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This paper deals with the application of Chebychev’s approximation theory to IIR digital filter frequency

response (FR) approximation. It explores the properties of the frequency response of IIR digital filters as a

nonlinear complex approximating function; IIR digital filter frequency response is used to approximate a

prescribed magnitude and phase responses. The approximation problem is closely related to optimization.

If the set of approximating functions is non-convex, the optimization problem is difficult and may

converge to a local minimum. The main results presented in the paper are proposing a convex

stability domain by introducing a condition termed “sign condition” and characterization of the best

approximation by the Global Kolmogorov’s Criterion (GKC). The Global Kolmogorov’s Criteria is shown

to be also a necessary condition for the approximation problem. Finally, it is proved that the best

approximation is a global minimum. The sign condition can be incorporated as a constraint in an

optimization algorithm.

 2013 Elsevier Inc. All rights reserved.

1. Introduction

The transfer function of an IIR digital filter is

H(z) =
N(z−1)

D(z−1)
=

∑m
k=0 bkz

−k

1+
∑n

l=1 alz
−l

,

z ∈ U, U is the unit disc. (1)

Its frequency response is H(ω) = H(z)|z=e jω . This function is used

to approximate a prescribed frequency response on a compact in-

terval, Ω .

In many applications of digital signal processing filter design

with arbitrary magnitude and phase responses is required.

One design trend of IIR digital filters is to meet frequency

response magnitude specifications that minimize a specific error

norm (L∞ norm). The designed filter may have a nonlinear phase.

An all-pass filter is cascaded with the filter as an equalizer [1,2].

The equalizer is a real nonlinear phase function of the all-pass

filter [3]. The minimum error is often characterized by the alter-

nation theorem (equiripple of the error on a frequency interval).

One of the drawbacks associated with the use of equalizer is

that the number of independent coefficients in an all-pass sec-

tion is less than the number of the filter coefficients. Moreover,

based on approximation theory, the original coefficients of the IIR

digital filter, a and b, are no longer the independent coefficients
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for the magnitude approximation problem. The valid independent

approximation parameters are, in this case, the coefficients of the

magnitude which are functions of a and b that are probably not

easily solved.

Another trend is to approximate both magnitude and phase

simultaneously using the complex FR functions. The major chal-

lenges in any approximation problem are: existence, uniqueness,

characterization of best approximation and designing an algorithm.

The Chebychev approximation with general continuous complex

valued rational functions is tackled in [34–36]. As it was estab-

lished by Walsh [34], the existence of best approximation is guar-

anteed provided the domain of approximation is compact and has

no singularity points. In addition, the best approximation is known

to be non-unique [36].

In the real approximation the alternation theorem is the tool

for characterizing the best approximation. This theorem no longer

holds in the complex case. The main tools for characterization

of an optimal solution in the complex case are the Global Kol-

mogorov Criterion (GKC) and the Local Kolmogorov Criterion (LKC)

[30,31]. GKC is generally a sufficient condition while LKC is a nec-

essary condition. The intimate connection between approximation

and optimization is well recognized [32,33]. The optimization algo-

rithm is used to determine the coefficients of a stable IIR digital fil-

ter that minimizes the max-norm error (L∞). Various design meth-

ods are proposed to compute an optimal solution [11–22]. The

optimization problem is difficult if the set of approximating func-

tions are non-convex. In such cases, the algorithm may converge

to a local minimum. Another major problem in the design of IIR

1051-2004/$ – see front matter  2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2013.10.021



290 J.O. Siam et al. / Digital Signal Processing 25 (2014) 289–295

digital filters is stability. Some design methods start with a point

corresponding to a stable IIR digital filter, i.e., the roots of D(A, z)

lie inside the unit disc (Schur Polynomial), and monitor the stabil-

ity iteratively; other methods follow stabilization steps. Numerical

optimization algorithms incorporate the stability requirements in a

constrained optimization setting. A linear programming algorithm

was proposed for the optimization utilizing the positive realness of

D(A, z), (Re{D(A,ω)} > 0), to ensure stability [13]. The convex sta-

bility of (N(z), D(z)) and the positive realness of H(z) are utilized

to obtain a convex set of IIR digital filters [21]. Rouche’s condi-

tion on the denominator perturbation is incorporated to preserve

stability [20]. Stability margin approach was proposed in [18]. It-

erative Lyaponov inequality constraint is incorporated for the filter

stability [17].

The objective of this paper is to investigate the approximation

properties of the rational complex FR functions using non-linear

Chebychev approximation theory. The concepts of “functions with

betweeness property” [25] and theory of “regular systems” [27]

play an important role in this paper. The results of this study are

three folds: it proposes a convex stability domain of FR functions

by introducing a condition termed “sign condition”. In addition, the

proof that GKC (Theorem 2) is also a necessary condition in order

to characterize a best approximation, is provided. Finally, the best

approximation is shown to be a global minimum (Theorem 3). This

sign condition has to be incorporated as a constraint in the opti-

mization algorithm.

The interested reader about convex stability is invited to review

the references [4, Chapter 7] [5–8] (see also Appendix A).

This paper is organized as follows: some definitions are pro-

vided in Section 2. Section 3 states the complex approximation

problem of FR functions. The results of the paper are included in

Section 4. Section 5 presents examples. The conclusion is presented

in Section 6. Appendix A is about convex stability.

2. Preliminaries

2.1. IIR digital filters

The transfer function of an IIR digital filter is defined in Eq. (1)

where N(z) and D(z) are relatively prime of fixed degrees m and

n with cardinality m � n. The sets of parameters {A = (a1 . . .an),

a0 = 1} and {B = (b0 . . .bm)} are real.

The set of FR functions of stable IIR digital filters is denoted

by H.

A digital IIR digital filter is stable if the denominator D(A, z)

has all its zeros inside the unit disc., i.e. D(A, z), is a Schur

polynomial. D(A,ω) �= 0 on the boundary of the unit circle and

Re[D(A,ω)] > 0 [13].

The convex combination of two polynomials, D0(ω) and D1(ω),

is

Dλ = D0 + λ(D1 − D0),

where λ belongs to [0,1].

The real and imaginary parts of D(A,ω) are respectively,

g(A,ω) = 1+

n
∑

l=1

al cos(lω), (2)

u(A,ω) =

n
∑

l=1

al sin(lω). (3)

3. Statement of the Chebychev approximation problem

The following brief review considers the general problem of ap-

proximation of a continuous function, f (ω), by an approximating

function depending on a finite number of parameters. Thus, the

problem under consideration is to approximate, f (ω), by an ap-

proximating function, F (A,ω), which may depend on the parame-

ter, A, in a linear or non linear way. The problem is to determine

those parameters, A∗ , which make, F (A∗,ω), closest to f (ω) with

respect to some norm, i.e., ‖ f (ω) − F (A∗,ω)| is a minimum. The

functions, f (ω), and, F (A,ω), can be real or complex functions.

The function, F (A∗,ω), may be termed best approximation, opti-

mal approximation and minimal solution. Once the problem is for-

mulated in a mathematical form, there are four main issues related

to its solution after the choice of F (A,ω): existence, uniqueness,

characterization and computation of F (A∗,ω). A norm is defined

by ‖ f ‖p = (
∫

|( f (ω)|p dω))
1
p and denoted Lp norm. The norms L1 ,

L2 , and L∞ are often used in the approximation theory.

3.1. Mathematical formulation of the approximation problem

Let C(Ω) be the space of continuous complex valued function

on a real compact interval, Ω , endowed with the max-norm, L∞

∥

∥H(A, B, .)
∥

∥ = max
ω

∣

∣H(A, B,ω)
∣

∣. (4)

Let Hd(ω) ∈ C(Ω) \ H be a prescribed frequency response and

H(A, B,ω) ∈ H be the approximating function. For example,

Hd(ω) may be Γ e− jφ(ω) ∈ C(Ω)\H, where Γ is a constant and

φ(ω) is a linear function of ω. The error function of approxima-

tion is defined as:

e = Hd(ω) − H(A, B,ω). (5)

This function attains its norm on a discrete point set M∗ ⊂ Ω with

cardinality �m+n+2 points. The minimum solution of the Cheby-

chev approximation problem H0(a
∗,b∗,ω) is the solution of:

E∗ =
∥

∥Hd(.) − H0

(

A∗, B∗, .
)∥

∥

= min
(A,B)

max
ω

∣

∣Hd(ω) − H(A, B,ω)
∣

∣, (6)

where E∗ is the max-norm of e. This solution is characterized by

the GKC and the LKC [30].

4. Results

The keys of this study are the concept of “betweeness proper-

ty” [24,25] and the more general concept “regular systems” [27,28].

These two concepts were introduced in the context of nonlinear

approximation theory as a generalization of convexity. A variant

concept termed “weak betweeness property” has been applied for

characterization and uniqueness of best approximation [29]. The

three concepts have considered complex rational functions pro-

vided that the denominator is a real positive function.

The convex stability and the line homotopy [37] are additional

concepts playing an important role in the study.

In the approximation problem at hand, the concepts of betwee-

ness property and regular systems have been applied to the com-

plex FR functions provided the denominator, D(A,ω), is a complex

function and non-zero on the unit circle.

4.1. The main result of the paper is Theorem 1

Its consequences are proposing a convex stability domain in FR

functions by introducing a condition, i.e., “sign condition”. Recall-

ing, from introduction that GKC is generally a sufficient condition

in order to characterize the best approximation; the investigation

of this work shows that GKC is also a necessary condition (Theo-

rem 2) under the existence of the monotone sequence denoted hλ
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Fig. 1. Sign condition G, |D0|
2 , and |D1|

2 of Eq. (8) as a function of frequency for LP

filter.

Fig. 2. Partial derivative of |hλ − H0| for variable frequencies – LP filter.

in Theorem 1. In addition, it is established, relying on the sequence

hλ , that a best approximation is a global minimum (Theorem 3).

LKC (Theorem 4) is only a necessary criterion in order to char-

acterize the best approximation [30] if the partial derivatives are

continuous.

Summarizing, Corollaries 2 and 3 are immediate conclusion of

Theorem 2. Theorem 1 and Theorem 3 are proved with the help

of the existence of the monotonic sequence hλ . Discussion of the

interrelationship among the theorems is presented in the sequel of

this section.

While Fig. 1 and Fig. 3 demonstrate the concepts of sign con-

dition, Fig. 2 and Fig. 4 demonstrate the monotonicity of the se-

quence of hλ of Theorem 1.

The convexity domain is computed numerically. The results of

the examples were obtained by MATLAB.

4.2. Approximation properties of frequency response

For brevity, the arguments (A, B,ω) are often suppressed in the

denominator and numerator.

Let H i =
Ni

D i
, stands for H(A(i), B(i),ω) =

N(B(i),ω)

D(A(i),ω)
, and let gi,ui

be the real and imaginary parts of the denominator D i , respec-

tively, where i = 0,1.

Fig. 3. Sign condition G, |D0|
2 , and |D1|

2 of Eq. (9) as a function of frequency for

notch filter.

Fig. 4. Partial derivative of |hλ − H0| for variable frequencies – notch filter.

Definition 1 (Homotopy). (See [37].) If f , g are continuous maps of

the space X into the space Y , we say that f is homotopic to g if

there is a continuous map F : [0,1] × X → Y such that F (0,ω) =

f (ω) and F (1,ω) = g(ω) for each ω ∈ X . The map F is called a

homotopy between f and g .

We think of a homotopy as a continuous one-parameter family

of maps from X to Y . If we imagine the parameter λ ∈ [0,1] as

representing time, then the homotopy F represents a continuous

“deforming” of the map f to the map g , as λ goes from 0 to 1.

Definition 2 (The betweeness property). (See [25].) A subset G of

C(X, Y ) is said to have the betweeness property if for any two ele-

ments g0, g1 ∈ G , there exists a λ-set {hλ} ⊂ G such that

1. H0 = g0, H1 = g1 .

2. For λ ∈ [0,1] and x ∈ X , hλ(x) is on the joining line g0(x) and

g1(x).

3. If g0 = g1 then hλ(x) = g0 , 0 < λ < 1 and if g0 �= g1 , |g0 −

hλ(x)| is strictly monotonic continuous function of λ ∈ [0,1].

Definition 3. The condition G = g0g1 + u0u1 > 0 is termed “sign

condition”.
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The following lemma establishes an equivalent condition to that

proposed by B. Dumitrescu [4] for the characterization of the con-

vex stability domain.

Lemma 1. The sign condition G is equivalent to the convex stability con-

dition Re( D1
D0

) > 0 [4].

Proof of Lemma 1.

Re

(

D1

D0

)

= Re

(

g1 + ju1

g0 + ju0

)

= Re

(

(g1 + ju1)(g0 + ju0)

|D0|2

)

= Re

(

(g1g0 + u1u0) + j(u1g0 − u0g1)

|D0|2

)

> 0

|D0|
2 is positive, hence g1g0 + u1u0 is positive. ✷

Corollary 1 (Convex stability). If G holds, then the polynomial Dλ of any

two stable polynomials D0 and D1 is a Schur polynomial.

Proof of Corollary 1.

Re

(

Dλ

D0

)

= Re

(

g0 + λ(g1 − g0) + j[u0 + λ(u1 − u0)]

D0

)

must be positive. By simple mathematical manipulations, similar

to the proof of Lemma 1, the real part of

Re

(

Dλ

D0

)

=

(

g20 + u2
0 − λ(g20 + u2

0) + λ(g0g1 + u0u1)

|D0|2

)

.

Observe that (
g20+u2

0−λ(g20+u2
0)

|D0|2
) is � 0 for λ ∈ [0,1].

Thus for Re( Dλ

D0
) to be positive the term u0u1 + g0g1 must be

positive. ✷

The next theorem is applied to FR functions as an application to

the notion of homotopy and betweeness property. Its consequences

will be discussed in the sequel.

Theorem 1. Let H0 and H1 be frequency responses of stable IIR digital

filters of the same order and same type defined on Ω , H1 �= H0 .

Under the sign condition G

1. there exists a continuous line homotopy hλ ∈ H, between H0 =

hλ(0,ω), H1 = hλ(1,ω), for any ω ∈ Ω , λ ∈ [0,1].

2. The function ‖hλ − H0‖ → 0 is a continuous strictly monotonic

function of λ ∈ [0,1], i.e., {hλ} converges uniformly to H0 . where,

hλ =
N0(1− λ) + λN1

D0(1− λ) + λD1
, (7)

and

(hλ − H0) =
λD1

λD1 + (1 − λ)D0
(H1 − H0), (8)

∂|hλ − H0|

∂λ

=
|D1|

|Dλ|3

[

|D0|
2 + λ

(

u0u1 + g0g1 − |D0|
2
)]

.|H1 − H0|. (9)

Remark 1. By the “same type” in Theorem 1 we mean that the FR

functions H0 and H1 are both LPs or HPs or Notch Filter, etc., as

illustrated in Examples 1 and 2.

Remark 2. G is a necessary and sufficient condition for |hλ − H0|

to be a monotonic sequence, i.e., ∂|hλ−H0|
∂λ

is positive on λ ∈ [0,1].

In fact, if the derivative 9, ∂|hλ−H0|
∂λ

, is positive then G holds.

The converse is true.

Proof of Theorem 1. hλ : [0,1] × Ω → C(Ω) is a continuous ho-

motopy between H0 and H1 where hλ(0,ω) = H0,hλ(1,ω) = H1

for λ ∈ [0,1]. The sign of the derivative depends on the term

X(λ) = |D0|
2 + λ(u0u1 + g0g1 − |D0|

2). X(λ) is positive for both

cases G > |D0|
2 or G < |D0|

2 ∀λ ∈ [0,1]. X(0) = |D2
0| and X(1) =

(u0u1 + g0g1) = G . The terms |D1|, |Dλ|
3 are positive and have

no effect on the sign of the derivative. Consequently, the function

‖hλ − H0‖ is a strictly monotonic function under the assumption

of the sign condition, G , concluding that the derivative is positive

∀λ ∈ [0,1]. By Dini’s theorem [38] hλ converges uniformly to H0 .

The condition G implies that Dλ is a Schur polynomial by Corol-

lary 1 and hλ(z) is a stable IIR digital filter ∀λ ∈ [0,1], resulting in

{hλ(ω)} ⊂H. ✷

Corollary 2. The set of FR functions has the betweeness property.

The best approximation of functions with betweeness prop-

erty is characterized by corollary of [25]. Similarly, Theorem 1 and

Corollary 2 establish the characterization of best approximation in

FR functions by the following corollary.

Corollary 3. H0(A
∗, B∗,ω) ∈ H is the best approximation for Hd(ω) if

and only if there is no H(A, B,ω) such that

Re
[

e
(

A∗, B∗,ω
)(

H(A, B,ω) − H0

(

A∗, B∗,ω
))]

> 0,ω ∈ M∗.

(10)

The bar over the expression Re[e(A∗, B∗,ω) ] in Corollary 3 and

in the remainder of the paper denotes a complex conjugate.

Sketch of the Proof to Corollary 3. Suppose there exists H(A, B,ω)

∈ H such that |Hd(ω) − H(A, B,ω)| < |Hd(ω) − H0(A
∗, B∗,ω)|,

ω ∈ M∗

∣

∣Hd(ω) − H(A, B,ω) − H0

(

A∗, B∗,ω
)

+ H0

(

A∗, B∗,ω
)∣

∣

2

=
∣

∣Hd(ω) − H0

(

A∗, B∗,ω
)∣

∣

2

− 2Re
((

Hd(ω) − H0

(

A∗, B∗,ω
))(

H(A, B,ω)

− H0

(

A∗, B∗,ω
)))

+
∣

∣H(A, B,ω) − H0

(

A∗, B∗,ω
)
∣

∣

2
, ω ∈ M∗.

Simple manipulations yield Re[((Hd(ω) − H0(A∗, B∗,ω))(H(A, B,

ω) − H0(A
∗, B∗,ω)))] > 0.

The proof of necessity is similar to that of the next theorem

(GKC). ✷

A more general system of functions is the concept of regu-

lar systems. The abstract definition of such systems is often in-

tractable. Alternatively, regular systems are defined if the necessity

of GKC is satisfied [27]. Paraphrased in still another way, any set of

functions satisfying the GKC to be a necessary condition for char-

acterizing the best approximation is a subset of a regular system

and the best approximation is a global minimum. Recalling, that

GKC is generally a sufficient condition. Relying on the existence

of a sequence, hλ , from Theorem 1, the necessity of GKC for fre-

quency response functions is shown by the proof of the following

theorem. Moreover, Theorem 3 specifies the best approximation to

be a global minimum for the FR functions.
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Theorem 2 (GKC). H0 ∈H is a best approximation for Hd if and only if

min
ω∈M∗

Re
{

(Hd − H0)(H1 − H0)
}

� 0 (11)

for any frequency response H1 ∈H.

Proof of Theorem 2. Sufficiency is a direct result from [30].

Necessity: Let H0 be not a best approximation. Suppose there

exists H1 such that ‖Hd − H1‖ < ‖Hd − H0‖ ∀ω ∈ M∗ . Since

the set M∗ ⊂ Ω is a compact set, there exists α > 0 such that

Yd(ω) = Re[(Hd − H0)(H1 − H0)]� α for all ω ∈ M∗ . By the conti-

nuity of (Hd − H0) and (H1 − H0) there exists an open set W that

covers M∗ , W = {ω ∈ Ω|Yd(ω) > α
2
}, i.e., W includes M∗ . By The-

orem 1 there exists an element hλ between H1 and H0 such that

‖Hd − hλ‖ < ‖Hd − H0‖. It follows

2Re
[

(Hd − H0)(hλ − H0)
]

> |hλ − H0|
2,ω ∈ W (12)

and then by Theorem 1

‖hλ − H0‖ → 0. (13)

The following estimation on W

|Hd − hλ|
2

= |Hd − H0|
2 − 2Re

[

(Hd − H0)(hλ − H0| + |hλ − H0|
2
]

,

ω ∈ W

= |Hd − H0|
2

− 2Re

(

(Hd − H0)(H1 − H0).
λD1

λD1 + (1− λ)D0

)

+

∣

∣

∣

∣

λD1

λD1 + (1− λ)D0)

∣

∣

∣

∣

2

.|H1 − H0|
2

� ‖Hd − H0‖
2

− 2Re

(

(Hd − H0)(H1 − H0)
λD1

λD1 + (1− λ)D0

)

+

∣

∣

∣

∣

λD1

λD1 + (1− λ)D0

∣

∣

∣

∣

2

.‖H1 − H0‖
2

< ‖Hd − H0‖
2. (14)

The next estimation is performed on V , V = Ω \ W . Consider the

expression maxV |Hd −H0|. As V is a compact set and M∗ ∩ V = φ,

then maxV |Hd − H0| and ‖Hd − H0‖ cannot be on M∗ ∩ V . Let

max
M∗

|Hd − H0| −
{

max
V

|Hd − H0|
}

= µ > 0.

By Theorem 1, ‖hλ − H0‖ converges uniformly to 0. Choosing a λ

such that

‖H0 − hλ‖ < µ > 0,

|Hd − hλ| =
∣

∣Hd − H0 − (hλ − H0)
∣

∣ � |Hd − H0| + |H0 − hλ|

� ‖Hd − H0‖ − µ + µ <
∥

∥(Hd − H0)
∥

∥. (15)

The two estimations (14), (15) on W ∪ V contradict the optimality

of H0 . ✷

In computing Chebychev’s approximation problems, it is impor-

tant to characterize the best approximation as a local or global

minimum. It is recognized that the approximation problem is

closely related to optimization. It is difficult to compute the op-

timal solution if the set of approximating function is non-convex

and the algorithm may converge to a local minimum. Theorem 3

ensures that the best approximation in the set of frequency re-

sponse is a global minimum. Its proof relies on the next lemma

and existence of the sequence hλ of Theorem 1.

Lemma 2. (See [26,27, Lemma 3.1].) Given H0, H1 ∈H such that ‖Hd −

H1‖ < ‖Hd − H0‖ implies Re{(Hd − H0)(H1 − H0)} > 0, ω ∈ M∗ . Let

the neighborhood ONλ(H0), O Nλ(H0) = {H: ‖H − H0‖ < λ} ∩H for

every 0 < λ � 1. Then there exists hλ ∈ ONλ such that ‖Hd − hλ‖ <

‖Hd − H0‖, i.e., H0 is not a local minimum.

Proof of Lemma 2. The proof of ‖Hd − hλ‖ < ‖Hd − H0‖ is similar

to the estimations (14), (15). ✷

Theorem 3. The minimum of the functional ‖Hd − H0‖ inH is a global

minimum.

Proof of Theorem 3. Let H0 be not a global minimum. Then

there exists H1 such that ‖Hd − H1‖ < ‖Hd − H0‖, implying

Re{(Hd − H0)(H1−H0)} > 0 for every ω ∈ M∗ . By Theorem 1 there

exists a sequence, {hλ} ⊂H which converges uniformly to H0 such

that ‖Hd −hλ‖ < ‖Hd − H0‖, implying Re{(Hd − H0)(hλ − H0)} > 0

for ω ∈ M∗ . Hence by Lemma 2 and the expression (10) of Corol-

lary 3, H0 is not a local minimum. ✷

The following are the partial derivatives with respect to the pa-

rameters A and B .

∂H(A, B,ω)

∂bk
=

cos(kω) − j sin(kω)

D(A,ω)
, k = 0, . . . ,m,

∂H(A, B,ω)

∂al
= −

∑n
k=0 bk(cos(l + k)ω − j sin(l + k)ω

[D(A,ω)]2
,

l = 1, . . . ,n,

[

D(A,ω)
]2

= 1+

n
∑

l=1

a2l
[

cos2(lω) − j sin2(lω)
]

+

n
∑

l=1

2al
[

cos(lω) − j sin(lω)
]

+

n
∑

l=0

n
∑

p=l+1

2alap

[

cos(l + p)ω − j sin(l + p)ω
]

,

(16)

where the expressions of the derivatives are continuous with

respect to A,ω and B . We define the linear function L(A,B)(δal,

δbi,ω),

L(A,B)(δal, δbi,ω)

=

n
∑

l=1

∂H(A, B,ω)

∂al
δal +

m
∑

i=0

∂H(A, B,ω)

∂bi
)δbi . (17)

The following theorem is the previously declared LKC. It is gen-

erally a necessary condition for the characterization of best ap-

proximation. In fact, it applies for those functions having partial

derivatives on the parameter domain A and B and the deriva-

tives are continuous on the frequency domain. Obviously, these

requirements are satisfied in the FR functions where the partial

derivatives (16) are continuous with respect to the coefficients and

frequency. This is obvious from the fact that D(A,ω) �= 0. The lin-

ear function (17) is important for the LKC.

Theorem 4 (LKC). (See [30–32].) Let H0 be a best approximation of Hd .

The partial derivatives (16) are continuous then,
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min
ω∈M∗

Re
{

Hd − H
(

A∗, B∗,ω
)}

L(A∗,B∗)(δA, δB,ω) � 0 (18)

for all δA and δB.

Sketch for the proof. LKC is known as a standard criterion in [30,

31]. The continuity of the partial derivatives is evident. The de-

nominator D(A,ω) in both expressions (16) is never equal to zero.

This ensures that the partial derivatives (16) are continuous with

respect to ω, A and B . ✷

5. Examples

The purpose of the following examples is to illustrate the

monotonicity of the homotopic sequence of frequency response

function and the existence of convexity domain under the sign

condition assumption. The filters of both examples were selected

so that they are stable and satisfy the sign condition in a pre-

scribed band of frequency.

Example 1. Two 3rd-order LP filters of bandwidths 0.25π and

0.35π [23]:

H0(z) =
0.0662272(1+ z−1)3

(1.0000− 0.9356z−1 + 0.5671z−2 − 0.1016z−3)
,

H1(z) =
0.13402309(1+ z−1)3

(1 − 0.2543z−1 + 0.3504z−2 − 0.0234z−3)
,

where the denominators of H0, H1 are D0 = 1.0000−0.9356z−1 +

0.5671z−2 − 0.1016z−3 and D1 = 1 − 0.2543z−1 + 0.3504z−2 −

0.0234z−3 .

The poles of the first filter are 0.0925±0.5736i and 0.6993. The

poles of the second filter are 0.3381 ± 0.5267i and 0.2594. Both

filters have their poles inside the unit disk (Schur polynomials).

Fig. 1 shows the partial terms, |D0|
2 , |D1|

2 and G , of Eq. (9).

The plot shows the positive behavior of the sign condition with

respect to the frequency.

Fig. 2 describes the behavior of the derivative of the sequence

|hλ − H0| with respect to λ ∈ [0,1] for different values of frequen-

cies. The plot shows that the derivative is always positive and so

|hλ − H0| is a strict monotonic sequence.

Range of convex stability: Applying the theory of convex stabil-

ity in Appendix A we compute the convex stability domain of the

two filters.

The matrices S(D0) and S((D1) − (D0)) are used to construct

the block matrix F . The eigenvalues of F are: −0.0764,0.0801,

−0.0160 + 0.2160i, −0.0160 − 0.2160i,0.7842, −0.4900,−0.0160

+ 0.2160i, −0.0160 − 0.2160i.

The eigenvalues are out of the range [1,∞). The range of

convexity domain is (1/(−0.49),1/(0.7842)) and λ ∈ [0,1] lies

between (−2.0408,1.2752] or {[−1.66,1.2752]}, i.e., the convex

combination of the matrix S(D0) and the matrix S(D1) is stable.

Consequently the convex combination of D0 and D1 is a Schur

polynomial.

In addition, by Appendix A.2 the eigenvalues of S−1(D0)S(D1),

4.3419, 3.6120, are out of the range (−∞,0) which emphasize the

convex stability of D0, D1 .

Example 2. Two fourth order stable notch filters. The bandwidth of

the first filter is 0.25π and that of the second filter is 0.25π . The

center frequency of the first filter 0.375π and that of the second

filter is 0.325π

H0(z) =
0.569z4 − 0.9428z3 + 1.5286z2 − 0.9428z + 0.5690

z4 − 1.219z3 + 1.333z2 − 0.6667z + 0.3333
,

H1(z) =
0.569z4 − 1.287z3 + 1.866z2 − 1.287z + 0.569

z4 − 1.664z3 + 1.671z2 − 0.9102z + 0.0333
.

The poles of the first filter are 0.5264+ 0.5882i,0.5264− 0.5882i,

0.0831 + 0.7266i,0.0831 − 0.7266i, and of the second filter

0.3680 + 0.9042i,0.3680 − 0.9042i,0.8887,0.0393.

Fig. 3 shows the partial terms, |D0|
2 , |D1|

2 and G , of Eq. (9).

The plot shows the positive behavior of the sign condition with

respect to the frequency (3).

Fig. 4 describes the behavior of the derivative of the sequence

|hλ − H0| with respect to λ ∈ [0,1] for different values of frequen-

cies. The plot shows that the derivative is always positive and so

|hλ − H0| is a strictly monotonic sequence.

Using the same procedure of computation of Example 1,

the eigenvalues of the matrix F are: 0.2250,−0.4500,−0.4500,

0.0072 + 0.3377i, 0.0072 − 0.3377i, 0.2250,−0.4500 + 0.0000i,

−0.4500 − 0.0000i, 0.2250 + 0.0000i, 0.2250 − 0.0000i,0.5067,

−0.2536,0.0072 + 0.3377i, 0.0072 − 0.3377i, 0.0072 + 0.3377i,

0.0072 − 0.3377i, 0.0072 + 0.3377i, 0.0072 − 0.3377i.

The range of eigenvalues of the matrix F are out of the range

[1,∞). The convex combination of the polynomials D0, D1 , Dλ , is

stable.

According to Appendix A.2 the eigenvalues of, S−1(D0)S(D1),

0.0999,0.0999,2.0150, are out of the range (−∞,0). Hence the

polynomial Dλ is a Schur polynomial.

6. Conclusion

The main contribution of this paper is the application of the

approximation theory in IIR digital filter design. The FR functions

are commonly used to approximate a desired frequency response

(magnitude and phase) on a defined frequency band according to

the max-norm. This study has been based on the nonlinear Cheby-

chev approximation theory. The results of the investigations con-

clude: the best approximation is completely characterized by GKC

(necessary and sufficient), LKC as a necessary condition, a convex-

ity domain is proposed by introducing the sign condition (convex

stability condition) and the optimal solution is shown to be a

global minimum. The sign condition has to be incorporated as op-

timization constraint in an algorithm to preserve stability of the

designed filter.

The examples presented in the paper demonstrate Theorem 1.

Furthermore, numerical values in the provided examples asses the

convex stability domain. A future work can be conducted to design

an algorithm to verify the results of this work as a fundamental

theory.

Appendix A

A.1. Computing the convexity domain: The coefficients of a

polynomial D(A, z) are the entries of the following matrix [5,10]

S(D) =

⎡

⎢

⎢

⎢

⎢

⎣

an an−1 an−2 a3 a2 − a0
0 an an−1 a3 a3 − a1
...

...
...

...
...

0 a0 −a1 an − an−4 an−1 − an−3

a0 −a1 a2 −an−3 an − a2

⎤

⎥

⎥

⎥

⎥

⎦

.

Define the polynomial Dλ(z),

Dλ(z) = D0(z) + λ(D1 − D0) (A.1)

and denote the related matrices by S(D0), S(D1 − D0). Find λ such

that

S(Dλ) = S(D0) + λS(D1 − D0) (A.2)

be convex stable. The following matrices are constructed to deter-

mine the range of convex stability so that λ ∈ [0,1] falls in this

range:
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F0 == S(D0) ⊗ S(D0) − I ⊗ I,

F1 = S(D0) ⊗ S(D1 − D0) + S(D1 − D0) ⊗ S(D0),

F2 = S(D1 − D0) ⊗ S(D1 − D0). (A.3)

The symbol ⊗ denotes the Kronecker product,

F0 + λF1 + λ2F2

=
(

S(D0) ⊗ S(D0) − I ⊗ I
)

+ λ
(

S(D0) ⊗ S(δD)

+ S(δD) ⊗ S(D0)
)

+ λ2
(

S(δD) ⊗ S(δD)
)

.

The following block matrix F

F =

[

0 I

−F0
−1F2 −F0

−1F1

]

is convex stable if and only if it has no eigenvalues ρi in the inter-

val [1,∞).

The matrix F may have real eigenvalues. Denote the minimum

negative real eigenvalue with ρ−
min

and the maximum positive real

eigenvalue with ρ+
max . λ ∈ [0,1] falls in the range of convex stabil-

ity, ( 1

ρ−
min

), 1

ρ+
max

[9].

The polynomial Dλ(a, z) and the matrix S(Dλ) belongs to the

convexity domain.

A.2. [5,10] The convex combination of two Schur polynomi-

als, D0 and D1 , is a stable polynomial if and only if the matrix

S−1(D0)S(D1) has no eigenvalues in (−∞,0).
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