
Chapter 19
A House Appliances-Level Co-simulation
Framework for Smart Grid Applications

Abdalkarim Awad, Peter Bazan, and Reinhard German

19.1 Introduction

Renewable energy sources cover a large part of the worldwide energy supply. In
2014 the share was approximately 19.1% [23]. Because of the continued expansion
of renewable energy sources, the energy system is moving away from its traditional
centralized structure with large producers towards a structure with many distributed
generators. While the share of renewable energy in electricity production in 2005
excluding hydropower was 2.6% [24], it was already 4% at the end of 2014.

Due to the expansion of wind energy and photovoltaics (PV), fluctuating energy
sources must be integrated increasingly into the system. In 2004, the global installed
capacity of wind power was 48 GW, whereas with 370 GW it increased by almost
eight times in the year 2014. At the same time, the installed PV capacity increased
almost 48-fold from 3.7 GWp to 177 GWp [23]. Thus, the classic roles of producers
and consumers in the energy system are supplemented by consumers who generate
energy, the so-called prosumers. The integration of variable renewables increases
the need for centralized and decentralized energy storage. Prosumers equipped with
storage systems are also referred to as prostumers.

The increasing use of electric vehicles (EV) leads to a further increase in
consumers and storage systems in the grid. Such mobile storage systems can be
charged at home and also at charging stations, which intensifies the complexity of
the entire system. In 2015 there were 1.26 million EVs worldwide, compared to
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Fig. 19.1 Power consumption of a refrigerator

several hundred EVs in the year 2005 [16]. Therefore, the integration of millions
of EVs will be an additional problem in the future. The increasing integration
of information and communication technology into the system of consumers,
prosumers, and prostumers enables the coordination of such systems and ensuring
of grid stability.

Smart grid enables new applications for households such as Demand Response
(DR) and Advanced Metering Infrastructure (AMI). Simulation models at appliance
level can help understanding the benefits and risks of employing smart grid
applications. Figure 19.1 shows the power consumption of a refrigerator. As can
be seen, in the morning as well as in the afternoon, there are small increases in the
power consumption (small spikes). It is the bulb in the fridge that is causing these
spikes which is being captured by these readings. Such readings can be exploited to
extract information about the behavior of the household. In [3, 4, 28] we used a co-
simulation approach to study CVR and Volt/VAR control. In [5] we presented a short
tutorial on using SGsim in electricity distributed networks. In [2] we have explored
different methods to preserve privacy. In this work, we present an appliance-level
co-simulation framework that enables exploring house-level smart grid applications.

The rest of the paper is organized as follows. At the beginning we present
some related works. Then in Sect. 19.3 we introduce SGsim-Home. In Sect. 19.4
we present a case study, and in Sect. 19.4.2, we evaluate the proposed approaches.
Finally, Sect. 19.5 concludes the paper.

19.2 Related Work

The use of simulation tools for the evaluation of new technologies and applications
is a widely adopted method, and therefore, there is a wide range of tools. Some
of these simulation tools have been combined into simulation environments which
allow the co-simulation of various domains of a complex system. An overview of the
requested requirements of such tools is given in [27]. There, the integration of of-
the-shelf simulators for communication systems and electrical power systems into a
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co-simulation simulation framework is suggested, together with the ability to model
control strategies for smart grid applications.

An example of a co-simulation framework is the modular platform mosaik for the
evaluation of agent-based smart grid controls [26]. It combines different simulators
and simulations and controls the data-flow between them. For this purpose, it defines
its own modeling and specification language. It enables the simulation of large-scale
smart grid scenarios but lacks the integration of a communication simulator. This
problem is addressed with the presentation of a preliminary system architecture
of integrating OMNeT++ [10]. Unlike SGsim-Home, this integration is not yet
implemented.

Because communication is a key part of smart grid applications, several co-
simulation tools are using the discrete-event simulator OMNeT++ [31] for mod-
eling and simulation of communication systems. An example is the co-simulation
approach of power systems, communication, and controls presented in [29]. This
framework combines the commercial power system analysis software PowerFactory
[12] with OMNeT++, whereas SGsim combines the electric power distribution
system simulator OpenDSS [13] with OMNeT++, both of which can be used in
a non-commercial environment without license fees. Another example is the com-
munication network and power distribution network co-simulation tool for smart
grids presented in [18]. There the discrete-event-based simulation of communication
systems framework OMNeT++ is coupled with the continuous simulation of power
systems tool OpenDSS using a Hypertext Transfer Protocol (HTTP) connection.
SGsim-Home, on the other hand, couples the two simulation tools via a more
runtime efficient Component Object Model (COM) interface. In addition to the
two co-simulation examples, the controller component of SGsim-Home allows the
connection to powerful optimizers over the internet.

The agent-based simulation engine of the co-simulation tool GridLAB-D [9],
unlike SGsim-Home, has only simple network characteristics integrated like latency,
bandwidth, buffer size, or congestion. Instead of using OpenDSS, it is coupled with
the power system simulation and optimal power flow tool MatPOWER [33].

The approach of [20] combines three simulation tools for validating flexible-
demand EV charging management. GridLAB-D controls the simulation and the
charging management of the EV, the battery is modeled with OpenModelica [14],
and the distribution grid with PowerFactory [12]. Because of GridLAB-D, the
approach can only use simple network characteristics.

All these tools cover different aspects of the smart grid by using co-simulation.
SGsim-Home integrates these aspects in one framework combining simulation tools
of the power grid and the communication with a connection to an optimizer. It
provides models for PV, Battery, EV, and home appliances like refrigerator, Air
Condition (AC), and TV.

With SGsim-Home it is possible to analyze and minimize the privacy risk
introduced by smart meters. It is shown in [17] that the detection of steady state
changes from loads with an on/off switching behavior like refrigerators can identify
the appliance. Even from smart meter data with a resolution of 30 min measured
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over 1.5 years, information about the personal circumstances of the residents can be
extracted with a high probability [7].

SGsim-Home allows the analysis of integrated privacy protection and demand
response techniques. The work in [22] presents a pre-processing approach to
enhance user privacy. The authors have used quantization, down-sampling, and
averaging to prevent successful classification of household appliance. An empirical
and analytical model to study adding noise to mask smart meter readings has been
presented in [6]. Additionally, they used correlation to evaluate the approach. Both
methods are focused only on privacy.

Another approach introducing privacy, but this time considering several smart
meters, is the homomorphic encryption of aggregated smart grid information
presented in [19]. The data aggregation is performed at all smart meters involved
in routing the data from the source meter to the collection unit.

In [30] privacy in smart metering systems has been studied from an information
theoretical perspective in the presence of renewable energy systems and storage
units. The authors describe the system as a finite state model and analyze the impact
of a renewable energy system on the privacy. They also investigate the privacy
and energy efficiency trade-off, but do not consider power-tariff dependent demand
response and optimization.

19.3 SGsim-Home

The framework SGsim-Home is based on the co-simulation framework SGsim [1, 3–
5, 28] which is based on two main simulators: OpenDSS [13] and OMNeT++
[31]. The focus of [1, 3, 5] was on transmission and distribution networks. SGsim-
Home focuses on simulating home appliances. Two attractive characteristics of
OpenDSS make it a suitable candidate for co-simulation. In addition to a stand-
alone executable program, OpenDSS provides an in-process Component Object
Model (COM) server DLL designed to be driven from an external program. The
COM interface makes integrating OpenDSS into other simulators relatively easy.
The second reason is the fact that OpenDSS is an open source simulator, and hence,
providing this framework as open source for education and research community
is possible. OMNeT++ has been selected to implement SGsim. In addition to the
basic simulation tools, several frameworks have been developed for OMNeT++. For
instance, INET framework has been developed with well-tuned data communication
components such as TCP/IP, 802.11, and Ethernet. In order to enable the use
of the framework in the field of smart grid applications, we have integrated
new components for the electricity distribution network. Figure 19.2 shows the
different components of the simulator. Through the COM interface, it is possible to
control the execution of the circuit and to change/add/remove different components.
Different approaches have been used to simulate the different devices. We have used
real data to simulate some devices such as TV and washing machines. Figure 19.4
presents a 10 s resolution power consumption of a TV [15, 25]. At each time step,
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Fig. 19.2 Structure of SGsim-Home with the connections between the different components

the Edit command is used to change the parameter of these devices. The database
provides data only for 1 h, therefore, the data will be repeated as long as the device
is on. A mathematical model has been used to model thermal devices such as AC
and refrigerator. The following set of equations represents this mathematical model
of a refrigerator, a freezer, or an AC:

T (t + 1) = εT (t) + (1 − ε)

(
To(t) − COP × Pref

A

)
(19.1)

ε = exp

(
δ

δc

)
, δc = mc

A
, A = k × G

Th

where T (t +1) is the temperature inside the room at control period t +1, ε is the
factor of inertia, δ is the duration of the control period, δc is the time constant, mc

is the total thermal mass in Wh/C, A is the overall thermal conductivity in W/C,
To(t) is the ambient temperature in C at control period t , COP is the coefficient
of performance, and Pref is the electrical power demand of the AC in W at control
period t . k is the thermal conductivity coefficient, G denotes the area of the room,
and Th denotes the thickness of the wall. If the refrigerator door is open, the bulb in
the fridge will cause an additional power consumption Pbulb

P Total
Ref = Pref + Pbulb (19.2)
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OpenDSS provides several models to represent loads. We have used the ZIP-
based load model model 8 to simulate the different loads. This model is very useful
when studying smart grid applications such as Conservation Voltage Reduction
(CVR). The loads are modeled as ZIP loads with the parameters as in [8, 11].
The ZIP model represents the variation (with voltage) of a load as a composition
of the three types of constant loads Z, I, and P which stand for constant impedance,
constant current, and constant power loads, respectively. Equations (19.3) and (19.4)
give the current active and reactive loads as a function of current voltage (V). The
constants P0 and Q0 are the design active and reactive power, respectively. The
parameter v0 is the design voltage.

PLi = P0i

[
ZP

(
vi

v0

)2

+ IP

(
vi

v0

)
+ PP

]
(19.3)

QLi = Q0i

[
Zq

(
vi

v0

)2

+ Iq

(
vi

v0

)
+ Pq

]
(19.4)

All devices are equipped with communication capability so that it is possible to
control these devices. The INET framework provides the necessary components to
simulate several kinds of communication networks such as WiFi and Ethernet.

Figure 19.3 shows a screenshot of the simulator. The devices are connected
through a wireless LAN. The Smart Meter (SM) sends the energy usage at a specific
frequency (e.g., 1 reading/min). The Home Energy Management System (HEMS)

Fig. 19.3 Screenshot of the simulator
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Fig. 19.4 TV active (a) and reactive power consumption (b)

coordinates the operation of the different devices. For instance, it can find the
optimal operation strategy of the devices in order to minimize the electricity costs.
The HEMS measures the energy usage at a higher frequency than the SM (e.g., at
1 Hz). The Oload1 represents the basic load and it is non-elastic. V is the voltage
value, P represents the power consumption, E is the energy usage, Ei denotes
to the last reading from the smart meter. The air condition is considered as an
elastic load and the temperature should be maintained within a specific range. The
clothes washing machine (CW) is considered also as an elastic load. It consists of
several phases which should be run sequentially without interruption. It is possible
to control the operation of the battery (charging and discharging periods) by the
HEMS (Fig. 19.4).

19.4 Case Study: Integrated Privacy Protection and Demand
Response

In this section, we present a case study on integrating privacy protection inside
demand response. The HEMS uses the day-ahead price, storage, and load elasticity
to minimize the costs. At the same time, it tries to hide load characteristics through
a coordinated operation of a battery and elastic loads.
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19.4.1 Smooth Consumption

In this approach, we exploit load elasticity and storage device (e.g., battery)
to maximize the profit and at the same time to hide household information.
The controller tries to maintain a constant power consumption level throughout
the whole day through coordination between the different household appliances.
Additionally, the controller tries to prevent power consumption spikes.

The main idea is to use the day-ahead price, the electricity demand, and the
battery to find the optimal strategy to be followed to minimize the electricity costs
and minimize privacy risks. The controller uses the day-ahead price and demand
forecast to solve an optimization problem to find the optimal amount of energy
to be sold, charged/discharged in/from the energy storage unit, and the amount of
electricity to be imported from the main grid. Additionally, it finds the optimal time
slots to run elastic loads such as washing machines. Furthermore, it controls the
thermal devices (e.g., AC) to hide load characteristics. The controller solves a linear
optimization problem for 1 day (i.e., T = 1440 min with a resolution of δ = 1 min).
Then, according to the results, it changes the current operating parameters of the
system. We have formulated the optimization problem using the general algebraic
modeling system (GAMS) and then solving the problem using the solver CPLEX.

The objective of the controller is to minimize the costs C(t) and the privacy risks
PR(t), therefore, the objective function can be written as below:

min

{
T∑

t=1

λ1C(t) + λ2PR(t)

}
(19.5)

λ1 and λ2 are constants that emphasize the importance of costs or privacy,
respectively. The costs come from importing energy from the grid.

C(t) =EP(t)δPb(t) (19.6)

EP(t) is the electricity price, Pb(t) is the power imported from the grid.
The above maximization problem is subject to system constraints. We considered

the electrical balance constraints which can be written as:

Pd(t) + Pb(t) − Pl(t) − Pe(t) − Pc(t) = 0 (19.7)

where Pd denotes power discharged from the battery, Pl represents the base load
(non-elastic), Pc is the power charged in the battery, and Pe(t) denotes the amount
of allocated power in this time slot from the elastic energy.

The energy balance in the battery can be modeled as:

E(t + 1) = (1 − α)E(t) + δηcPc(t) − δ
Pd(t)

ηd

(19.8)
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Emax ≥ E(t) (19.9)

E is the state of charge of the battery, α represents the self-discharge rate from
the battery, and ηc and ηd are the charge and discharge efficiencies of the battery,
respectively. Emax is the capacity of the battery. We have also considered the
following limitations in the system:

P max
d ≥ Pd(t), P max

c ≥ Pc(t), P max
e ≥ Pe(t) (19.10)

P max
c , P max

d ,P max
e denote the maximum amount of power allowed to charge, to

discharge, and to allocate an extra load at each time step, respectively.
The next set of equations guarantees that the battery is either in charge or

discharge state.

P max
d x(t) ≥ Pd(t) (19.11)

P max
c (1 − x(t)) ≥ Pc(t) (19.12)

P max
e ≥ Pe(t) (19.13)

x(t) ∈ {0, 1} (19.14)

The elastic load EL should be served in a specific period, which can be written
as:

T2∑
t=T1

δPe(t) = EL (19.15)

where [T1, T2] is the period where the elastic load should be run. If the load should
be carried out continuously and it consists of several phases (e.g., washing machine),
the following constraints should be added:

Pe(t) = w(t)Pphases(k) ∀k (19.16)

y(t) + w(t) ≥ w(t − 1) (19.17)

y(t) ≥ y(t − 1) (19.18)

w(t) ∈ {0, 1} (19.19)

Equation (19.16) models whether an energy phase (k) is being processed during
time slot t . Equation (19.17) ensures that the process will not be interrupted after it
starts. Equation (19.18) ensures sequential processing of the phases.

We define the following function for privacy. The first term tries to maintain
a constant consumption throughout the whole day, while the second term tries to
minimize the changes of the power consumption.
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PR(t) = |Pb(t) − PAvg| + |Pb(t) − Pb(t − 1)| (19.20)

Additionally, the following constraint prevents sudden changes in the power
consumption.

|Pb(t) − Pb(t − 1)| ≤ �P (19.21)

19.4.2 Evaluation

In order to explore the capability of the approach to preserve the privacy, we have
used the constant consumption approach to hide an EV charging signal. Hiding
such a signal is more challenging than hiding refrigerator cooling cycle or turning
on a bulb. We evaluated the proposed methods by examining the capability of the
algorithm proposed in [32] to disaggregate EV charging signals from aggregated
real power signals. The methods presented in [32] can effectively mitigate the
interference coming from an AC, enabling accurate EV charging detection and
energy estimation under the presence of AC power signals. It is a non-intrusive
energy disaggregation algorithm of EV charging signals. It has five steps. In the
first step, a threshold is applied to obtain a rough estimate of the EV charging
load signal. Then in the second step, it filters the AC spikes. Then it removes
the so-called residual noise. Then, in the fourth step, it classifies the type of each
filtered segment. In the last step, it performs the energy disaggregation based on the
effective width and the effective height of a segment. We have used the same data
set that has been used in [32], which came from the Pecan Street Database [21]. This
database collects raw power signals recorded from hundreds of residual houses in
Austin, Texas. Ten houses using EV were randomly chosen from the database. Each
aggregated power signal is generally a combination of about twenty power signals of
various appliances, such as EV, AC, furnace, dryer, oven, range, dishwasher, cloth-
washer, refrigerator, microwave, bedroom-lighting, and bathroom-lighting. The
ground-truth power signals of these appliances are also available in the database.
Thus, the database is very suitable to test algorithms’ performance in practice.
Table 19.1 summarizes the simulation parameters. Figure 19.5a shows the non-
elastic power consumption of the house and electricity price. The EV charging
process occurs in the afternoon. The house tries to minimize the power usage costs
through optimal allocation of an elastic load and storing energy in a battery when it
is cheap (e.g., at early morning) for future usage when the electricity is expensive
(at afternoon). We assumed that the house owns a 1 kWh battery and a 2 kW AC.
Figure 19.5b shows the power usage of the house when coordinating the usage to
maintain a constant electricity usage. The house gets the day-ahead price and calls
the optimizer. Using this price signal, the optimizer finds the optimal allocation of
the elastic loads and the battery charging and discharging period to minimize the
costs. At the same time, it tries to maintain a constant power consumption during
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Table 19.1 Parameters Parameter Value

Battery 1, 5 kWh

�P 50 W

λ1 = λ2 1

δ 1 min

T 1440 min

P max
d = P max

c = P max
e 3 kW

ηc = ηd 90%

ε 0.99

A 300 Wh/C

COP 3.5

the day. The controller can adapt the operation to react to new load signals. We
have repeated the same experiment for ten houses with EV charging signal. Only
in one case it was possible to detect the charging time. Increasing the battery size
makes it possible for the controller to further flattening of the power consumption
as can be seen in Fig. 19.5c, where we tested a 5 kWh battery. Using the available
components, it is possible to produce a misleading charging signal. As depicted in
Fig. 19.5d, the controller has produced a consumption profile that looks similar to
an EV charging signal at midday.

Based on the price signal, charging the EV in the afternoon is not the optimal
charging time. In fact, the EV charging process can be considered as an elastic load
which should be done in a specific period (e.g., before 8 AM). If we consider only
the electricity costs, i.e., λ2 = 0, the controller will select time slots in the early
morning as an optimal charging period as can be seen in Fig. 19.6.

19.5 Conclusion

In this work, we have presented a home-appliance co-simulation framework. The
simulator is able to capture the electricity as well as the ICT capabilities of
smart appliances. Different components have been implemented and simulated.
Additionally, the operation of the components can be adapted during the simulation
(e.g., the operating parameters can be changed). This way, it is possible to simulate
smart grid applications at home-appliances level. Through a case study, we have
presented the possibility to integrate privacy protection into an important smart
grid application, namely into the demand response. The results have shown the
ability to hide load information through coordination between different components.
Similarly as with SGsim, we are planning to provide this framework as open source
for the academic community.
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Fig. 19.5 Non-elastic load (a), load after smoothing with a 1 kWh battery (b), load after
smoothing with a 5 kWh battery (c), and load after smoothing and adding a misleading charging
signal (d)
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Fig. 19.6 Optimal allocation of EV charging
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