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Abstract
In this paper, we present the asymptotic behavior of the solutions for a general class
of difference equations. We introduce general theorems in order to study the stability
and periodicity of the solutions. Moreover, we use a new technique to study the
existence of periodic solutions of this general equation. By using our general results,
we can study many special cases that have not been studied previously and some
problems that were raised previously. Some numerical examples are provided to
illustrate the new results.
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1 Introduction
Amid the most recent two decades, there has been an extraordinary research of the utiliza-
tion of difference equations in the solution of numerous issues that emerge in economy,
statistics, and engineering science. Likewise, difference equations have been utilized as
approximations to ordinary and partial differential equations (ODEs and PDEs) because
of the improvement of rapid advanced processing hardware. It tends to be said that dif-
ference equations identify with differential equations as discrete mathematics identifies
with continuous mathematics. Any individual who has made an investigation of differ-
ential equations will realize that even elementary examples can be difficult to solve. By
contrast, elementary difference equations are moderately simple to study. For many rea-
sons, computer scientists take an interest difference equations. For instance, difference
equations often emerge while determining the cost of an algorithm in big-O notation. In
1943, the difference equations were commonly used for solving partial differential equa-
tions. Problems involving time-dependent fluid flows, neutron diffusion and transport,
radiation flow, thermonuclear reactions, and problems involving the solution of several
simultaneous partial differential equations are being solved by the use of difference equa-
tions. Other than the utilization of difference equations as approximations to ODEs and
PDEs, they afford a powerful method for the analysis of electrical, mechanical, thermal,
and other systems in which there is a recurrence of identical sections. By using the differ-
ence equations, the investigation of the conduct of electric-wave filters, multistage ampli-
fiers, magnetic amplifiers, insulator strings, continuous beams of equal span, crankshafts
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of multicylinder engines, acoustical filters, etc., is enormously facilitated. The standard
techniques for solving such systems are generally very lengthy when the number of ele-
ments involved is large. The use of difference equations greatly reduces the complexity
and labor in problems of this type.

As a result of the many applications of difference equations in various fields, many math-
ematicians are interested in the asymptotic behavior of different types of difference equa-
tions; see [1–36]. Also, many powerful methods for studying qualitative behavior of dif-
ference equations have been established and developed; see [5, 20] and [30].

In particular, we review some difference equations that are special cases of the general
studied equation. In [11], Devault et al. studied the recursive sequence

xn+1 =
A
xn

+
1

xn–2
,

where A is a real number. Khuong in [23] investigated the behavior of the positive solutions
of the difference equation

xn+1 = a +
(

xn–l

xn–k

)α

, (1.1)

where l, k and α are positive integers , a > –1 and 0 ≤ k < l. In [33], Stevic investigated the
behavior of the positive solutions of the difference equation (1.1) when a and α are positive
real numbers, l = 1 and k = 0. The case α = 1 has been considered in [10]. In [19], Elsayed
studied the periodicity and the boundedness of the positive solutions of the difference
equation

xn+1 = a +
bxn–l + cxn–k

dxn–l + exn–k
, (1.2)

where a, b, c, d and e are positive real number. For further study of Eq. (1.2) with a = 0, see
[12, 17, 22] and [26]. Elsayed in [20] and Moaaz in [29] studied the qualitative behavior of
solutions of the equation

xn+1 = a + b
xn–1

xn
+ c

xn

xn–1
,

where a, b and c are real number.
Our aim in this paper is to investigate the qualitative behavior of the solutions of the

difference equation

xn+1 = f (xn–l, xn–k), n = 0, 1, . . . , (E)

where l and k are positive integers, the function f (u, v) is a continuous real function and is
homogeneous with degree α and the initial conditions x–μ, x–μ+1, . . . , x0 are real numbers
for μ = max{l, k}. In this paper, we study the local/global stability and periodicity character
of solutions of the difference equation in a general form using a homogeneous function.
We use a new and powerful method to study the prime period two solution of this equa-
tion. Moreover, we apply general results on some special cases. We can use our results to
answer some of the problems raised earlier, as
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Problem 1 (Kulenovic and Ladas [25]) Suppose that a, b, c and d are real numbers. In-
vestigate the forbidden set of the difference equation

xn+1 =
axn + bxn–1

cxn + dxn–1
xn (1.3)

and investigate the asymptotic behavior and the periodic nature of its solution.

2 Existence of periodic solutions
The following theorems state a new necessary and sufficient condition that Eq. (E) has
periodic solution of prime period two.

Theorem 2.1 Assume that l and k are odd or l and k are even. If α �= 1, then Eq. (E) has
no prime positive period two solution.

Proof On the contrary, we assume that Eq. (E) has a prime period two distinct solution

. . . ,ρ,σ ,ρ,σ , . . . .

If l and k are odd, then we have xn–l = xn–k = ρ . From Eq. (E), we get

ρ = f (ρ,ρ),

σ = f (σ ,σ ).

Thus, we obtain

ρ = σ = f 1/(1–α)(1, 1).

This is a contradiction.
Next, we let l and k be even. Then we get xn–l = xn–k = σ , and hence

ρ = f (σ ,σ ),

σ = f (ρ,ρ).

Therefore

ρ = σαf (1, 1)

=
(
ραf (1, 1)

)αf (1, 1)

= ρα2
f α+1(1, 1)

and so

ρ = f 1/(1–α)(1, 1).

Hence,

σ = ραf (1, 1)
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= f α/(1–α)(1, 1)f (1, 1)

= f 1/(1–α)(1, 1) = ρ,

which is a contradiction. Thus, the proof is completed. �

Theorem 2.2 Assume that l is odd and k is even. Equation (E) has a prime period two
solution . . . ,ρ,σ ,ρ,σ , . . . if and only if

f (τ , 1) = τ f (1, τ ) if α �= 1;

f (τ , 1) = τ and f (1, τ ) = 1 if α = 1,
(2.1)

where τ = ρ/σ .

Proof We suppose without loss of generality that l > k. Now, we assume that Eq. (E) has a
prime period two solution

. . . ,ρ,σ ,ρ,σ , . . . .

Since l is odd and k is even, we have xn–l = ρ and xn–k = σ . From Eq. (E), we get

ρ = f (ρ,σ ) = σαf
(

ρ

σ
, 1

)
,

σ = f (σ ,ρ) = σαf
(

1,
ρ

σ

)
.

Then

τ =
f (τ , 1)
f (1, τ )

.

On the other hand, we let (2.1) hold. If α �= 1, then we choose

x–l+2μ =
f (τ , 1)

f α/(α–1)(1, τ )
,

x–l+2μ+1 =
1

f 1/(α–1)(1, τ )
,

for μ = 0, 1, . . . , (l – 1)/2, where τ ∈R\{1}. Hence, we obtain

x1 = f (x–l, x–k) = f
(

f (τ , 1)
f α/(α–1)(1, τ )

,
1

f 1/(α–1)(1, τ )

)
.

From (2.1), we have

x1 = f
(

τ

f 1/(α–1)(1, τ )
,

1
f 1/(α–1)(1, τ )

)
.

Since f is homogeneous with degree α, we get

x1 =
1

f α/(α–1)(1, τ )
f (τ , 1).
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Also, we have

x2 = f (x–l+1, x–k+1)

= f
(

1
f 1/(α–1)(1, τ )

,
f (τ , 1)

f α/(α–1)(1, τ )

)

= f
(

1
f 1/(α–1)(1, τ )

,
τ

f 1/(α–1)(1, τ )

)

=
1

f α/(α–1)(1, τ )
f (1, τ )

=
1

f 1/(α–1)(1, τ )
.

Hence, it is concluded by induction that

x2n–1 =
f (τ , 1)

f α/(α–1)(1, τ )
and x2n =

1
f 1/(α–1)(1, τ )

for all n > 0.

Therefore, Eq. (E) has a prime period two solution. If α = 1, then we choose

x–l+2μ = cτ and x–l+2μ+1 = c, μ = 0, 1, . . . , (l – 1)/2,

where τ ∈R\{1} and c arbitrary real number. Thus, we get

x1 = f (x–l, x–k)

= f (cτ , c)

= cf (τ , 1) = cτ

and

x2 = f (x–l+1, x–k+1)

= f (c, cτ )

= cf (1, τ ) = c.

Then it is concluded by induction that x2n–1 = cτ and x2n = c for all n > 0. Therefore, Eq. (E)
has a prime period two solution and the proof is completed. �

Theorem 2.3 Assume that l is even and k is odd. Equation (E) has a prime period two
solution . . . ,ρ,σ ,ρ,σ , . . . , if and only if

f (1, τ ) = τ f (τ , 1) if α �= 1;

f (1, τ ) = τ and f (τ , 1) = 1 if α = 1,
(2.2)

where τ = ρ/σ .

Proof The proof is similar to that of proof of Theorem 2.2 and hence is omitted. �
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Example 2.1 Let the difference equation

xn+1 = axα
n + bxα

n–1, (2.3)

where α is an integer, a and b are positive real numbers and |α| �= 1. From Theorem 2.3,
Eq. (2.3) has a prime period two solution

ρ =
a + bτα

(aτα + b)α/(α–1) and σ =
1

(aτα + b)1/α–1 , τ ∈R
+\{1},

if and only if

a + bτα = τ
(
aτα + b

)

and so

b
a

=
1 – τα+1

τ (1 – τα–1)
. (2.4)

We have

H(τ ) :=
1 – τα+1

τ (1 – τα–1)
> min

τ∈R+
H(τ ) =

α + 1
α – 1

, α > 1

and

H(τ ) < max
τ∈R+

H(τ ) =
α + 1
α – 1

, α < –1,

which with (2.4) gives b(α – 1) > a(α + 1). For example, for α = –2, a = 7, b = 2, x1 = 3.107
and x0 = 1.553, the prime period two solution of (2.3) is shown in Fig. 1.

3 Stability of Equation (E)
In this section, we study the local stability and global attractivity of the equilibrium point
of Eq. (E).

Figure 1 Prime period two solution of Eq. (2.3)
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Lemma 3.1 If α �= 1, then Eq. (E) has a positive equilibrium point

x = f 1/(1–α)(1, 1). (3.1)

Also, if α = 1 and f (1, 1) �= 1, then Eq. (E) has only zero equilibrium point.

Proof The equilibrium point of Eq. (E) is given by x = f (x, x). Since f is homogeneous with
degree α, we obtain

x = xαf (1, 1).

If α �= 1, then x = 0 or x = f 1/(1–α)(1, 1). Otherwise, if α = 1 and f (1, 1) �= 1, then we have
x = 0. Thus, the proof is completed. �

Theorem 3.1 The zero equilibrium point of Eq. (E) is locally asymptotically stable if α > 1,
or

α = 1 and
∣∣fu(1, 1)

∣∣ +
∣∣fv(1, 1)

∣∣ < 1. (3.2)

Proof Since f homogeneous with degree α, we have fu and fv are homogeneous with degree
α – 1. Now, if α > 1, then we get fu(x, x) = xα–1fu(1, 1) = 0 and fv(x, x) = 0, for x = 0. Hence,
x = 0 is locally asymptotically stable. Next, if α = 1, then fu(x, x) = fu(1, 1) and fv(x, x) =
fv(1, 1). By using Theorem 1.3.7 in [24], we see that Eq. (E) is locally stable if

∣∣fu(1, 1)
∣∣ +

∣∣fv(1, 1)
∣∣ < 1,

which completes the proof. �

Theorem 3.2 The positive equilibrium point of Eq. (E) is locally asymptotically stable if

∣∣fu(1, 1)
∣∣ +

∣∣fv(1, 1)
∣∣ < f (1, 1) (3.3)

or

0 < α < 1, for fu > 0, fv > 0;

– 1 < α < 0, for fu < 0, fv < 0;

2fu(1, 1) < (1 + α)f (1, 1), for fu > 0, fv < 0;

2fv(1, 1) < (1 + α)f (1, 1), for fu < 0, fv > 0.

Proof The linearized equation of (E) about x is the linear difference equation

yn+1 =
∂f
∂u

∣∣∣∣
(x,x)

yn–l +
∂f
∂v

∣∣∣∣
(x,x)

yn–k . (3.4)

From Theorem 1.3.7 in [24], Eq. (3.4) is locally stable if

∣∣fu(x, x)
∣∣ +

∣∣fv(x, x)
∣∣ < 1.
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Using Corollary 2 in [7], we see that fu and fv are homogeneous with degree α – 1. This
implies

∣∣fu(1, 1)
∣∣ +

∣∣fv(1, 1)
∣∣ < f (1, 1).

If we admit that fu > 0 and fv > 0, then we obtain

fu(x, x) + fv(x, x) < 1. (3.5)

From Euler’s homogeneous function theorem, we deduce that

ufu + vfv = αf , (3.6)

which with (3.5) gives 0 < α < 1. Similarly, if fu < 0 and fv < 0, then we get –1 < α < 0.
In the case where fu > 0 and fv < 0, we have

fu(x, x) – fv(x, x) < 1. (3.7)

Combining (3.6) with (3.7), we get

2fu(1, 1) < (1 + α)f (1, 1).

Finally, if fu < 0 and fv > 0, then we find

2fv(1, 1) < (1 + α)f (1, 1).

Hence, the proof is completed. �

Example 3.1 Let the difference equation

xn+1 = axα
n + bxα

n–1, (3.8)

where α, a and b are real numbers , a > 0, b > 0 and α �= 1. Since f (u, v) = auα + bvα , we get

αfu > 0 and αfv > 0.

By using Theorem 3.2, the positive equilibrium point x = (a + b)1/(1–α) of Eq. (3.8) is locally
asymptotically stable if |α| < 1. For example, for α = 0.6, a = 0.2, b = 0.7, x1 = 2.0 and x0 =
0.2, the stable solution of (3.8) is shown in Fig. 2.

Remark 3.1 If α = 0, then ufu + vfv = 0 and fufv < 0. Thus, Eq. (3.8) is locally asymptotically
stable if

∣∣fu(1, 1)
∣∣ <

1
2

f (1, 1). (3.9)

Theorem 3.3 Assume that f has non-positive partial derivatives. Then Eq. (E) has a
unique positive equilibrium x and every solution of Eq. (E) converges to x.
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Figure 2 Stable solution of difference Eq. (3.8)

Proof Let (m, M) is a solution of the system

m = f (M, M),

M = f (m, m).

This implies

m = Mαf (1, 1),

M = mαf (1, 1),

and so

(
mα+1 – Mα+1)f (1, 1) = 0.

Hence, we get m = M. By Theorem 1.4.7 in [26], we see that every solution of Eq. (E)
converges to x. Hence, the proof is completed. �

Remark 3.2 Assume that fu > 0 and fv < 0. By Theorem 1.4.5 in [26], if we were able to
obtain a condition that ensures that

f (z, 1) – zf (1, z)
1 – zα+1 �= 0, (3.10)

for all z ∈ (0,∞), then the equilibrium point x would be a global attractor of Eq. (E).

Remark 3.3 Assume that f ∈ C([0,∞) × [0,∞), [0,∞)), fufv > 0, |α| < 1, l = 0 and k = 1.
Then, by Euler’s homogeneous function theorem, we see that

u|fu| + v|fv| = |ufu + vfv|
= |α|f
< f ,

for all u, v ∈ (0,∞). Thus, by using Theorem 1.4.4 in [26], Eq. (E) has exactly one of the
following three cases for all solutions (stability trichotomy):

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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(a) limn→∞ xn = ∞ for x–1x0 �= 0.
(b) limn→∞ xn = 0 and Eq. (E) has only a zero equilibrium point.
(c) limn→∞ xn = x for x–1x0 �= 0 and x is the only positive equilibrium point.

4 Discussion and numerical examples
Corollary 4.1 Assume that l and k are odd or l and k are even. If fu < 0 and fv > 0, then
Eq. (E) has a unique equilibrium x and every solution of Eq. (E) converges to x.

Proof From Theorem 2.1, if l and k are odd or l and k are even, then Eq. (E) has no prime
period two solution. Thus, by Theorem 1.4.6 in [26], we see that every solution of Eq. (E)
converges to x. �

Remark 4.1 Notice that equations that have been studied in [2, 3, 10–23, 26] and [31–34]
are special cases of Eq. (E). For example, Elsayed in [19] investigated the stability character
and the periodicity of solutions of Eq. (1.2). From Remark 3.1, the positive equilibrium
point of Eq. (1.2) is locally asymptotically stable if

∣∣∣∣ be – cd
(d + e)2

∣∣∣∣ <
1
2

(
a +

b + c
d + e

)
(Theorem 3.1 in [19]).

Next, if be > cd, then we have fu > 0 and fv < 0. Note that the condition c ≥ b ensures that

(
cd + ad2z + cdz2 + ade + aze2 + (c – b)ze + bdz + cdz + adz2e

) �= 0.

This implies

1
1 – z

(
a +

bz + c
dz + e

– z
(

a +
b + cz
d + ez

))
=

f (z, 1) – zf (1, z)
1 – zα+1 �= 0.

Hence, by Remark 3.2, the equilibrium point is a global attractor of (E) if be > cd and
c ≥ b (Theorem 5.2 in [19]). Finally, by using Theorem 2.2 and 2.3, we can obtain the
results of Theorem 6.1 in [19].

In the following, two special cases are given to validate the asymptotic behavior of the
proposed new class of difference equations.

Example 4.1 Consider the difference equation (1.3). We have

f (u, v) =
au + bv
cu + dv

u

homogeneous with degree one. Then the partial derivatives of f are

fu(u, v) =
bdv2 + au(cu + 2dv)

(cu + dv)2 and fv(u, v) =
(bc – ad)u2

(cu + dv)2 .

From Lemma 3.1, Eq. (1.3) has only zero equilibrium point if a + b �= c + d. By Theorem 3.1,
the zero equilibrium point of Eq. (1.3) is locally asymptotically stable if one of the following
cases holds:
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(i) bc > ad and a + b < c + d,
(ii) bc < ad and a(c + 3d) + b(d – c) < (c + d)2.

For the periodicity of solutions of Eq. (1.3), we assume that a, b, c and d are real numbers,
|c| + |d| �= 0 and |a| + |d| �= 0. Using Theorem 2.3, we see that Eq. (1.3) has a prime period
two solution if and only if

a + bτ

c + dτ
= τ and

aτ + b
cτ + d

τ = 1.

Then

a + (b – c)τ – dτ 2 = 0

and

d – (b – c)τ – aτ 2 = 0.

Thus, we get a + d = 0 and

2(c – b)
a – d

=
1 + τ 2

τ
.

We define the function H(τ ) := (1 + τ 2)/τ . Then we find

H(τ ) > min
τ∈R+\{1}

H(τ ) = 2 and H(τ ) < max
τ∈R–\{–1}

H(τ ) = –2.

Therefore, Eq. (1.3) has a prime period two solution if a + d = 0 and one of the following
conditions holds:

(a) c–b
a–d > 1 for x–1x0 > 0,

(b) c–b
a–d < –1 for x–1x0 < 0.

For a numerical example, we take a = b = 1, c = 3.5, d = –1, x–1 = 2 and x0 = 1; see Fig. 3.

Example 4.2 Consider the difference equation

xn+1 = axα
n–le

–(bxn–l/xn–k ), (4.1)

Figure 3 Prime period two solution of Eq. (1.3)
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Figure 4 Stable solution of difference Eq. (4.1)

where α, a and b are real numbers, a > 0 and b > 0. We have

f (u, v) = auαe–bu/v,

homogeneous with degree α. Then the partial derivatives of f are

fu(u, v) = a
[
α – b

u
v

]
uα–1ebu/v,

fv(u, v) = ab
uα+1

v2 ebu/v.

If α < 0, then fu < 0 and fv > 0. By Theorem 3.2, we see that the positive equilibrium point
x = (ae–b)1/(1–α) of Eq. (4.1) is locally asymptotically stable if b < α < 1 or 2b < 1 + α. For a
numerical example, we take l = 0, k = 1, α = 0.5, a = 2 and b = 0.1; see Fig. 4.

For the periodicity of solutions of Eq. (4.1), we assume that l is odd and k is even. By
using Theorem 2.2, we see that Eq. (4.1) has a prime period two solution

ρ = τ
(
ae–b/τ )1/(1–α) and σ =

(
ae–b/τ )1/(1–α), τ ∈ R

+\{1},

if and only if

b
(α – 1)

=
τ ln τ

(τ 2 – 1)
. (4.2)

We have

G(τ ) :=
τ ln τ

(τ 2 – 1)
< max

τ∈R+
G(τ ) =

1
2

for τ ∈R
+\{1},

which with (4.2) gives 2b < (α – 1). For a numerical example, we take l = 1, k = 0, α = –2,
a = 1, b = 2 ln 2, x–1 = 2 3√2 and x0 = 3√2; see Fig. 5.
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Figure 5 Prime period two solution of Eq. (4.1)
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