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Abstract.
The formation of light and intermediate clusters in low and intermediate
density nuclear matter is investigated within the modified nuclear statistical
equilibrium model. We include clusters up to mass number A=61 and
densities up to 0.1 nucleons fm−3. The original nuclear statistical equilibrium
model is modified by using density-dependent cluster binding energies.
Whereas the light clusters are dominant at very low densities, it is found that
the intermediate clusters become dominant at higher densities. As the temp-
erature increases the dominance of the lighter clusters grows at the expense of
the heavier clusters. We also evaluate the equation of state of nuclear matter
within this model and determine that the critical temperature is 12.5 MeV, well
below the values predicted by other equations of state. Finally we calculate the
fragment multiplicity distribution within this model and find that its derivative

M

T

d

d
has a maximum at a temperature (the liquid–gas transition temperature)

close to that expected by other calculations.

Keywords: nuclear matter, nuclear statistical equilibrium model, nuclear
equation of state, multiplicity derivitive

1. Introduction

The abundance of light clusters in nuclear matter at very low densities and moderate tem-
peratures has been the subject of several theoretical [1–6] and experimental [7, 8] investi-
gations. The light clusters are abundant only at very low densities because their binding
energy decreases as the density increases and they finally dissolve above a certain critical
density (the Mott density) [9] where their binding energy goes to zero. With the dissolution of
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the light clusters, the intermediate mass fragments become dominant at the higher densities
because of their higher Mott densities until nuclear matter becomes homogeneous again as it
approaches saturation density. This dominance of the intermediate mass fragments at the
higher densities has been observed experimentally [10] and has been predicted theoretically in
the statistical multifragmentation models [11–14]. The aim of the present work is to inves-
tigate the abundance of intermediate mass clusters in low density nuclear matter (hereafter
referred to as the vapour) within a modified version of the nuclear statistical equilibrium
model (NSE).

In an earlier work [6] the formation of light clusters ( )A 4 at very low nuclear matter
densities was investigated within a modified version of the NSE model. The original NSE
model [15–17] assumes that each cluster is in thermal and chemical equilibrium with the
surrounding free nucleons comprising the surrounding vapour. It also assumes that a cluster
has the same binding energy as the equivalent isolated nucleus with the same charge and mass
number. This last assumption is valid only at extremely low densities of the surrounding
vapour (less than 10–2 nucleons fm−3) and so the model breaks down at higher densities.

In the modified NSE model employed here the cluster’s binding energy is allowed to
vary with the density of the surrounding medium in order to reflect the effect of Pauli
blocking. This effect arises from the indistinguishability between the nucleons inside the
clusters and the free nucleons in the surrounding vapour. In an earlier work [6] the formation
of light clusters was found to have a noticeable effect on the equation of state of nuclear
matter in the vapour state. Similar effects on the equation of state of the vapour were obtained
even when only alpha clusters are included [18]. Clustering was also found to reduce the
critical temperature of infinite nuclear matter by about 2.4 MeV [1]. The change in the
equation of state of nuclear matter was also found [6] to cause a lowering of the limiting
temperature which is the highest temperature at which a hot nucleus can survive while in
equilibrium with the surrounding vapour. Above the limiting temperature the hot nucleus is
unstable because of the Coulomb force [19, 20].

In the following sections we will describe the NSE model and its modification, and then
use it to calculate the abundance of the various clusters up to A=61 in nuclear matter at low
and intermediate densities up to 0.1 nucleons fm−3. We will then evaluate the resulting
nuclear equation of state and determine the critical temperature for the liquid–gas phase
transition. We will also evaluate the cluster multiplicity to be expected in a system with a
finite number of nucleons using the cluster abundances obtained in the present model.

2. The NSE model and its modification

The NSE model assumes that the free nucleons interact only by forming clusters with which
they are in thermal and chemical equilibrium. This is achieved by relating the chemical
potential mC of cluster type C (containing Z protons and N neutrons) to the chemical potentials
of the free nucleons by the relation:

m m m m= + = ( )Z N A , 1C P n id

where the last equality follows from treating the protons (p) and neutrons (n) equally in
symmetric nuclear matter with the Coulomb force switched off and mid is the chemical
potential of the free nucleons which are treated as an ideal Fermi gas at a temperature T (in
MeV). The expression for mid was derived in [21] and used in [6]:
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where rfree is the density of the free nucleons, g=4 is the nucleon’s spin-isospin degeneracy
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is the nucleon’s thermal wavelength and the bn coefficients are listed

in [6] up to n=6. The summation in equation (2) converges rapidly and no n>6
coefficients are needed for the densities considered here.

The partial density of each type of cluster is then determined by the equation:

òr
p

e m= - -  -

( )
{ [( ) ] } ( )/

g
k B T

2
d exp 1 , 3C

C
C C C3

3 0 1

where the (+) and the (−) signs are used for the fermionic and bosonic clusters, respectively,
and where g ,C eC

0 and BC are, respectively, the spin degeneracy factor, kinetic energy and
binding energy of cluster C.

The NSE model however ignores the reduction in the binding energy of the clusters as
the density of the surrounding medium increases which ultimately leads to the dissolution of
the clusters at the Mott density. The decrease in the binding energy is due to the Pauli
blocking effect mentioned above and its linear dependence on the density follows from the
Hartree–Fock approximation [1, 3]. It must be noted that an empirical quadratic term is added
in [3] to the Hartree–Fock term but the deviation from linearity is small.

To remedy this deficiency of the model we use in equation (3) cluster binding energies
that decrease linearly with total density of the surrounding medium and vanish at each
cluster’s Mott density:

r
r
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In equation (4) BC is the binding energy of cluster C of mass number AC when immersed in
nuclear matter of total density ρ, BC

0 is the binding energy of the corresponding isolated
nucleus of mass number A ,C r ( )A T,M C is the Mott density of cluster C at temperature T. The
Mott density is related to the slope parameter α in equation (4) by the equation:

r a=( ) ( )/A T B, . 5M C C
0

The total density ρ of nuclear matter is the sum of the densities of the free nucleons and the
partial densities of the various clusters and is given by:

år r r= + ( )A . 6
C

C Cfree

Unfortunately however there is very little available information about the Mott densities of
clusters with A>4 (see e.g. [22]). The situation is somewhat better for the case of the light
clusters A 4 where there is some theoretical [3] and experimental [23] information about
the values of the Mott densities. In the present work we adopt the values of the Mott densities
for the light clusters A=2, 3 and 4 of Typel et al [3] which were obtained with the use of
relativistic mean field theory for several temperatures in the range 0–20MeV. These Mott
densities, for a given cluster, are first interpolated as a function of temperature by a simple
quadratic polynomial in T and then, for each desired temperature, they are fitted as a function
of mass number by a quadratic polynomial in A of the form:
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r = + +( ) ( ) ( ) ( ) ( )A T p T A q T A r T, 7M
2

and then extrapolated to A>4. The values of the coefficients in equation (7) obtained in this
way are summarized in table 1. Since the present calculations are limited to densities up to
0.1 fm−3, it is seen from the values listed in table 1 that for A larger than about 10 the Mott
densities are larger than 0.1 fm−3 and so the results should not be very sensitive to them.

The motivation for using the quadratic dependence on the mass number A in equation (7)
can be seen by examining equation (5). If we ignore for the moment the A dependence of the
slope parameter α then the Mott density should have the same A dependence as the binding
energy BC

0 of the corresponding isolated nucleus. It is well known that the binding energy per
particle of light nuclei up to about mass 10 increases on the average linearly with the mass
number so that BC

0 is approximately a quadratic function in A. Of course the slope parameter
also increases with A as can be seen from examining the results of Typel et al [3] but this A
dependence can be absorbed by renormalizing the coefficients of the quadratic polynomial.
Along the same line higher order terms may be needed for heavier nuclei but since we have
only the Mott densities for A=2, 3 and 4 no higher order terms can be determined from the
currently available information.

Since the cluster binding energies depend on the total density and hence on the cluster
partial densities and the calculation of the cluster partial densities depends on the binding
energies, equations (3), (4) and (6) are solved iteratively until self-consistency is achieved and
the abundance of the various clusters is determined to an accuracy of 2% at each given
temperature and for each total density.

One problem that arises in the NSE model is the overestimation of the deuteron abun-
dance. This problem has been studied in [3, 24] and is due to the strength of the two-body
correlations and the deuteron’s small binding energy so that deuteron-like clusters are easily
formed. We follow Röpke’s suggestion [24] to avoid this overestimation by limiting the
integration in equation (3) for the case of the deuteron to momenta k>kd

Mott where the Mott
momentum kd

Mott is defined in [24].

3. The cluster abundances

The calculations for the cluster abundances in symmetric nuclear matter as a function of
density and temperature were carried out by including 128 different clusters with
 A2 61. The upper mass limit was chosen to ensure that the most stable nuclei in the iron

region are included in the calculation. As it turned out however, the heaviest clusters have a
significant contribution only at the lowest temperatures as will be seen below. For each mass
number A the most stable isolated isobar was chosen as well as any other isobar whose

Table 1. Values of the quadratic polynomial coefficients (in fm−3) for the Mott den-
sities r ( )A T,M at different temperatures T (in MeV).

T p(T) q(T) r(T)

2 0.0012 −0.0049 0.0062
4 0.001 45 −0.0061 0.0085
6 0.0016 −0.006 65 0.0098
8 0.001 75 −0.007 25 0.0113
10 0.0019 −0.007 75 0.0126
12 0.0021 −0.0086 0.0145
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binding energy per nucleon differed from that for the most stable isobar by less than 0.1MeV.
According to these criteria 39 nuclides were chosen with  A51 61 and 32 different
nuclides were chosen with  A41 50.

The results for symmetric nuclear matter at T=2MeV are shown in figure 1 where the
clusters are divided by size into six groups. The abundance of any cluster type (of mass
number A and charge number Z) at a particular density is defined as the fraction of nucleons at
that density that are bound in clusters of that type. The sum of all the cluster abundances when
added to the abundance of the free nucleons must be 1 as expected from equation (5). At
extremely low densities (less than 0.001 nucleons fm−3) we see that the lightest clusters
 A2 10 are dominant but their abundance drops rapidly and becomes negligibly small

for higher densities. This is mainly due to their extremely low Mott densities at this temp-
erature. The heavier clusters start to become more abundant at increasingly higher densities
with the clusters  A31 40 being dominant for 0.003 fm−3<ρ<0.01 fm−3 and with the
still heavier clusters A>40 dominating for higher densities. For the highest density range
0.06 fm−3<ρ<0.1 fm−3 the abundance of the group of heaviest clusters  A51 61
exceeds 80%. However since, as mentioned above, this group contains 39 different cluster
types the contribution of each cluster type is about 2% only. The dominance of the heavy
fragments at T=2MeV can be easily understood if we think of these ‘relatively cold’ nuclei
as liquid drops remaining intact and in equilibrium with a very dilute vapour of nucleons and
light clusters.

At T=2MeV the lightest clusters  A2 10 are mostly α particles whereas at higher
temperatures the lightest clusters are mostly deuterons. This can be seen by examining
figure 2 which gives the abundance of deuterons and alphas at T=2, 3 and 4MeV. At
T=2MeV and low densities ρ<0.001 fm−3 the alpha particles are dominant with a small
presence of deuterons. This dominance of the alphas over the deuterons at T=2MeV is also
predicted in [3]. The dominance of the alpha particles at this low temperature can be attributed
to their high binding energy. At T=2MeV the nucleons bound in alphas and deuterons
account for about 90% of nuclear matter at low densities while the free nucleons and all the

Figure 1. Cluster abundances at T=2 MeV as a function of the total density.
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other clusters in the range A 10 have a combined total contribution of only about 10%. It
must be noted that above ρ=0.001 fm−3 the total contribution of the whole group of lightest
clusters  A2 10 is negligible anyway.

At T=3MeV the deuterons and alphas are present with almost equal contributions,
except at the lowest densities where the number of nucleons bound in deuteron clusters is
twice to three times the number of those bound in alpha clusters as can be seen from the
middle graph in figure 2. At the higher temperature T=4MeV only deuterons have a
significant contribution with the alphas having a much smaller contribution. The dominance
of the deuterons for T 4 MeV at low densities can be attributed to the strength of the two-
body correlations whereas at higher densities many-body correlations play an increasingly
more important role.

At the higher temperature T=4MeV the cluster abundances in symmetric nuclear
matter undergo a noticeable change as compared with those at T=2MeV as can be seen in
figure 3. Due to their higher Mott densities at this temperature, the lightest clusters (now
mostly deuterons as noted above) dominate up to 0.01 fm−3 and survive to about twice that
density. For higher densities the next heavier group  A11 20 dominates up to 0.025
nucleons fm−3, then the clusters in the range  A21 30 dominate up to a total density of
0.035 fm-3 and so on. The most dramatic change from the lower temperature is that the
abundance of the heaviest set of clusters  A51 61 no longer dominates at any density
and actually their contribution does not exceed 38% at the highest density considered. This
can be understood within the liquid–gas phase transition model with the hot heavy clusters
losing mass by evaporation and fragmentation and their slightly smaller remnants coexisting
with the surrounding vapor of nucleons and light clusters.

Figure 4 shows the various cluster abundances for symmetric nuclear matter at
T=6MeV. The lightest clusters now dominate up to about 0.025 fm−3 while, in contrast, the
abundance of the heaviest clusters  A51 61 becomes negligibly small for all densities at
this temperature as well as at higher temperatures as will be seen in the following figures.
Now the intermediate mass fragments  A11 40 dominate the scene at the higher den-
sities ρ>0.025 nucleons fm−3. This can be understood by noting that at this relatively high
temperature the heaviest clusters are not stable and undergo multifragmentation. Thus at
T=6MeV the intermediate mass fragments dominate the scene especially at the higher

Figure 2.Deuteron and alpha cluster abundances in symmetric nuclear matter at T=2,
3 and 4 MeV as a function of the total density.
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densities. This dominance of the intermediate mass fragments at intermediate densities has
been observed experimentally [10] and has been predicted theoretically in the statistical
multifragmentation models [11–14]. The temperature T=6MeV is close to the limiting
temperature predicted for heavy nuclei [6, 19, 20]. The limiting temperature is the highest
temperature at which a hot heavy nucleus can survive while in equilibrium with the sur-
rounding vapour.

The same trends continue as we go to higher temperatures with the heavier fragments
becoming less and less abundant as the temperature is increased as can be seen from figures 5,

Figure 3. Cluster abundances at T=4 MeV as a function of the total density.

Figure 4. Cluster abundances at T=6 MeV as a function of the total density.
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6 and 7 for temperatures T=8, 10 and 12MeV, respectively. Within the liquid–gas phase
transition picture increasing the temperature means that the nuclear system is getting closer to
the critical temperature (which is found to be 12.5 MeV as described in the following section).
Above the critical temperature only a single gaseous phase exists and the large liquid drops
disappear. Therefore as the system gets closer to the critical temperature the average mass of
the fragments becomes smaller and we have complete vapourization above the critical
temperature. It can be seen that at T=8MeV the abundance of clusters with A>40 is

Figure 5. Cluster abundances at T=8 MeV as a function of the total density.

Figure 6. Cluster abundances at T=10 MeV as a function of the total density.
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completely negligible while at T=10MeV the abundance of clusters with A>30 is neg-
ligibly small. Similarly at T=12MeV even clusters with A>20 have a vanishingly small
presence. Note that in figures 6 and 7 we have used smaller cluster size groups (groups of 5
rather than 10 cluster sizes) since the abundance of clusters with A>30 is negligibly small.

4. The equation of state of nuclear matter and the critical temperature

In the present section we evaluate the equation of state of nuclear matter within the modified
NSE model and then calculate the critical temperature of infinite nuclear matter. This
approach has the advantage that it does not depend on any particular effective nuclear
interaction as the nucleons interact only through the formation of clusters. It also does not
make the assumption of a uniform density but includes clusters (or fragments) of various sizes
and would therefore be relevant in the mechanically unstable region lying between the low
density gas or vapour phase and the high-density liquid phase. This unphysical mechanical
instability results from the assumption of a uniform density which leads to unphysical
oscillations in the pressure isotherms in the gas–liquid transition region. The critical temp-
erature is the lowest temperature at which the unphysical oscillations in the isotherms dis-
appear and the critical point is determined by the merging of the maximum and minimum of

the isotherms and the simultaneous vanishing of
r

¶
¶

P
and

r
¶
¶

P
.

2

2
Abandoning the concept of a

uniform density is particularly relevant near the critical point where the fluid fluctuates wildly
and the concept of a uniform density definitely breaks down.

In the present model the pressure of nuclear matter is the sum of the partial pressures of
the free nucleons and the various clusters:

å= + ( )P P P , 8
C

Cfree

Figure 7. Cluster abundances at T=12 MeV as a function of the total density.
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where the partial pressure of the free nucleons is given by that of an ideal Fermi gas of
nucleons
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Equation (9) was derived [6, 21] along the same lines as equation (2) for the chemical
potential of an ideal Fermi gas, and the bn coefficients are the same as those in equation (2).
The partial pressure of a fermionic cluster is also calculated with an equation similar to
equation (9) but at a cluster density rC given by equation (3) and with the degeneracy factor
= +g s2 1 where s is the ground state spin of the corresponding isolated nucleus. For

bosonic clusters the partial pressure is calculated from the pressure of an ideal Bose gas which
is given by an equation similar to equation (9) except that the bn coefficients are replaced by
the an coefficients where

= -( )a b1 .n
n

n

The total pressure is then calculated by summing all the partial pressures as in equation (8)
and the total density is calculated from the partial densities as in equation (6). The resulting
total pressure versus total density isotherms are plotted in figure 8 for a few temperatures
below and above the critical temperature. It is seen from figure 8 that the critical point
resulting from the present model occurs at Tc=12.2 MeV, ρc=0.057 nucleons fm−3 and
Pc=0.22MeV.fm−3.

It is noted that the critical temperature obtained in the current model is much less than the
values obtained from the usual equations of state such as those employing a nucleon–nucleon
interaction of the Skyrme type. These equations lead to critical temperatures that range from
about 17.3MeV for soft equations of state to 22.9 MeV for hard equations of state [6, 19, 20].
This is also in agreement with previous predictions that clustering leads to a reduction in the
critical temperature [1]. It is also seen from figure 8 that the unphysical oscillations in the

Figure 8. Pressure isotherms for various temperatures below and above the critical
temperature.
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isotherms below the critical temperature are much less than the oscillations that occur in the
usual equations of state which assume a uniform density and lead to van der Waal type
oscillations in the isotherms. This is because the present model assumes the existence of
clusters of various sizes and does not invoke the unphysical concept of a uniform density.

5. Cluster multiplicity and its derivatives

Recent investigations [25–27] have indicated that the occurrence of a maximum in the
multiplicity derivative M

T

d

d
in heavy ion collisions is an indication of the first order liquid–gas

phase transition. In [25, 26] the multiplicity derivative was evaluated in the canonical ther-
modynamic model and was found to have a maximum near T=5MeV. The multiplicity
derivative was also evaluated in the lattice gas model at a density of about 1/6 nuclear
saturation density and was found to have a maximum near T=4MeV. In [27] the multi-
plicity derivative was also evaluated at a density of about 1/6 nuclear saturation density with
the use of the statistical multifragmentation model [11–14] and the maximum was found to
occur at T=5.3 MeV. It would be interesting to see if the present model can produce a
similar result.

In the present model we evaluate the multiplicity M for a system of 300 nucleons. For a
given density and a given temperature, the cluster abundances determined in section 3 are
used to calculate the multiplicity (approximated to the nearest integer) for each cluster type
and then the total multiplicity for the desired density is plotted as a function of temperature.
The derivative M

T

d

d
is then evaluated and the results are shown in figure 9 for four different

values of the total density.
At the lowest density r = -0.01 nucleons fm 3 a single maximum appears at a temper-

ature of about 6 MeV which is roughly in agreement with the earlier predictions [25–27].
However at higher densities this peak moves to lower temperatures and a second peak appears
at higher temperatures. This second peak occurs at about T=8MeV for
r = -0.02 nucleons fm 3 then shifts to about T=10MeV for r = -0.03 nucleons fm 3 and
finally shifts to about T=12MeV at the highest density considered r = -0.04 nucleons fm .3

Our interpretation is that the first peak is related to the occurrence of the liquid–gas phase
transition at the densities considered while the second peak is a remnant of the second-order
phase transition at the critical point, The second peak is not relevant to finite systems which
cannot survive above the limiting temperature [19, 20] as mentioned above in the introduc-
tion. It must be recalled that the present work assumes that the Coulomb force is turned off so
that the second peak is a reflection of a phase transition in a hypothetical infinite system. It is
therefore the first peak that is relevant for finite systems and it is interesting that it appears in
the expected density and temperature ranges. This is because the liquid–gas phase transition is
essentially determined by the nuclear force and so can survive in a finite system, while the
limiting temperature is determined by the Coulomb force [19, 20].

In conclusion, we have calculated cluster abundances in low and intermediate density
nuclear matter at temperatures in the range 2–12MeV using a modified version of the NSE
model. At low temperatures light clusters (mainly alphas at T=2MeV and deuterons at
T�4MeV) dominate at low densities while the heavier clusters dominate at increasingly
higher densities. As the temperature increases the abundance of the light clusters increases
and extends to higher densities at the expense of the heavier clusters. Whereas it is found at
T=2MeV that 80% of the bound nucleons at the highest density considered come from the
group with the heaviest clusters  A51 61 the corresponding abundance drops to 35% at
T=4MeV, then drops further to 5% at T=6MeV and finally becomes vanishingly small at
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T=8MeV. At T=10MeV only clusters with A 30 survive while at T=12MeV only
clusters with A 20 are present. These results are in agreement with the coexistence of the
liquid and gas phases at low temperatures and the gradual disappearance of the liquid phase (
i.e. the heavy clusters) as the temperature is increased until we have complete vaporization
above the critical temperature.

Using the same model, we have also evaluated the equation of state of nuclear matter and
determined the critical temperature which is found to be significantly lower than that pre-
dicted by the usual equations of state obtained by ignoring the formation of clusters and
assuming a uniform distribution of nucleons interacting by a two-body effective force like the
Skyrme force. These latter equations together with the implied unphysical assumption of a
uniform density always lead to van der Waals-like oscillations in the resulting isotherms with
an unphysical mechanically unstable region between the gas and liquid phases. In addition to
not depending on the particulars of any effective interaction, our equation of state leads to
much smaller oscillations in the isotherms. Our equation of state is therefore very close to the
true equation of state where the pressure is a steadily increasing function of the density (when
the pressure on a system increases its density should increase).

Finally we have evaluated the cluster multiplicity at various densities and found that its
derivative with respect to temperature has a maximum at the expected temperatures
corresponding to the liquid–gas phase transition at these densities, in agreement with the
results obtained from other models.

Figure 9. The multiplicity M

T

d
d

derivative at various densities.
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