of the subword is measured using a convolution
kernel with Lapacian edge recognition-based segmentation
detection method. The algorithm goes through several steps
including: contour labeling of each subword, contour curva-
ture grouping to improve the segmentation results, character
segmentation, adaptive local baseline, and postprocessing,
the results showed that 97% of characters of the printed
Farsi texts were segmented correctly.

Mostafa34 developed a segmentation approach for printed
Arabic text especially for “simplified Arabic” font with dif-
ferent sizes. The main rule used is that the most characters
start with and end before a T-junction on the baseline.” This
rule was fine for most characters, except for some special
characters like “SEEN” , “SHEEN” , “SAD” , and
“DAD” , which had a special treatment. The algorithm
was tested and achieved a 96.5% of good segmentation
accuracy.

Alipour17 proposed an improved segmentation method for
Persian script where some structural features were used to
adjust the related fragments to increase the quality of seg-
mentation. Vertical projection was used to extract the word
fragments over the baseline—dots and diacritics were not
considered—then the fragments were adjusted in an extra
step by merging the small fragments, this step was necessary
in the cases where one character is segmented into more than
one part like “SEEN” , “SHEEN” , “SAD” , and
“DAD” .

Javed et al.4 developed a free-segmentation approach for
Urdu script. They employed different pattern matching tech-
niques to classify each pattern. The features were extracted
from the image and fed them to hidden Markov model
(HMM) recognizer, which has an ability to perform recog-
nition with great ease and efficiency.

Khaerula et al.35 proposed a segmentation scheme of
Arabic character with “harakat.” First, the image was con-
verted into a morph, then a vertical projection was applied
and the locations where the projection value is exactly 2 are
identified. If the occurrences such locations in more than
three successive rows, the image was split in the middle.
The process was repeated until the whole subword/word has
been segmented.

Mahmoud et al.36 presented a projection-based character
segmentation algorithm. In order to find the PSPs, the
authors employed a profiles amplitude filter to find separa-
tion between two characters, which is considered as constant
amplitude in the profile, and a simple edge tool to determine
whether it is a correct characters connection or not.

Radwan et al.37 proposed a character segmentation
approach based on multichannel neural network. The system
recognizes the features of the segmentation window to pre-
dict the likelihood of the current window to be a segmenta-
tion area. To increase the network input context, the authors
employed another two windows as an input to a multichannel
neural network one as a previous window with respect to
the current window and the other as a next window.

Amara et al.38 proposed a segmentation method for seg-
menting Arabic words with small size. They used a vertical
projection to find the preliminary segmentation points. Then
they employed a set of rules that depend on the contextual

Journal of Electronic Imaging 043030-3 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

topographies of Arabic writing and baselines positions along
with their relation with the characters to find real segmenta-
tion points.

Qomariyah et al.39 proposed a segmentation method using
the interesting point that is based on a set of rules to separate
the connected Arabic character. The interest points were used
as the coordinate reference to split each character. Their
method depends on the extracting picture frame by removing
all of the contour pixels in the image, except the contour
appropriate with the framework using different iteration.

Firdaus et al.40 proposed a modified connected compo-
nent labeling (MCCL) method to perform Arabic character
segmentation. They used MCCL along with a set of rules
based on the moment location, object location, and height
of the object to perform the segmentation, especially for
characters that are connected with others.

Amara et al.41 presented an enhanced segmentation
method based on the vertical projection and on some rules
to detect the potential segmentation points. Then they
employed a binary support vector machine to decide whether
to filter the extracted potential segmentation points.

Zoizou et al.42 proposed a hybrid method for printed
Arabic character segmentation based on two of the most
known approaches including contour analysis and template
matching. First, the text is segmented into lines and words/
subwords using horizontal and vertical projections, respec-
tively. The subword is then divided vertically into characters
using template matching to segment the descender character
if there is one and the contour method deals with the rest of
the subword.

2.2.2 Segmentation free

Segmentation-free approaches employ the whole word or
partial words (e.g., ligatures) as units of recognition rather
than characters. Holistic techniques are known to be more
robust for Urdu text because characters are overlap, slant,
and have different styles and fonts, However, the obvious
problem with this approach is the number of classes present
in the recognition stage, which results in performance deg-
radation as the number of vocabulary increases.

Naz et al.43 proposed implicit segmentation of printed
Urdu text-lines written in the Nasta’liq writing style using
multidimensional long short-term memory (LSTM) recurrent
neural networks (RNN) with an output layer designed for
sequence labeling for recognition. Nashwan et al.44 intro-
duced an efficient, holistic Arabic OCR system using lexicon
reduction approach based on clustering of similar shaped
words. They used a discreet cosine transform-based features
to compute global word level along with local block-based
features to generalize new font sizes and types. Din et al.45

presented a segmentation-free OCR for printed Urdu
Nastaliq font using ligatures as units of recognition. The
ligatures are extracted from text lines then separated into
primary and secondary ligatures and multiple instances of
the same ligature are grouped into clusters. They rely on stat-
istical features and employ HMMs for classification. Rawls
et al.46 presented a simple, effective deep learning approach
for recognizing machine print text from raw pixels. They
used a fully connected neural network for high-level feature
extraction over a sliding window. Then extracted features are
directly fed into a stacked bidirectional LSTM. Su and Lu47

proposed a novel word-level scene text recognition without

character segmentation. The proposed method consists of
three key components, including sequential feature genera-
tion, which converts a word image into sequences of column
feature; multilayer RNN model with bidirectional LSTM
model training classifies the two sets of sequential data; and
an ensembling technique that combines outputs of multiple
RNNs to produce improved word recognition accuracy.
Namysl and Konya48 proposed a segmentation-free OCR
system that combines deep learning methods, synthetic
training data generation, and data augmentation techniques.
They used a hybrid model of convolutional neural network
encoder to extract high-level features from text images and
an RNN to examine the interactions between input elements.

3 Proposed Work
Our approach is a segmentation-based approach (analytical
approach), which consists of three main stages as shown in
Fig. 2. The proposed approach takes a binary image of multi-
ple lines as an input and produces a set of binary images
consisting of one character or ligature. In our algorithm, the
segmentation is performed at three levels: line segmentation,
word segmentation, and character segmentation. In this paper,
we focus only on the line/word/characters segmentation
stages, assuming that the input image is well preprocessed
(e.g., binary images with noise eliminated and skew corrected,
the text is separated from nontext). Therefore, we concentrated
only to solve the complexity of Arabic segmentation (line,
word, and characters) especially when the diacritics are exists.

3.1 Line Segmentation
For line segmentation stage, a horizontal projection method
was applied to find the global maximum peak and its loca-
tions. The location of the global maximum peak performs the
baseline for a single line in the input segment. Then a line
was drawn at a global maximum peak to make the main body
of the line as one connected component and then extracted
by selecting the largest connected components after applying
a connected component algorithm on the line segment. The
extracted lines are without dots and diacritics, thus, its width
is less than the actual width. The line width was assigned by
dividing the width of the segment by the approximated count

Fig. 2 Proposed work.

Journal of Electronic Imaging 043030-4 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

of lines. The estimated number of lines in the segment is then
determined by dividing the segment width by the line width.
If the resulted count of lines inside the segment is greater
than one, then the segment is passed for extra processing to
split the overlapped lines, but if the segment consists of one
line, then the line is passed for over-segmentation checking,

and if the over-segmentation condition is met, then the line
is linked to the previous or next line. Figure 3 shows
an example of the over- and under-segmentation problems;
also Algorithm 1 shows the algorithm that summarizes the
steps of our line segmentation method.

3.2 Word/Subword Segmentation
For segmentation-based OCR system, the next stage after the
line segmentation is mainly words segmentation. The pro-
posed methodology for words segmentation is mainly based
on the vertical projection profile method, which consists of
three sequential steps as shown in Fig. 4. The algorithm takes
a binary text-line image of printed Arabic text with/without
diacritics as an input, and return segmented words/subwords
images as an output. Below is the detailed description of
each step.

3.2.1 Text-line image processing

In this step, to facilitate working on the word and character
segmentation stages, two additional versions of the input
text-line image are generated. The first version contains just
the main body of the text without diacritics and dots, whereas
the second one contains only the diacritics and dots. To
generate these versions, a horizontal projection method is
applied to the original text-line input image [Fig. 5(a)] to find
the global maximum peak and its location, this represents the
baseline of the input text-line image. Then a horizontal line is
drawn at the location of the baseline as shown in Fig. 5(b).

Fig. 3 Over- and under-segmentation example.

Algorithm 1 Line segmentation.

1: INPUT: TR Text Region

2: Horizontal Projection HP ← [];

3: Maximum Peaks MP ← [];

4: MP Locations MPL ← [];

5: Lines ← [];

6: HP←HorizontalProjection(TR);

7: MP←globalPeaks(HP);

8: MPL←getLocations(MP);

9: TR←drawLines(TR,MPL);

10: Lines←extractLines(TR);

11: EstimatedLineCount←count(Lines);

12: if EstimatedLineCount == 1 then

13: checkOverSegmentation (Lines);

14: else

15: handleOverlapping (TR);

16: end if

17: OUTPUT: Separated Lines
Fig. 4 Word/subword segmentation algorithm.

Journal of Electronic Imaging 043030-5 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

To generate the first version of the input text-line image,
we apply a connected component algorithm on the image
obtained from the previous stage and select the largest com-
ponent (all text that touches the baseline), which represents
the body of the text without diacritics and dots as shown in
Fig. 5(c). To remove the drawn horizontal line, we made a
logical AND operation between the resulted image and the
original text-line image. The second version of the line image
is obtained by subtracting the original input text line image
[Fig. 5(a)] from the generated first version [Fig. 5(d)] as
shown in [Fig. 5(e)].

3.2.2 Words/subwords extraction

For the Arabic script, each word consists of one or more sub-
words. To extract words/subwords, a vertical projection is
applied as an initial step to find the gap between them (where
the projection equals zero). The challenge after this step is to
decide if the gap is located between two consecutive words
or between two subwords. In other words, what is the suit-
able threshold to determine the separation space between
the subwords as an intraspace in the same word or a sepa-
ration space between two distinct words? However, the gap
between two consecutive words or subwords is not fixed and
depends on the font type, size, and style. To handle this issue,
first we compute the pen size, which is the pen thickness
used for writing9–11 of the current two consecutive words/
subwords and compare it with the length of the separation
space between the current two consecutive words/subwords.
Calculating the pen size can handle by taking the most fre-
quent value in the vertical projection applied for each sub-
word. But taking the most frequent value from the vertical
projection of some individual characters like “Aleph” “ ”
gives a wrong estimation of the pen size. For this reason,
the pen size is calculated by taking into account the most
frequent value calculated from the horizontal projection.
Thus if the most frequent value calculated from horizontal
projection is greater than the most frequent value calculated
from the vertical projection, then the pen size is assigned the
most frequent value calculated from the vertical projection.

This means, if the subword consists of more than one char-
acter, the pen size is the thickness of the baseline and vice
versa. Pen size calculation is formally defined as

EQ-TARGET;temp:intralink-;e001;326;594PS ¼
�
MFVðVPÞ; max½HPðSWÞ� > max½VPðSWÞ�
MFVðHPÞ; otherwise

;

(1)

where PS represents pin size, SW represents subword, HP
represents horizontal projection, VP represents vertical, and
MFV represents the most frequent value. Figure 6 shows an
example of pen size calculations for the two cases. In the
example, there are two subwords, for the first one (left), the
pen size is chosen as the most frequent value from the hori-
zontal projection, whereas in the second subword, the pen
size is chosen as the most frequent value from the vertical
projection.

After calculating the pen size, the pen size is compared
with the separation space. Therefore, if the separation space
between two consecutive words/subwords is larger than the
mean of the pen size of these two consecutive words/
subwords, then the separation region performs a separation
between two different words, else the separation region is
between two subwords in the same word defined formally as

EQ-TARGET;temp:intralink-;e002;326;360SR ¼
�
WS; SS½SWðiÞ; SWðiþ 1Þ� > PSðiÞþPSðiþ1Þ

2

SWS; otherwise
;

(2)

where SR represents separation region, WS represents word
separation, SWS represents the subword separation, SS rep-
resents separation space, WS represents subword, and PS
represents pin size. Figure 7 shows how to determine if two
separated parts are related to the same word or different
words. This figure shows that there are three separated parts
(“ ”, “ ”, and “ ”) and the pen size of these parts are 3, 4,
and 3, respectively. The separation space between the first

Fig. 5 An example of line processing step: (a) original line image,
(b) the drawn line at the location of baseline, (c) main body line version
with horizontal line, (d) main body line version image, and (e) diacritics
and dotting line image.

Fig. 6 Example of pen size calculation.

Fig. 7 Distance between two subwords in the same word and differ-
ent words.

Journal of Electronic Imaging 043030-6 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

part and the second part is less than the mean pen size of
these parts, thus these two parts related to the same word.
On the other hand, the separation space between the second
part and the third part is larger than the mean pen size of
these parts, thus these two parts related to different words.

3.2.3 Handling overlapping subwords

Arabic words might be composed of two or more not con-
nected components. Identifying the subwords is important to
treat some complex special characters like “ SEEN.”
Subwords might be overlapped among each other. So using
a vertical projection technique directly fails to extract them
as well as it fails to attach dots and diacritics to its related
subword. Since each subword is represented as a group of
connected pixels, we can apply the connected components
method on the abstracted version of the input word image
(word without dots and diacritics) to extract the subwords
images, where the number of the extracted connected com-
ponents is equal to the number of subwords that the input
word contains. Then the extracted connected components are
ordered from right to left using the maximum column index
(depending on Arabic script characteristic) of each con-
nected component. To assign each diacritic to its related sub-
word, all diacritics that are associated to the abstracted input
word image are extracted by subtracting the subword image
of the original binary input image [Fig. 8(a)] from the gen-
erated abstracted input word image [Fig. 8(c)]. Then we cal-
culate the overlapping percentage for each diacritic regarding
each overlapped subwords extracted from the previous step.
The diacritics, Fig. 8(c), are assigned to the subword by cal-
culating the overlapping between the considered diacritic
and the considered subword. The diacritic is assigned for the
subword that has a high overlapping ratio as shown in
Fig. 8(d). If the subword consists of one connected compo-
nent then no overlapping is detected, so all diacritics in the
diacritics image version are related to it. We compute the
overlapping ratio using the following equation:

EQ-TARGET;temp:intralink-;e003;63;181overlapping_ratio ¼ overlapping_area_size
diacritic_size

; (3)

where overlapping area size is equal to the intersection area
between the diacritic and the subword at the column level. It
is worth mentioning that while assigning the diacritics to the
related subword, the generated images’ sizes should be equal
to the original image size in case of overlapped subwords.
So the indices that have been obtained from the extraction of
the connected components can be used again so the indices

that have been obtained from the extraction of the connected
component algorithm can be applied a gain to the new image
because all image operation are based on the reference
image. Algorithm 2 shows the algorithm for word/subwords
segmentation method.

3.3 Character Segmentation
The proposed algorithm for character segmentation is based
on contour extraction technique. The algorithm consists of
four main stages shown in Fig. 9. The algorithm takes
a binary word/subword image of printed Arabic text with/
without diacritics as an input and return segmented words/
subwords images as an output. Below is the detailed descrip-
tion of each step.

Fig. 8 Subwords overlapping example: (a) overlapped subwords,
(b) two overlapped main bodies of subwords, (c) diacritics image
of overlapped subwords, and (d) separated overlapped subwords with
its diacritics.

Algorithm 2 Words/subwords segmentation.

1. INPUT: DBLI Diacritics Binary Line Image, MBLI Main Binary
Line Image

2. Vertical Projection VP ← [];

3. Separation Indices SI ← [];

4. Separation Regions SR ← [];

5. Words/subWord List WSL ← [];

6. VP←verticalProjection(MBLI);

7. SI←returenIndiciesOfZeroValue(VP);

8. SR←mergeContinuousIndices(SI);

9. for i←2 to length(SR); do

10. SR(i).minColumnIndex←max[SR(i)];

11. SR(i).maxColumnIndex ← min[SR(i+1)];

12. SR(i).length←max(SR(i)−min[SR(i+1)];

13. if {SR(i).length>mean[SR(i).penSize(),SR(i+1).penSize()]}
then

14. SR(i).segmentType←wordSegment;

15. else

16. SR(i).segmentType←subWordSegment

17. end if

18. diacriticsSegment←extractSegment{DBLI,min[SR(i)],
max[SR(i)]};

19. bodySegment←extractSegment{MBLI,min[SR(i)],
max[SR(i)]};

20. WSL←overlapping(diacriticsSegment,bodySegment);

21. end for

22. OUTPUT: WSL

Journal of Electronic Imaging 043030-7 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3.3.1 Word/subword contour extraction

Contour-based segmentation technique gives a clear descrip-
tion of the word characters shape. This method facilitates
determining the right segmentation points. Many methods
have been tested to extract the contour of the abstracted
word/subword image. The best results can be obtained
when using the contour extraction method implemented in
the MATLAB environment49 named as imcontour()
function. imcontour() is a MATLAB API from the
MATLAB image processing toolbox used to draw a contour
plot of the grayscale image. We exploit this function with
some enhancements added to it by filling the holes in the
main body of the abstracted word/subword image before
applying the imcontour function. This MATLAB function
gives better results especially for small font sizes. However,
extracting the contour by a sequence of morphological oper-
ations raises some problems like the connection between
contour parts. In addition, part of the word/subword some-
times is removed, which causes major problems for the next
stages. Thus a morphological closing operation is applied to
fill these gaps without affecting the details of small font sizes
and thus the structure of some characters like “ SEEN” is
not removed. Figure 10 shows an example of the contour
extraction stage.

3.3.2 Upcontour extraction

In this step, two points from the resulting contour are elected
as start and end points. These points are used to search and
retrieve the path that forms the up contour.

To determine the first and the last parts of the word/
subword’s main body, first, a threshold value is determined
according to the average length of the character for the cur-
rently used pen size. Therefore, the first part will be located
between the maximum column index of the subword contour
and second column, which is determined by subtracting
the previous threshold value from the max column index.
The last part is determined in the same manner, but this time

the region will be located between the first column index in
the contour and the second column, which is assigned by
adding the previous threshold to the first column index value.
To elect the start point, the two pixels that have the minimum
row index values are located, and then the pixel with maxi-
mum column index is elected. The same for the end point
election, the two pixels that have the minimum row index
values are located, then the pixel with minimum column
index is elected.50 Figure 11 shows the first and last parts in
the word contour along with the selected start and end points.

To extract the up-contour image, a tracing operation is
started from the elected start point pixel until reaching
the elected end point pixel. The resulted path is determined
by moving from the start point pixel in a counterclockwise
direction using the eight-neighboring connectivity, which
is used to check different possibilities for the next pixel
location. Each time the movement action is taken a place,
the previous point is tracked to overcome forming a loop.
The tracing operation ends when the selected end point in
the contour is reached, resulting in a new image having
a size similar to word/subword contour.

3.3.3 Segmentation areas identification

In this step, the up-contour as shown in Fig. 12 is examined
to identify the segmentation (splitting) areas. The process
starts by scanning the up-contour row by row where the con-
tinuous regions that have the same rows index and conse-
quent columns index are extracted. In addition, these regions
have a local minima region to consider as a cutting region,
and this condition satisfied when the pixels above the starting
and the ending pixels of the continuous regions are equal to
1 (pixels that have data in binary image). After that, the first
and last points in the region are considered as a splitting
area reference points. Figure 12 shows the splitting areas and
their related reference points.

After identifying the splitting areas, each character will
locate between two consecutive splitting regions. Figure 13
shows the cutting points over splitting regions for some regu-
lar characters. However, there are some special cases where

Fig. 10 Contour extraction example.

Fig. 11 Elected start and end points of the word contour.

Fig. 12 Up-contour splitting areas with reference points.

Fig. 9 Character segmentation algorithm.

Journal of Electronic Imaging 043030-8 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

the splitting area locates within a character like “ SAAD,”
“ DAD,” “ SEEN,” “ SHEEN,” “ TAA,” and
“ THAA.” In addition, some splitting areas locate within
character when the position of the character is at the end of
the word or exists independently in the text like “ BAA”
and “ YAA.” So a postprocessing step for character seg-
mentation is necessary to ignore these spatial splitting areas.

3.3.4 Postprocessing

In the postprocessing step, character segmentation algorithm
performs two major steps, which are detailed in Algorithm 3.
In the first step, the segment is defined as a part of the
up-contour that locates between two splitting areas. The up-
contour part might represent a full character or a part of
a character. Thus further checking for some requirements
is needed as a second step to decide whether this part must
be merged or to consider it as a standalone character.
As an Example of further checking to decide whether the part
must be merged or to consider it as a standalone, the last part
“ SHEEN” character, the three parts in “ SEEN” char-
acter, the second part in “ DAD” and “ SAAD” char-
acters. The requirements that must satisfy are summarized in:

• Euler number. This is one of the region properties that
can be estimated. It must be equal to or greater than
one, meaning that no holes exist in this part.

• Character’s part height. Based on experimental
results, the height should be less than the pen size
multiplied by two.

• The part has no dots above or below.

Figure 14(a) shows an example of a segment that satisfies
the requirements, which should be merged later. So if the
segment satisfies the requirements, then checking for “
SHEEN” character case is taken a place. Thus if the segment
is part of SHEEN character (only the last part of the SHEEN
character satisfies the conditions), then the previous two
splitting areas are ignored. This means that the segment
is merged with the two previous segments to form the
SHEEN character. If it is not the SHEEN character, then
the space counter is incremented by one.

If the character’s part does not satisfy the conditions, then
two cases should be handled by checking the space count and
the location of the segment with respect to its position in
the word. In the first case, the count of spaces is checked.
Thus if the space count equals one, then the segment is
merged with previous one to form the “ TAA,” “
THAA,” “ DAD,” or “ SAD” characters. Otherwise,
if the counting space equals two, in this case the segment is
merged with previous two parts to perform the “ SEEN”
character. Figure 14(c) shows “ SEEN” case detection
when the space counter equals three (three consecutive

Algorithm 3 Character segmentation postprocessing.

1. Input: LSR List Splitting Regions

2. Result: Each splitting area is assigned by a flag to be ignored or
not

3. Vertical Projection VP ← [];

4. for i←1 to length(LSR) do

5. if LSR(i).locatesAbove(baseline) then

6. LSR(i).ignore←true;

7. return;

8. end if

9. CharacterSegment←line.extract(LSR(i),LSR(i+1);

10. if (CharacterSegment.eulerNumber() >= 1

11. and CharacterSegment.hasDot() and
CharacterSegment.height() < 2*penSize) then

12. if CharacterSegment is sheen then

13. LSR(i−1).ignore←true;

14. LSR(i−2).ignore←true;

15. else

16. spaceCounter++;

17. end if

18. else if LSR(i).isLastRegion() then

19. if SLR(i).locateUnderBaseline() then

20. SLR(i).ignore←true;

21. if CharacterSegment is sheen then

22. LSR(i−1).ignore←true;

23. LSR(i−2).ignore←true;

24. else if spaceCounter == 2 then

25. LSR(i−1).ignore←true;

26. LSR(i−2).ignore←true;

27. else if spaceCounter == 1 then

28. LSR(i−1).ignore←true;

29. end if

30. else if spaceCounter == 1 then

31. LSR(i−2).ignore←true;

32. LSR(i−3).ignore←true;

33. else if spaceCounter == 1 then

34. LSR(i−2).ignore←true;

35. end if

36. end if

37. end for

38. OUTPUT:LSR

Fig. 13 Splitting regions for some regular characters.

Journal of Electronic Imaging 043030-9 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

segments satisfy the condition) and Fig. 14(d) shows “
DAD” cases detection when the space counter equals one
(one segment satisfies the conditions).

In the second case, if the segment is located within the last
character of the word as in Fig. 14(d) and the last splitting
region is below the baseline, then the splitting region is
ignored. Figure 14(e) shows the last splitting area that should
be ignored. Indeed, if the ignored segment has no dots, this
means that the segment is not a full character and must be
merged with some segments before like in “ SEEN,” “
SHEEN,” “ SAD,” and “ DAD” characters. So an addi-
tional checking must be performed to detect these cases.
Thus if the space counter equals one, then “ SHEEN,”
“ SAD,” or “ DAD” cases are detected and the

segment must be merged with the previous part. Otherwise,
if the space counter equals two then a “ SEEN” case is
detected and the segment must be merged with the previous
two parts. Figures 14(e) and 14(f) show merging the last seg-
ment with previous part to perform one character according
to the above checking case.

Finally, for “ TAA” and “ THAA” characters, the
splitting region locates above the baseline. So if this condi-
tion is satisfied then the splitting region is ignored as shown
in Fig. 14(g). Algorithm 3 summarizes the procedure of char-
acter postsegmentation. Figure 15 shows an example of the
character segmentation algorithm. Generally, in segmenta-
tion-based approach, the main segmentation problems can
be classified into over segmentation and under segmentation.
In Arabic, the over segmentation can occur mainly in the fol-
lowing characters { , , , and } and specifically
with small font size (e.g., <8) and with low-resolution
images. In our method, we efficiently handle this issue espe-
cially for moderate and larger font size (>8). On the other

hand, the problem showed in segment “ ,” in Fig. 15,

is called under segmentation, and it is hard to segment in
most Arabic character segmentation methods. Indeed, most
Arabic OCR systems treated ligatures as new classes since
segmenting it is very hard because the characters overlapped
vertically and do not touch each other, which leads to an
unclear segmentation point.

4 Results and Evaluations

4.1 Dataset Description
The available datasets such as INF/ENIF,51 IFHCDB,52 and
APTI53 that have been used in evaluating character segmen-
tation methods are not suitable for our target experiments.
They are dedicated to Arabic text without diacritics, whereas
our method has been designed for Arabic text containing
diacritics.

Thus we manually built a new dataset from real scanned
documents to experiment with our method. To make the
dataset generic and comprehensive, the collected dataset
includes text content from different sources (e.g., books,
magazines, reports, and papers) and topics (e.g., religious,
sport, and poetry texts), in addition to a considerable

Fig. 14 Character segmentation postprocessing example: (a) seg-
ment that satisfies the requirements, (b) SHEEN character case,
(c) space counter = 3, SEEN case, (d) space counter =1, DAD case,
(e) last splitting region below the baseline, (f) merging the last seg-
ment with previous one, (g) merging the last segment with previous
one, and (h) splitting region located above the baseline.

Fig. 15 Example of initial segmentation and postprocessing outputs for two different font types.

Journal of Electronic Imaging 043030-10 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

variation at font type, size, and style levels. The dataset is
available in Ref. 54. We tested the algorithm on scanned
images at 300 dpi with multiple font sizes between 8 and
24, and styles including regular, bold, and italic. In addition,
we used APTI dataset in order to evaluate and compare
the performance of the purpose method with respect to the
performance of other related approaches. APTI dataset is
a large-scale benchmark for recognition systems in Arabic.
It has a variability in the generation procedure of text
images including different font types, sizes, and styles. In
addition, it includes very large vocabulary, various forms of
ligatures, overlaps of characters, and variability of the height
of each word image.

To sum up, since the collected texts in the APTI dataset
did not contain diacritics, it is not suitable to evaluate
the performance of the proposed algorithm in segmenting
Arabic text with the existence of diacritics. Therefore, we
evaluated our method on our own collected dataset, which
includes Arabic text with diacritics along with variation of
font types, styles, and size. On the other hand, to compare
our proposed method with other related works, we used
APTI dataset, which is a standard published benchmark and
some related works used it for the purpose of testing.

4.2 Results
This section presents the results of the conducted experi-
ments on the generated set of Arabic documents and using

APTI dataset. As an implementation platform, we used
MATLAB in implementing and then experimenting our
proposed character segmentation algorithm where such a
commonly known high-level technical computing platform
provides well-implemented toolbox in image processing.
The performance for segmentation is measured in terms
of character segmentation rate, which is computed by the
ratio of the number of characters that are correctly segmented
to the total number of characters; in this metric, the ligature is
considered as one character; also the last character with no
splitting area is not considered.

First, the proposed algorithms (line, word, and character
segmentation) were experimented and evaluated using our
manually created dataset since it includes diacritics. The
proposed line segmentation methods were experimented
on 43,055 lines and reported excellent results in terms of
line segmentation ratio, which computed “the total number
of correctly segmented lines over the total number of input
lines” with an average of 99.5%. Table 1 below shows the
results generated through the testing process over variation
of font type, style, and size.

The results of the words segmentation stage in terms of
word segmentation ratio are reported in Table 2. The
proposed word segmentation methods are experimented
on about 1500 lines of (23,350 words) with five font
types (advertising bold, simplified Arabic, Arial, traditional

Table 1 Line segmentation results for different font styles and types
on text with diacritics.

Font Font type
Total number
of input lines

No. of correctly
segmented lines

Accuracy
(%)

Plain Advertising bold 3000 2982 99.4

Diwani 3011 2988 99.2

Andalus 2520 2499 99.2

Arabic transparent 2940 2922 99.4

Naskh 2982 2960 99.3

Bold Advertising bold 3000 2982 99.4

Diwani 3011 2988 99.2

Andalus 2520 2499 99.2

Arabic transparent 2940 2922 99.4

Naskh 2982 2960 99.3

Italic Advertising bold 3034 3020 99.5

Diwani 3036 3024 99.6

Andalus 2438 2420 99.3

Arabic transparent 3051 3038 99.6

Naskh 3118 3102 99.5

Total 43,055 43,271 99.5

Table 2 Word segmentation results for different font styles, types,
and size between 8 and 24.

Font
style Font type

Total
numbers
of input
words

No. of
correctly

segmented
words

Accuracy
(%)

Plain Simplified Arabic 1572 1564 99.5

Times New Roman 1554 1544 99.4

Arial 1550 1541 99.4

Advertising bold 1566 1333 85.1

Arabic transparent 1548 1542 99.6

Bold Simplified Arabic 1571 1563 99.5

Times New Roman 1556 1550 99.6

Arial 1549 1543 99.6

Advertising bold 1546 1336 86.4

Arabic transparent 1548 1540 99.5

Italic Simplified Arabic 1572 1558 99.1

Times New Roman 1554 1538 99

Arial 1550 1534 99

Advertising bold 1566 1324 84.5

Arabic transparent 1548 1534 99.1

Total 23,350 22,544 96.5

Journal of Electronic Imaging 043030-11 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Arabic, and Times New Roman), three styles (plain, italic,
and bold) and eight font sizes (8, 9, 10, 12, 14, 16, 18, and
24 points), with an average accuracy of 96.5%. The results
show that the algorithm has almost the same performance
when varying the font style, type, and size. Also we exper-
imented the character segmentation stage on different font
type, style, and size on about 38,763 words. Table 3 shows
the performance of the proposed algorithm with an average
accuracy of 98.5%. Note that the accuracy was computed as
“the total number of correctly segmented characters over the
total number of input characters.” In this metric, the ligature
is considered as one character; also the last character with no
splitting area is not considered. The results show that the
algorithm has almost the same performance when varying
the font style, type, and size. For APTI dataset, the proposed
line, word, and character segmentation methods were exper-
imented on the same variation on font types, size, and style
with an average accuracy of 99.9% for line segmentation,
98.1% for word segmentation, and 98.2% for character
segmentation.

Table 4 shows our results compared with that of previous
related works. Note that there is no baseline to compare with
because there is no published standard dataset for Arabic text
with diacritics to test with. Therefore, most of the authors
tested their work on their own collected data and did not
make it public. Indeed, it is fairer to compare with using

the same dataset. However, the implementation code of the
proposed methods in the related works is not available and
sometimes it is difficult to rewrite the code since it may
depend on parameters, hypothesis, tools, and APIs that are
not mentioned clearly in the published paper. Therefore, we
tested our method using APTI dataset in order to make some
fair comparisons with other related works. As shown from
this table, the proposed algorithm outperforms other related
works in terms of: (i) experimenting on different font type,
size, and style, (ii) handling diacritics, (iii) and in terms of
average accuracy.

5 Conclusion
In this paper, an efficient offline contour-based character
segmentation algorithm for printed Arabic text is proposed
based on contour extraction segmentation technique. Our
algorithm is able to segment characters of words consisting
of diacritics. Also the algorithm can handle some special
complex cases occurring because of the over-segmentation
problem. We experimented the algorithm on dataset col-
lected and built manually, with making different versions
of the documents in terms of style, size, type, and font
variation. The experimental results show the reliability of our
algorithm in segmenting correctly more than 38,700 out of
39,353 words.

Segmentation of Arabic text is error-prone. It is the stage
where most of the errors occur and where the error in seg-
mentation will result in classification errors. In this paper,
a new scheme is investigated and developed such that the
segmentation is done in such a way to minimize errors and
maximize the recognition rate. Different algorithms are pro-
posed for different segmentation stages (a word/subword and
diacritics segmentation and character segmentation). Results
using the proposed scheme show that promising results of
the Arabic character are achieved. Also an enhanced method
for word, subword, and diacritics segmentation is proposed,
the subwords are extracted in two ways according to the sub-
words situation, vertical projection is used in the case of full
separation between subwords by finding the gaps between
them, the concept of connected component concept is used
to find the subwords in case of overlapping, the connected
components concept is also used to extract the diacritics, the
proposed method also determines if the subwords are related
to the same word or to different words regardless of the font
type or size by estimating the pen size for each subword, the
algorithm shows promising results. For character segmenta-
tion stage, an enhanced algorithm is proposed, based on con-
tour extraction technique, which has many advantages over
other methods like having a clear description of character
shape and details even for small fonts, also the errors in
extracting the baseline is eliminated since there is no need
to adjust the baseline many times. A postprocessing step
is needed to solve over segmentation problem; ignore cases
checking algorithm is developed in an easy and reliable way
that can fit many font types and styles, character segmenta-
tion algorithm shows good results up to 98.5%.

As a future work, our plan is to reduce the under-segmen-
tation problem as much as possible specifically for small
font size. Also to enhance the rules, it can be generalized to
handle more complex fonts. In addition, we want to extend
the work to extract diacritic from the characters to facilitate
the recognition stage.

Table 3 Character segmentation results for different font styles,
types, and size between 8 and 24.

Font Font type

No. of
input

characters

No. of
correctly

segmented
characters

Accuracy
(%)

Regular Simplified Arabic 2790 2835 98.4

Traditional Arabic 2935 2976 98.6

Times New Roman 2812 2844 98.9

Arial 2585 2620 98.7

Advertising bold 2058 2084 98.8

Bold Simplified Arabic 2550 2599 98.1

Traditional Arabic 2587 2643 97.9

Times New Roman 2841 2873 98.9

Arial 2615 2646 98.8

Advertising bold 2615 2491 98.9

Italic Simplified Arabic 2549 2606 97.8

Traditional Arabic 2584 2629 98.2

Times New Roman 2484 2516 98.7

Arial 2454 2490 98.6

Advertising bold 2455 2491 98.6

Total 39,353 38,763 98.5

Journal of Electronic Imaging 043030-12 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

T
ab

le
4

C
om

pa
rin

g
w
ith

ot
he

r
re
la
te
d
w
or
k.

Y
ea

r
S
eg

m
en

ta
tio

n
m
et
ho

d
D
at
as

et

F
on

t
va

ria
tio

n
H
an

dl
in
g

di
ac

rit
ic
s

A
ve

ra
ge

ac
cu

ra
cy

(%
)

T
yp

e
S
iz
e

S
ty
le

Z
he

ng
19

20
04

V
er
tic
al

hi
st
og

ra
m

an
d
so

m
e

st
ru
ct
ur
al

ch
ar
ac

te
ris

tic
s
ru
le
s

50
0
sa

m
pl
es

of
A
ra
bi
c
te
xt

S
im

pl
ifi
ed

A
ra
bi
c
an

d
A
ra
bi
c

tr
an

sp
ar
en

t
12

,
14

,
16

,
18

,
20

,
an

d
22

P
la
in

N
o

94
.8

Ja
ve

d4
20

10
P
at
te
rn

m
at
ch

in
g
te
ch

ni
qu

es
A

to
ta
lo

f
12

82
un

iq
ue

lig
at
ur
es

ar
e
ex

tr
ac

te
d
fr
om

th
e
50

00
hi
gh

fr
eq

ue
nc

y
w
or
ds

in
a
co

rp
us

-b
as

ed
di
ct
io
na

ry

N
oo

ri
N
as

ta
liq
ue

fo
nt

36
P
la
in

N
o

92

S
aa

bn
i5
5

20
14

P
ar
tia

ls
eg

m
en

ta
tio

n
an

d
H
au

sd
or
ff
di
st
an

ce
A
P
T
I

D
iff
er
en

t
fo
nt
s
to

co
ve

r
di
ffe

re
nt

co
m
pl
ex

ity
of

sh
ap

es
of

A
ra
bi
c

pr
in
te
d
ch

ar
ac

te
rs

10
di
ffe

re
nt

si
ze

s
P
la
in

N
o

96
.8

A
nw

ar
et

al
.3
5

20
15

P
ro
je
ct
io
n-
ba

se
d

12
7
se

nt
en

ce
s
co

m
po

se
d
of

10
61

le
tte

rs
T
ra
di
tio

na
lA

ra
bi
c

70
P
la
in

Y
es

97
.5

M
ar
w
a

et
al
.3
8

20
16

H
is
to
gr
am

an
d
co

nt
ex

tu
al

pr
op

er
tie

s
A
P
T
I

D
iff
er
en

t
fo
nt

ty
pe

s
D
iff
er
en

t
si
ze

s
P
la
in
,
ita

lic
,

an
d
bo

ld
N
o

85
.6

R
ad

w
an

37
20

16
M
ul
tic
ha

nn
el

ne
ur
al

ne
tw
or
ks

A
P
T
I

A
ria

l,
T
ah

om
a,

T
hu

lu
th
,
an

d
D
am

as
18

P
la
in

N
o

95
.5

F
itr
iy
at
ul

et
al
.3
9

20
17

In
te
re
st
s
po

in
ts
,
co

nt
ou

r-
ba

se
d

10
lin
es

of
30

su
bw

or
ds

N
ot

re
po

rt
ed

N
ot

re
po

rt
ed

P
la
in

N
o

86
.5

F
ak

hr
y

et
al
.4
0

20
17

C
on

ne
ct
ed

co
m
po

ne
nt

5
lin
es

15
w
or
ds

N
ot

re
po

rt
ed

N
ot

re
po

rt
ed

P
la
in

Y
es

80
.2

M
ar
w
a

et
al
.4
1

20
17

P
ro
je
ct
io
n
pr
of
ile
,
S
V
M

A
P
T
I

A
dv

er
tis
in
g
bo

ld
6,
8,
10

,
12

P
la
in
,
ita

lic
,

an
d
bo

ld
N
o

98
.2
4

A
bd

el
ha

y
et

al
.3
8

20
18

C
on

to
ur
-b
as

ed
an

d
te
m
pl
at
e

m
at
ch

in
g

83
lin
es

of
98

4
w
or
ds

34
di
ffe

re
nt

fo
nt
s

D
iff
er
en

t
fo
nt

si
ze

s
P
la
in

N
o

94
.7

O
ur

ap
pr
oa

ch
20

19
C
on

to
ur
-b
as

ed
m
et
ho

d
15

00
lin
es

of
(2
3,
35

0
w
or
ds

)
A
dv

er
tis
in
g
bo

ld
,
si
m
pl
ifi
ed

A
ra
bi
c,

A
ria

l,
tr
ad

iti
on

al
A
ra
bi
c,

an
d

T
im

es
N
ew

R
om

an

8,
9,

10
,
12

,
14

,
16

,
18

an
d
24

P
la
in
,
ita

lic
,

an
d
bo

ld
Y
es

98
.5

O
ur

ap
pr
oa

ch
20

19
C
on

to
ur
-b
as

ed
m
et
ho

d
A
P
T
I

A
dv

er
tis
in
g
bo

ld
,
si
m
pl
ifi
ed

A
ra
bi
c,

A
ria

l,
tr
ad

iti
on

al
A
ra
bi
c,

an
d

T
im

es
N
ew

R
om

an

8,
9,

10
,1
2,

14
,

16
,
18

an
d
24

P
ai
n,

ita
lic
,

an
d
bo

ld
Y
es

98
.2

Journal of Electronic Imaging 043030-13 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

References

1. N. at Accredited Language, “The 10 most common languages,” Blog
(2019).

2. A. Lawgali, “A survey on Arabic character recognition,” Int. J. Signal
Process. Image Process. Pattern Recognit. 8(2), 401–426 (2015).

3. G. Meijer, Smart Sensor Systems, Wiley, Delft, The Netherlands (2008).
4. S. T. Javed et al., “Segmentation free Nastalique Urdu OCR,” World

Acad. Sci. Eng. Technol. 4(10), 456–461 (2010).
5. T. Islam, S. C. Mukhopadhyay, and N. K. Suryadevara, “Smart sensors

and Internet of Things: a postgraduate paper,” IEEE Sensors J. 17(3),
577–584 (2017).

6. L. M. Lorigo and V. Govindaraju, “Offline Arabic handwriting
recognition: a survey,” IEEE Trans. Pattern Anal. Mach. Intell. 28(5),
712–724 (2006).

7. N. Sabbour and F. Shafait, “A segmentation-free approach to Arabic and
Urdu OCR,” Proc. SPIE 8658, 86580N (2013).

8. S. Naz et al., “An OCR system for printed Nasta’liq script: a segmen-
tation based approach,” in IEEE 17th Int. Multi-Top. Conf. (INMIC),
IEEE, pp. 255–259 (2014).

9. P. Ahmed and Y. Al-Ohali, “Arabic character recognition: progress and
challenges,” J. King Saud Univ.-Comput. Inf. Sci. 12, 85–116 (2000).

10. A. M. Zeki and M. S. Zakaria, “Challenges in recognizing Arabic
characters,” International Islamic University Malaysia (IIUM), Kuala
Lumpur, Malaysia, National University of Malaysia (UKM), Bangi,
Selangor, Malaysia (2004).

11. A. Mahmood, “Arabic & Urdu text segmentation challenges and tech-
niques,” Int. J. Comput. Sci. Technol. 4, 32–34 (2013).

12. Y. M. Alginahi, “A survey on Arabic character segmentation,” Int. J.
Doc. Anal. Recognit. 16(2), 105–126 (2013).

13. A. Cheung, M. Bennamoun, and N. W. Bergmann, “An Arabic optical
character recognition system using recognition-based segmentation,”
Pattern Recognit. 34(2), 215–233 (2001).

14. J. H. AlKhateeb et al., “Component-based segmentation of words from
handwritten Arabic text,” Int. J. Comput. Syst. Sci. Eng. 5(1), 54–58
(2009).

15. N. A. Shaikh, G. A. Mallah, and Z. A. Shaikh, “Character segmentation
of Sindhi, an Arabic style scripting language, using height profile
vector,” Aust. J. Basic Appl. Sci. 3(4), 4160–4169 (2009).

16. I. Aljarrah et al., “Automated system for Arabic optical character rec-
ognition with lookup dictionary,” J. Emerg. Technol. Web Intell. 4(4),
362–370 (2012).

17. M. M. Alipour, “A new approach to segmentation of Persian cursive
script based on adjustment the fragments,” Int. J. Comput. Appl.
64(11), 21–26 (2013).

18. S. N. Nawaz et al., “An approach to offline Arabic character recognition
using neural networks,” in 10th IEEE Int. Conf. Electron., Circuits and
Syst. (ICECS), IEEE, Vol. 3, pp. 1328–1331 (2003).

19. L. Zheng, A. H. Hassin, and X. Tang, “A new algorithm for machine
printed Arabic character segmentation,” Pattern Recognit. Lett. 25(15),
1723–1729 (2004).

20. A. Zidouri et al., “Adaptive dissection based subword segmentation of
printed Arabic text,” in Ninth Int. Conf. Inf. Visualisation (IV), IEEE,
pp. 239–243 (2005).

21. J. Ahmad, “Optical character recognition system for Arabic text using
cursive multi-directional approach,” J. Comput. Sci. 3, 549–555 (2007).

22. M. Omidyeganeh et al., “A new segmentation technique for multi font
Farsi/Arabic texts,” in IEEE Int. Conf. Acoust., Speech, and Signal
Process., IEEE, Vol. 2 (2005).

23. T. Sari, L. Souici, and M. Sellami, “Off-line handwritten Arabic char-
acter segmentation algorithm: ACSA,” in Proc. Eighth Int. Workshop
Front. Handwriting Recognit., IEEE, pp. 452–457 (2002).

24. R. Mehran, H. Pirsiavash, and F. Razzazi, “A front-end OCR for Omni-
font Persian/Arabic cursive printed documents,” in Digital Image
Computing: Techniques and Applications (DICTA), IEEE, pp. 56–56
(2005).

25. B. Bushofa and M. Spann, “Segmentation of Arabic characters using
their contour information,” in Proc. 13th Int. Conf. Digital Signal
Process., IEEE, Vol. 2, pp. 683–686 (1997).

26. K. Romeo-Pakker, H. Miled, and Y. Lecourtier, “A new approach for
Latin/Arabic character segmentation,” in Proc. 3rd Int. Conf. Doc.
Anal. and Recognit., IEEE, Vol. 2, pp. 874–877 (1995).

27. M. M. Altuwaijri and M. A. Bayoumi, “A thinning algorithm for Arabic
characters using art2 neural network,” IEEE Trans. Circuits Syst. II
45(2), 260–264 (1998).

28. D. Motawa, A. Amin, and R. Sabourin, “Segmentation of Arabic
cursive script,” in Proc. Fourth Int. Conf. Doc. Anal. and Recognit.,
pp. 625–628 (1997).

29. B. Al-Badr and R. M. Haralick, “Segmentation-free word recognition
with application to Arabic,” in Proc. 3rd Int. Conf. Doc. Anal. and
Recognit., IEEE, Vol. 1, pp. 355–359 (1995).

30. B. Bushofa and M. Spann, “Segmentation and recognition of Arabic
characters by structural classification,” Image Vision Comput. 15(3),
167–179 (1997).

31. Y. Zhang, Z. Q. Zha, and L. F. Bai, “A license plate character segmen-
tation method based on character contour and template matching,”
Appl. Mech. Mater. 333, 974–979 (2013).

32. A. Amin, “Recognition of Arabic handprinted mathematical formulas,”
Arabian J. Sci. Eng. 16(4), 531–542 (1991).

33. M. Bennamoun and B. Boashash, “A structural-description-based vision
system for automatic object recognition,” IEEE Trans. Syst. Man
Cybern. Part B Cybern. 27(6), 893–906 (1997).

34. M. Mostafa, “An adaptive algorithm for the automatic segmentation of
printed Arabic text,” in 17th Natl. Comput. Conf., International Society
for Optics and Photonics, Saudi Arabia, pp. 437–444 (2004).

35. K. Anwar, Adiwijaya, and H. Nugroho, “A segmentation scheme of
Arabic words with Harakat,” in IEEE Int. Conf. Commun., Networks
and Satell. (COMNESTAT), pp. 111–114 (2015).

36. M. A. A. Mousa, M. S. Sayed, and M. I. Abdalla, “Arabic character
segmentation using projection-based approach with profile’s amplitude
filter,” arXiv 1707.00800 (2013).

37. M. A. Radwan, M. I. Khalil, and H. M. Abbas, “Predictive segmentation
using multichannel neural networks in Arabic OCR system,” Lect. Notes
Comput. Sci. 9896, 233–245 (2016).

38. M. Amara et al., “New rules to enhance the performances of histogram
projection for segmenting small-sized Arabic words,” in Int. Conf.
Hybrid Intell. Syst. (2016).

39. F. Qomariyah, F. Utaminingrum, and W. F. Mahmudy, “The segmen-
tation of printed Arabic characters based on interest point,”
J. Telecommun. Electron. Comput. Eng. 9(2–8), 19–24 (2017).

40. F. I. Firdaus, A. Khumaini, and F. Utaminingrum, “Arabic letter
segmentation using modified connected component labeling,” in Int.
Conf. Sustainable Inf. Eng. and Technol. (SIET), pp. 392–397 (2017).

41. M. Amara, K. Zidi, and K. Ghedira, “An efficient and flexible knowl-
edge-based Arabic text segmentation approach,” Int. J. Computer Sci.
Inform. Security 15(7), 25–35 (2017).

42. A. Zoizou et al., “A new hybrid method for Arabic multi-font text seg-
mentation, and a reference corpus construction,” J. King Saud Univ.
(2018).

43. S. Naz et al., “Urdu Nasta’liq text recognition using implicit segmen-
tation based on multi-dimensional long short term memory neural
networks,” SpringerPlus 5(1), 2010 (2016).

44. F. Nashwan et al., “A holistic technique for an Arabic OCR system,”
J. Imaging 4(1), 6 (2018).

45. I. U. Din et al., “Segmentation-free optical character recognition for
printed Urdu text,” EURASIP J. Image Video Process. 2017(1), 62
(2017).

46. S. Rawls et al., “Combining deep learning and language modeling for
segmentation-free OCR from raw pixels,” in 1st Int. Workshop Arabic
Script Anal. and Recognit. (ASAR), pp. 119–123 (2017).

47. B. Su and S. Lu, “Accurate recognition of words in scenes without char-
acter segmentation using recurrent neural network,” Pattern Recognit.
63, 397–405 (2017).

48. M. Namysl and I. Konya, “Efficient, lexicon-free OCR using deep learn-
ing,” (2019).

49. MATLAB, Filled 2-D contour plot, https://www.mathworks.com/help/
matlab/ref/contourf.html (2010).

50. K. Mohammad et al., “Printed Arabic optical character segmentation,”
Proc. SPIE 9399, 939911 (2015).

51. M. Pechwitz et al., “IFN/ENIT-database of handwritten Arabic words,”
in Proc. CIFED, Vol. 2, pp. 127–136, Citeseer (2002).

52. S. Mozaffari et al., “A comprehensive isolated Farsi/Arabic character
database for handwritten OCR research,” in Tenth Int. Workshop
Front. Handwriting Recognit., Suvisoft (2006).

53. F. Slimane et al., “A new Arabic printed text image database and evalu-
ation protocols,” in 10th Int. Conf. Doc. Anal. and Recognit., IEEE,
pp. 946–950 (2009).

54. K. Mohammad, “BZU OCR research group,” http://sites.birzeit.edu/
bzuocr/data-sets.

55. R. Saabni, “Efficient recognition of machine printed Arabic text using
partial segmentation and Hausdorff distance,” in 6th Int. Conf. Soft
Comput. and Pattern Recognit. (SoCPaR), pp. 284–289 (2014).

Khader Mohammad is currently working as an assistance professor
in the Engineering and Technology collage at Birzeit University, where
he teaches graduate and undergraduate level courses in hardware
design, computer vision, system-on-chip design and technical leader-
ship. His current interests include research on the broad areas of soc-
chip design and verification, VLSI design, image processing, com-
puter, multimedia, mobile imaging, image forensics, and methodolo-
gies to improve design and verification productivity in system design.

Aziz Qaroush received his bachelor’s and master’s degrees in com-
puter engineering from Jordan University of Science and Technology,
Irbid, Jordan, in 2003 and 2006, respectively. Currently, he is a lec-
turer with the Department of Electrical and Computer Engineering,
Birzeit University, Birzeit, Palestine. His research interests include

Journal of Electronic Imaging 043030-14 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.14257/ijsip.2015.8.2.37
https://doi.org/10.14257/ijsip.2015.8.2.37
https://doi.org/10.1109/JSEN.2016.2630124
https://doi.org/10.1109/TPAMI.2006.102
https://doi.org/10.1117/12.2003731
https://doi.org/10.1109/INMIC.2014.7097347
https://doi.org/10.1016/S1319-1578(00)80004-X
https://doi.org/10.1007/s10032-012-0188-6
https://doi.org/10.1007/s10032-012-0188-6
https://doi.org/10.1016/S0031-3203(99)00227-7
https://doi.org/10.5281/zenodo.1333879
https://doi.org/10.1145/2222444.2222449
https://doi.org/10.5120/10679-5561
https://doi.org/10.1109/ICECS.2003.1301760
https://doi.org/10.1109/ICECS.2003.1301760
https://doi.org/10.1016/j.patrec.2004.06.015
https://doi.org/10.1109/IV.2005.17
https://doi.org/10.3844/jcssp.2007.549.555
https://doi.org/10.1109/ICASSP.2005.1415515
https://doi.org/10.1109/ICASSP.2005.1415515
https://doi.org/10.1109/IWFHR.2002.1030952
https://doi.org/10.1109/IWFHR.2002.1030952
https://doi.org/10.1109/DICTA.2005.3
https://doi.org/10.1109/DICTA.2005.3
https://doi.org/10.1109/ICDSP.1997.628443
https://doi.org/10.1109/ICDSP.1997.628443
https://doi.org/10.1109/ICDAR.1995.602040
https://doi.org/10.1109/ICDAR.1995.602040
https://doi.org/10.1109/82.661669
https://doi.org/10.1109/ICDAR.1997.620580
https://doi.org/10.1109/ICDAR.1995.599012
https://doi.org/10.1109/ICDAR.1995.599012
https://doi.org/10.1016/S0262-8856(96)01119-5
https://doi.org/10.4028/www.scientific.net/AMM.333-335.974
https://doi.org/10.1109/3477.650052
https://doi.org/10.1109/3477.650052
https://doi.org/10.1109/COMNETSAT.2015.7434299
https://doi.org/10.1109/COMNETSAT.2015.7434299
https://doi.org/10.1007/978-3-319-46182-3
https://doi.org/10.1007/978-3-319-46182-3
https://doi.org/10.1109/SIET.2017.8304170
https://doi.org/10.1109/SIET.2017.8304170
https://doi.org/10.1016/j.jksuci.2018.07.003
https://doi.org/10.1186/s40064-016-3442-4
https://doi.org/10.3390/jimaging4010006
https://doi.org/10.1186/s13640-017-0208-z
https://doi.org/10.1109/ASAR.2017.8067772
https://doi.org/10.1109/ASAR.2017.8067772
https://doi.org/10.1016/j.patcog.2016.10.016
https://www.mathworks.com/help/matlab/ref/contourf.html
https://www.mathworks.com/help/matlab/ref/contourf.html
https://www.mathworks.com/help/matlab/ref/contourf.html
https://www.mathworks.com/help/matlab/ref/contourf.html
https://www.mathworks.com/help/matlab/ref/contourf.html
https://doi.org/10.1117/12.2083587
https://doi.org/10.1109/ICDAR.2009.155
http://sites.birzeit.edu/bzuocr/data-sets
http://sites.birzeit.edu/bzuocr/data-sets
http://sites.birzeit.edu/bzuocr/data-sets
http://sites.birzeit.edu/bzuocr/data-sets
https://doi.org/10.1109/SOCPAR.2014.7008020
https://doi.org/10.1109/SOCPAR.2014.7008020

machine learning, image processing and computer vision. He pub-
lished many articles in these areas.

Muna Ayesh graduated with a master’s degree from Birzeit
University.

Mahdi Washha received his bachelor’s degree in computer systems
engineering, with high distinction, from University of Birzeit in 2012.
He completed a master’s degree in artificial intelligence and robotics
in the Department of Information Engineering, Computer Science, and
Statistics at the University of Roma La Sapienza. Currently, he com-
pleted a PhD degree from IRIT.

Ahmad Alsadeh is an assistant professor in the Electrical and
Computer Engineering Department of Birzeit University. He was

awarded the degree of Doctor of Engineering in network security from
the Hasso Plattner Institute at the University of Potsdam in Germany
in October 2013. Prior to that, he received his bachelor’s degree in
electrical engineering with emphasis on telecommunication in
2002, and his master’s degree in scientific computing from Birzeit
University in 2007.

Sos Agaian is a distinguished professor of computer science at
College of Staten Island and the Graduate Center, CUNY. Prior to
joining the City University of New York, he was a Peter T. Flawn
Professor of Electrical and Computer Engineering with the
University of Texas at San Antonio.

Journal of Electronic Imaging 043030-15 Jul∕Aug 2019 • Vol. 28(4)

Mohammad et al.: Contour-based character segmentation for printed Arabic text. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 06 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

