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Abstract 
Although speaker verification is an established area of speech 
technology, previous studies have been restricted to adult 
speech.  This paper investigates speaker verification for 
children’s speech, using the PF-STAR children’s speech 
corpus.  A contemporary GMM-based speaker verification 
system, using MFCC features and maximum score 
normalization, is applied to adult and child speech at various 
bandwidths using comparable test and training material.  The 
results show that the Equal Error Rate (EER) for child speech 
is almost four times greater than that for adults.  A study of the 
effect of bandwidth on EER shows that for adult speaker 
verification, the spectrum can be conveniently partitioned into 
three frequency bands: up to 3.5-4kHz, which contains 
individual differences in the part of the spectrum due to 
primary vocal tract resonances, the region between 4kHz and 
6kHz, which contains further speaker-specific information and 
gives a significant reduction in EER, and the region above 
6kHz.  These finding are consistent with previous research.  
For young children’s speech a similar pattern emerges, but 
with each region shifted to higher frequency values. 
 
Index Terms: speaker recognition, child speech, Gaussian 
mixture model, bandwidth, PF-STAR, ABI-1, ABI-2 

1. Introduction 
Several levels of information are contained in a speech signal 
over and above its linguistic content. Its primary function is 
communication, but it also conveys information about the 
speaker’s identity, gender, social group, geographical origin, 
health and emotional state.  Speech recognition is concerned 
with extracting the underlying linguistic message in an 
utterance, whereas speaker recognition is concerned with 
extracting the identity of the person speaking the utterance. As 
speech interaction with computers becomes more pervasive, 
and its applications become more private and sensitive, the 
value of automatic recognition of a speaker based on vocal 
characteristics increases.  
    Over recent years, there has been huge growth in social 
networking, offering new and varied ways of communicating 
via the internet.  According to research by Ofcom [1], social 
networking sites are most popular with teenagers and young 
adults.  For example, almost half of children aged from 8 to 17 
who use the internet have set up their own profile on a social 
networking site.  An automatic system that recognises the 
child based on his or her voice and confirms the identity of the 
individual with whom the child is communicating, could be a 
valuable safeguard for a child engaged in social networking.  
There are also applications in education.  For example, an 
interactive tutor that could identify each child in a class could 
automatically continue a previous lesson, adapt its content to 

suit the child, and log the child’s responses appropriately 
without the child needing to go through a formal login process. 
    The general area of speaker recognition is divided into 
Verification and Identification. The focus of this paper is 
verification, in which the goal is to determine from a voice 
sample if a person is who he or she claims.  Furthermore, in 
either task the speech can be constrained to be a known phrase 
(text-dependent) or unconstrained (text-independent). 
    The most commonly used parameterisation for speaker 
verification is to represent an utterance as a sequence of Mel-
Frequency Cepstral Coefficient (MFCC) vectors. The 
distribution of MFCC vectors, for a whole population or for 
individual speakers, is typically captured using a Gaussian 
Mixture Model (GMM) [2, 3].  The speaker GMM models are 
built by MAP adaptation of a Universal Background Model 
(UBM), a speaker-independent GMM constructed using data 
from a variety of speakers and background conditions.  This 
approach has been very effective for various speaker 
identification and verification tasks [4].  An alternative is to 
use discrimination-based approaches, such as Support Vector 
Machines (SVM), which have been shown to obtain 
comparable, and in some cases better, performance than GMM 
based systems.  The use of GMM supervectors, which consist 
of the stacked means of the mixture components, in the 
context of SVMs has also been successful [5].  A combination 
of the GMM and SVM approaches, where the GMM was used 
to calculate the likelihood values and the SVM classifier was 
then used to separate the likelihood values produced by a 
correct speaker and impostor, was used in [6] and showed 
slightly better results than the GMM system alone.  Speaker 
verification systems usually employ a score normalisation 
procedure to cope with score variability and to make the 
decision threshold tuning easier. 

The use of high-level information, such as word usage, 
prosody or phone sequence analysis, for speaker verification 
has resurged in recent years [7]. 

It has been shown that acoustic and linguistic 
characteristics of children’s speech are very different from 
those of adult’s [8-10]. For example, children’s speech is 
characterized by higher pitch and formant frequencies, and 
perceptually important features occur at higher frequencies 
[9]. Consequently, the impact of bandwidth reduction on 
speech recognition accuracy is greater for children’s speech 
than for adults [11,12].  It has also been shown that children’s 
speech exhibits greater levels of inter- and intra-speaker 
variability than adult speech [9].  Variability is highest for 
young children, converging to adult values when children 
reach the age of 13.  Even for young children there is some 
evidence that the degree of variability varies significantly 
between individuals [11].  
     Although automatic recognition of children’s speech has 
been the subject of considerable research effort, there is little 
published work on issues and algorithms related to automatic 
children’s characteristics from his or her speech, [20, 21, 23].  



For example, we do not know how the balance between 
increases in inter- and intra-speaker variability will affect 
speaker verification for child speech.  In addition, we do not 
know the effect of bandwidth on speaker verification accuracy 
for children, although some studies of the effects of different 
frequency bands on adult speaker verification have been 
reported [22]. 

This paper describes an initial study of speaker verification 
performance for children’s speech, using a text-independent 
GMM-based automatic speaker verification system.  We 
present the results of speaker verification experiments for 
adult and child speech using comparable speech corpora, and 
study the effect of bandwidth on the verification performance.  
Our results demonstrate that the Equal Error Rate (EER) for 
children’s speech is four times greater than for adults’ speech.  
In addition, experimental results on the effect of bandwidth on 
speaker verification performance suggest that for both adult 
and child speech the spectrum can usefully be partitioned into 
three regions.  For adult speech these are (i) the region up to 
3.5-4kHz, which contains the primary vocal tract resonances 
and contributes to verification, (ii) the region between 3.5-
4kHz and 6kHz, which contains further speaker-specific 
information, and (iii) the region above 6kHz.  The importance 
of region (ii) has been reported elsewhere [20].  A similar 
partition of the spectrum is also valid for young children, but 
with the break points at higher frequencies, as one would 
predict.  For older children these bands lie between those for 
young children and adults. 

2. Corpora of child and adult speech 
Three corpora of British English speech were used in this 

research: The PF-STAR corpus of children’s speech [13], and 
the two “Accents of the British Isles” (ABI) corpora of 
regionally accented adults’ speech: ABI-1 [14] and ABI-2. 
ABI corpus contains speech from 27 different locations 
representing distinct locations, as against with PF-STAR 
which has been recorded in two different locations. But we 
believe that accent differences do not have significant effect 
on the performance of speaker recognition system. 

2.1. The PF-STAR children’s speech corpus 

The PF-STAR children’s speech corpus [13] comprises 14 
hours of recordings from 158 British children (52% male), 
from Birmingham and Malvern, aged between 4-15 years, but 
with 92% of the children aged 6-11.  The speech was recorded 
at 22.05kHz sample rate using close talking and desk 
microphones in a relatively quiet environment (typically a 
room or space off the school library).  The texts were 
presented to the children on a laptop using ‘in-house’ 
prompting and recording software.  From the entire corpus, all 
data from 150 speakers were used; the remaining 8 speakers 
were the youngest children and did not record sufficient data 
to be included in the experiment.  

2.2. The ABI speech corpora 

The Accents of the British Isles (ABI) speech corpora were 
collected to support research into the implications of regional 
accents for speech and language technology.  The two ABI 
corpora comprise recordings of speech representing twenty-six 
regional accents of British English plus ‘Standard Southern 
English’ (SSE).  With the exception of SSE, all of the 
recordings were made on location in towns or cities that were 
judged to be representative of particular accents.  The 
objective in each location was to record twenty subjects (ten 
men and ten women) who were born in the location and had 

lived there for all of their lives.  The SSE speakers were 
selected by a phonetician.  Each subject recorded 
approximately 15 minutes of read speech.  The prompt texts 
were chosen for their relevance to applications or their 
phonetic content.  The microphones, recording and prompting 
software, and sample rate are the same as for the PF-STAR 
corpus.  The recordings were made in relatively quiet rooms in 
libraries or community centres. 

2.2.1. The ABI-1 speech corpus  

ABI-1 [14] comprises recordings of 280 subjects: twenty from 
each of 13 locations representing distinct accents of British 
English plus twenty subjects who were judged to speak 
Standard Southern English.  ABI-1 consists of approximately 
70 hours of recordings, with speakers' ages ranging from 16 to 
79 years.   

2.2.2. The ABI-2 speech corpus 

ABI-2 was recorded using exactly the same methodology as 
ABI-1.  It comprises approximately 70 hours of recordings of 
286 speakers representing 13 regional accents of British 
English that are not covered in the original ABI-1 corpus. The 
material recorded is the same as in ABI-1, except that each 
subject recorded an additional set of 22 SCRIBE sentences.  

3. Speaker verification system 

3.1. Front-end processing 

The front-end processing applied to all corpora is as follows. 
The speech is pre-emphasised and periods of silence were 
discarded using an energy-based speech activity detector 
(SAD).  The speech was then segmented into 32-ms frames 
with a shift of 16-ms between frames, and a Hamming window 
was applied to each frame. The short-time magnitude 
spectrum, obtained by applying the FFT, is passed to a bank of 
32 Mel-spaced triangular band-pass filters, spanning the 
frequency region from 64Hz to 11050Hz.  Each speech frame 
is then represented as a 38 dimensional feature vector, 
consisting of 19 static MFCCs and 19 delta MFCCs. Finally, 
Feature Warping [15], with 3-seconds window, is applied on 
the MFCC feature vectors to reduce the effect of channel 
mismatch and additive noise. 

3.2. Modelling 

The speaker verification system is based on the Gaussian 
Mixture Model - Universal Background Model (GMM-UBM) 
approach. This is a likelihood ratio detector, in which the ratio 
is computed, for an unknown test utterance, of the probability 
of the utterance given the speaker model and the probability of 
the same utterance given the UBM. This score is normalized 
using “max” log likelihood ratio normalisation and then 
compared with a threshold to determine whether the utterance 
is accepted as being from the ‘true speaker’ or rejected as an 
‘impostor’. 

One gender independent UBM was trained using 
approximately 4hrs of speech data from the ABI-1 corpus, 
with 10 iterations of the EM algorithm. 

3.2.1. Speaker dependent training data 

The test speakers were taken from the ABI-2 corpus for adults 
and the PF-STAR corpus for children.  In total, 152 adult 
speaker-dependent GMMs and 150 children speaker-
dependent GMMs are trained. 

http://www.thespeechark.com/abi-1-page.html


 The speaker-dependent GMMs for adults and children 
were obtained by applying MAP-adaptation to the means of 
the GMM-UBM using the relevance factor 10 [3]. In all cases 
the adaptation was performed using approximately 48 seconds 
of speech data from each subject (after silence removal). 

3.2.2. Test data 

The evaluation strategy follows the methodology used in the 
NIST 2003 Speaker Recognition Evaluation Plan [16]. 

The test data for the adults comprises 902 segments from 
the 152 target speakers. Each test segment is evaluated against 
10 randomly chosen ‘impostors’ and the true speaker. 

The test data for the children comprises 875 segments 
from the 150 target speakers.  Each test segment is evaluated 
against 10 randomly chosen ‘impostor’ speakers from the 
same age group as the true speaker. 

The speech duration of each test segment, for both the 
adult and child speech experiments, is fixed at 4.8 seconds 
(after the silence removal). 

4. Experimental results and discussion 
The standard NIST software is used to measure verification 
performance [17].  A 90% confidence interval is calculated for 
the EER and indicated by error bars in the results.  To 
calculate the confidence interval, the parametric method from 
[18] is used to calculate the error margins on the False Accept 
Rate (FAR) and False Reject Rate (FRR) at a given threshold. 

4.1. Effect of number of mixture components  

First we analyse speaker verification performance for adults 
and children for various numbers of mixture components, 
using the maximum 11.025kHz bandwidth.  The results are 
presented in figure 1.  It can be seen that the best performance 
for adults is 0.22% EER with 128 or 256 mixture components.  
This confirms that speaker verification for adults using clean, 
wide-band speech is a relatively easy task [19].  For children 
the best performance is 0.8% EER, also obtained with 128 
mixture components.  This indicates that the speaker 
verification EER for children is nearly four times worse than 
for adults.  
 

4 8 16 32 64 128 256 512
0

0.5

1

1.5

2

2.5

3

Number of Mixture Components

EE
R 

(%
)

 

 

EER with 90% Confidence Interval

 
(a) 

4 8 16 32 64 128 256 512
0.5

1

1.5

2

2.5

3

Number of Mixture Components

EE
R 

(%
)

 

 

EER with 90% Confidence Interval

 
(b) 

Figure 1: Speaker verification performance in terms of 
equal error rate (EER) for adult speech (a) and child 
speech (b) when using the full bandwidth and various 
numbers of mixture components.   

 

4.2. Effect of bandwidth 

In this section, we study the effect of bandwidth on 
verification performance for adults and children.  From 
Section 4.1, it is clear that the EER for the adult data in our 
study is low when 128 mixture components are used.  
Therefore, in order to obtain results that are statistically more 
reliable, the experiments in this section are performed for both 
adults and children using GMMs with just 32 mixture 
components.  This is consistent with [19, 20], where 32 
component GMMs were also used and gave good performance 
on TIMIT.  
      To achieve bandwidth reduction the same 32 band-pass 
filter-bank analysis from the previous experiments was 
performed, but the vector passed to the DCT for calculation of 
the cepstral features consisted of different numbers of 
logarithm filter-bank energies, varying from 21, corresponding 
to the bandwidth of 3.6kHz, to 32, corresponding to the 
maximum bandwidth of 11.025kHz.  
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Figure 2: The speaker verification performance in 
terms of equal error rate (EER) for adult speech (a) 
and child speech (b) as a function of the bandwidth of 
speech signal. 

Verification results, in terms of EER, for adults and 
children as a function of the bandwidth are depicted in figure 
2.  For adults (figure 2(a)), it is evident that it is useful to 
partition the spectrum into three regions: (i) up to 3.5-4kHz, 
(ii) 3.6-4kHz to 5.5kHz, and (iii) above 5.5kHz.  Region (i), 
corresponding to the primary resonances of the vocal tract, 
clearly contains speaker-specific information.  However in 
these experiments there appears to be no benefit from 
including frequencies above 3.6kHz in this region.  Region (ii) 
contributes a 58% reduction in EER.  The importance of this 
region for speaker verification has been noted in [20], where it 
is reported that including the effect of the piriform fossa, 
which is speaker dependent and changes little during speech 
production, in the speech production model introduces spectral 
changes in the frequency region between 4kHz and 5kHz. 



Region (iii) accounts for a further reduction in error rate of 
76%, but over a much larger frequency range. 

Figure 2(b) shows the corresponding results for children’s 
speech.  However, a clearer picture emerges from figures 3(a) 
and 3(b), where the results for younger children (aged 5 to 9 
years) and older children (aged 10 to 15 years) are presented 
separately.  For younger children, the boundary for region (i) 
appears to be between 4.5 and 5.5kHz.  In contrast with the 
case for adults, there is useful information in the 3.6 to 4.5kHz 
region, presumably because the primary vocal tract resonances 
occur at higher frequencies for children, with smaller vocal 
tracts.  Region (ii) lies between 4.5-5.5kHz and 6.5kHz, 
approximately 1kHz higher than for adult speech, and 
contributes a 37% reduction in EER.  It would be interesting to 
know if this is consistent, in terms of physiology, with the 
corresponding result for adult speech.  Region (iii), comprising 
frequencies above 6.5kHz, contributes a 64% reduction in 
EER over 4.5kHz.  

The results for older children (figure 3(b)) are similar to 
those for adults.  
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Figure 3: Speaker verification performance in terms of 
equal error rate (EER) for younger children aged 
from 5 to 9 years (a) and older children aged from 10 
to 14 years (b) as a function of the bandwidth of 
speech signal. 

5. Conclusions 
In this paper, we compared speaker verification performance 
for adults and children and, in both cases, investigated the 
effects of bandwidth on EER.  We found that, as in the case of 
automatic speech recognition, verification performance is 
significantly poorer for children than for adults, with best 
EERs for children and adults of 0.8% and 0.22%, respectively.  
This suggests that any advantage stemming from increased 
inter-speaker variability in children is countered by the 
increase in intra-speaker variability. 
    Turning to bandwidth, we found, as reported elsewhere, that 
in terms of its contribution to speaker verification 
performance, the spectrum can be usefully partitioned into 
three frequency bands.  For adult speech these are: (i) up to 

3.5-4kHz, (ii) 3.5-4kHz to 5.5kHz, and (iii) above 5.5kHz.  
Similar bands occur for child speech, but with boundaries that 
are approximately 1kHz greater than for adults.  
    We conclude that speaker verification and speech 
recognition for child speech pose similar challenges. 
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