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The evolution and coexistence of the nuclear shapes as well as the corresponding low-lying col-
lective states and electromagnetic transition rates are investigated along the Krypton isotopic chain
within the framework of the interacting boson model (IBM). The IBM Hamiltonian is determined
through mean-field calculations based on the several parametrizations of the Gogny energy density
functional and the relativistic mean-field Lagrangian. The mean-field energy surfaces, as functions
of the axial β and triaxial γ quadrupole deformations, are mapped onto the expectation value of the
interacting-boson Hamiltonian that explicitly includes the particle-hole excitations. The resulting
boson Hamiltonian is then used to compute low-energy excitation spectra as well as E2 and E0
transition probabilities for 70−100Kr. Our results point to a number of examples of the prolate-
oblate shape transitions and coexistence both on the neutron-deficient and neutron-rich sides. A
reasonable agreement with the available experimental data is obtained for the considered nuclear
properties.

I. INTRODUCTION

The low-lying structure of Kr isotopes is character-
ized by a rich variety of shape phenomena like shape
transitions when neutron number is varied [1, 2] as well
as shape coexistence and mixing [3]. On the neutron-
deficient side, especially in the case of isotopes with ap-
proximately the same number of protons and neutrons,
the experimental evidence [4] regarding the emergence of
prolate-oblate shape coexistence and mixing has already
been studied using different theoretical frameworks [4–
7]. Low-lying excited 0+ states have been observed for
some Kr nuclei, e.g., 72−78Kr. Those states have been
associated to intruder excitations [3].

In the last few years, it has become possible to ac-
cess neutron-rich Kr nuclei experimentally [8–13]. Even
those isotopes beyond the neutron number N ≈ 60 have
been experimentally studied, as reported quite recently
in Refs. [12, 13] where the spectroscopy of the radioac-
tive isotopes 96,98,100Kr is analyzed. The structural evo-
lution in neutron-rich nuclei with mass number A ≈ 100
is rather sensitive to the underlying shell structure and
such experimental information is quite useful to deepen
our understanding of it and offers the possibility to learn
about unique features related to shape transitions in
neutron-rich Kr isotopes. For instance, in contrast to
its neighboring neutron-rich Sr and Zr nuclei where the
shape transition is suggested to take place rather rapidly
aroundN = 60 [14–16], the onset of deformation is shown
to emerge much more moderately along the Kr isotopic
chain [9, 10, 12].

From a theoretical point of view, the large-scale shell
model [17] and the nuclear energy density functional
(EDF) [18] approaches are among the most popular mi-
croscopic nuclear structure models for medium-heavy and

heavy nuclei. The former allows direct access to the
spectroscopic properties via the diagonalization of the
Hamiltonian matrix defined in the corresponding config-
uration space. However, in open-shell regions with in-
creasing number of valence nucleons, the dimension of the
shell-model matrix becomes exceedingly large making a
systematic investigation of the nuclear spectroscopy less
tractable. On the other hand, the EDF framework allows
the systematic study of several nuclear properties all over
the nuclear chart. A number of self-consistent mean-field
(SCMF) calculations with both non-relativistic [18] and
relativistic [19, 20] EDFs have so far been performed to
investigate structural phenomena in atomic nuclei. Nev-
ertheless, a more quantitative analysis of shape transi-
tions requires the extension of the mean-field framework
so as to include beyond-mean-field correlations associated
with the restoration of broken symmetries and/or fluctu-
ations in the collective parameters within the symmetry-
projected Generator Coordinate Method (see, for exam-
ple, [18, 20, 21]). Though quite robust, the method be-
comes increasingly difficult to implement from a compu-
tational point of view in the case of heavy nuclei and/or
when several collective coordinates have to be considered
in the symmetry-projected GCM ansatz.

To alleviate the computational effort required in
symmetry-projected GCM configuration mixing calcu-
lations several approximations have already been em-
ployed. Among them we mention here the five-
dimensional collective Hamiltonian (5DCH) approach,
based on both non-relativistic [22] and relativistic [20]
EDFs, and the fermion-to-boson mapping procedure that
allows to build an algebraic model of interacting bosons
[23] starting from a given EDF. In this study, we resort
to the latter approach [23] and use the microscopic en-
ergy surface of a given nucleus, obtained via constrained
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mean-field calculations [24], as input to a mapping pro-
cedure involving the intrinsic wave function of the bo-
son system taking into account particle-hole excitations.
This mapping procedure allows the determination of the
parameters of the corresponding (bosonic) IBM Hamil-
tonian that is subsequently used to compute the excita-
tion spectra and electromagnetic transition rates for a
give nuclear system. At variance with the phenomeno-
logical IBM calculations, where the parameters of the
Hamiltonian are fitted to reproduce spectroscopic data,
within the already mentioned fermion-to-boson mapping
procedure [23] the corresponding IBM Hamiltonian is ob-
tained from microscopic EDF calculations and, therefore,
the method can be extrapolated to regions of the nuclear
chart where experimental data are scarce or even not
available. Several applications of the fermion-to-boson
mapping procedure have been reported in the literature.
For instance, it has recently been employed to describe
shape transitions and shape coexistence in Ru, Mo, Zr
and Sr isotopes with mass number A ≈ 100 [25] as well
as for neutron-rich Ge and Se nuclei with 70 ≤ A ≤ 90
[26].

In this study, we have resorted to the parametrization
D1M [27] of the Gogny EDF to obtain, via mean-field
calculations, the required microscopic input used to build
the IBM Hamiltonian. To examine the robustness of our
fermion-to-boson mapping procedure with respect to the
underlying EDF, calculations have been performed with
two other parametrizations of the Gogny EDF, i.e., D1S
[28] and D1N [29]. Furthermore, mean-field calculations
have also been carried out with the density-dependent
meson-exchange (DD-ME2) [30] and point-coupling (DD-
PC1) [31] relativistic EDFs. Nevertheless, in our discus-
sions we will mainly focus on the results obtained with
the Gogny-D1M EDF since, as will be shown, the results
to be presented later on in this study do not depend sig-
nificantly on the underlying EDF employed in the map-
ping procedure.

The paper is organized as follows. In Sec. II, we
briefly outline the fermion-to-boson mapping procedure
employed in this work to study the isotopes 70−100Kr.
The results of our calculations are presented in Sec. III.
First, in Sec. III A, we discuss the microscopic energy
surfaces obtained at the mean-field level as well as the
mapped IBM ones. The IBM parameters derived via the
mapping procedure and the configurations employed in
the calculations are presented in Sec. III B. In Secs. III C
and III D, we turn our attention to spectroscopic proper-
ties such as the systematics of the energy spectra and the
transition rates predicted in our calculations as well as
to the comparison with the available experimental data.
The detailed spectroscopy of a selected sample of Kr iso-
topes is discussed in Sec. III E. In Sec. III F, we consider
the sensitivity of the results with respect to the underly-
ing EDF used in the mapping procedure. Finally, Sec. IV
is devoted to the concluding remarks and work perspec-
tives.

II. DESCRIPTION OF THE MODEL

In this section, we briefly outline the fermion-to-boson
mapping procedure employed in this work. For a more
detailed account, the reader is referred to [25, 26] and
references therein.

A. SCMF calculations

The first step in our procedure is to perform a set of
constrained SCMF calculations, within the Hartree-Fock-
Bogoliubov (HFB) method and based on the Gogny-
D1M EDF [32]. We have also carried out mean-field
calculations with the parametrizations D1S [28] and
D1N [29] of the Gogny-EDF as well as with the rel-
ativistic DD-ME2 [30] and DD-PC1 [31] EDFs. In
this way we obtain the HFB deformation energy sur-
faces parametrized by the usual quadrupole shape de-
grees of freedom β and γ [33]. Here, we have used con-

straints on the operators Q̂20 and Q̂22. They are re-
lated to the deformation parameters β and γ through

the relations β =
√

4π/5

√
〈Q̂20〉2 + 〈Q̂22〉2/〈r2〉 and

γ = arctan (〈Q̂22〉/〈Q̂20〉), respectively. In the previ-
ous expressions, 〈r2〉 denotes the mean-square radius ob-
tained from the corresponding HFB state.

B. IBM framework

The building blocks of the IBM system, that predom-
inantly determine the low-energy quadrupole collective
states, are the Jπ = 0+ (s) and 2+ (d) bosons which
represent the collective Jπ = 0+ and 2+ pairs of valence
nucleons, respectively [34, 35]. Therefore, the number of
bosons nb equals that of pairs of valence nucleons (par-
ticle or hole) [34, 35]. The boson Hamiltonian is diago-
nalized in a given valence space (one major shell). In the
present work, we use the same model space for the bo-
son system as in our previous study [26], i.e, the proton
Z = 28−50 major shell and the neutron N = 28−50 (for
70−86Kr) and N = 50 − 82 (for 88−100Kr) major shells.
For the sake of simplicity, no distinction is made between
proton and neutron bosons.

For many of the studied Kr isotopes, the Gogny-D1M
HFB energy surfaces exhibit more than one minimum,
reflecting a pronounced competition between different in-
trinsic configurations. Previous IBM calculations already
suggest that the low-lying 0+2 state in neutron-deficient
Kr isotopes, as well as in the neighboring Se and Ge nu-
clei, could arise from particle-hole excitations and there-
fore have an intrinsic structure different from the one of
the ground state [36–38]. As a consequence, to describe
the structure of Kr isotopes, it is necessary to extend the
IBM framework so as to include the effect of particle-hole
excitations. To this end, we have adapted the configu-
ration mixing technique developed by Duval and Bar-
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rett [39, 40]. Within this context, shell-model-like 2k-
particle-2k-hole (k = 0, 1, 2, . . .) configurations are asso-
ciated with boson spaces comprising nb+2k bosons. The
different boson subspaces are allowed to mix via an in-
teraction term that does not preserve the boson number.
The configuration-mixing IBM Hamiltonian is then di-
agonalized in the space [nb] ⊕ [nb + 2] ⊕ [nb + 4] ⊕ · · · ,
with [nb+2k] being the unperturbed boson subspace. As
in previous calculations [26], we have considered proton
particle-hole excitations across the Z = 28 major shell
gap. Moreover, as will be shown below, the Gogny-HFB
energy surfaces display up to three mean-field minima.
Those minima are sufficiently well defined so as to con-
strain the corresponding unperturbed IBM Hamiltonian
and, therefore, we consider up to three configurations:
the normal 0p − 0h as well as the intruder 2p − 2h and
4p− 4h excitations.

The configuration mixing IBM Hamiltonian employed
in this work reads

Ĥ = Ĥ0 + (Ĥ1 + ∆1) + (Ĥ2 + ∆2) + Ĥmix
01 + Ĥmix

12 ,(1)

where Ĥk (k = 0, 1, 2) is the Hamiltonian for the un-

perturbed configuration space [nb + 2k] while Ĥmix
kk+1

(k = 0, 1) stands for the interaction mixing [nb + 2k]
and [nb + 2(k + 1)] spaces. In Eq. (1), ∆1 and ∆2 rep-
resent the energy needed to excite one and two bosons
from one major shell to the next.

For each configuration space, we have employed the
simplest form of the IBM-1 Hamiltonian that still
simulates the essential ingredients of the low-energy
quadrupole dynamics, i.e.,

Ĥk = εkn̂d + κkQ̂ · Q̂+ κ′kV̂ddd, (2)

The first term in Eq. (2) is the d-boson number oper-
ator, with εk (k = 0, 1, 2) being the single d-boson en-
ergy in the [nb + 2k] space. The second term represents
the quadrupole-quadrupole interaction with strength pa-
rameter κk. The quadrupole operator Q̂ reads Q̂ =
s†d̃ + d†s + χk[d† × d̃](2), where χk is a parameter. On
the other hand, the third term stands for the most rele-
vant three-body interaction with strength κ′k. This term
is required to describe γ-soft systems [41] and takes the
form

V̂ddd = [[d† × d† × d†](3) × [[d̃× d̃× d̃](3)](0). (3)

The mixing interaction Ĥmix
kk+1 (k = 0 or 1) reads

Ĥmix
kk+1 = ωsks

†s† + ωdkd
† · d† + (h.c.), (4)

where ωsk and ωdk are strength parameters. For simplicity,
we have assumed ωsk = ωdk ≡ ωk. There is no direct
coupling between the [nb] and [nb + 4] spaces with the
two-body interactions.

To associate the configuration-mixing IBM Hamilto-
nian of Eq. (1) with the corresponding Gogny-HFB en-
ergy surface, an extended boson coherent state has been
introduced [42]:

|n0, (β0, γ0)〉 ⊕ |n1, (β1, γ1)〉 ⊕ |n2, (β2, γ2)〉, (5)

where nk = nb + 2k (k = 0, 1, 2). For each unperturbed
configuration space |nk, (βk, γk)〉 (k = 0, 1, 2), the coher-
ent state is taken in the form

|nk, (βk, γk)〉 =
1√
nk!
×

((s† + βk cos γkd
†
0 +

1√
2
βk sin γk(d†+2 + d†−2)))nk |0〉(6)

where |0〉 denotes the inert core. For each unper-
turbed configuration [nb + 2k], the boson analogs of the
quadrupole deformation parameters β and γ are denoted
by βk and γk, respectively [33]. They are assumed to
be in correspondence with the ones of the the Gogny-
HFB by means of a linear dependence with βk = Ckβ
and γk = γ. The constants Ck are also determined by
fitting the (fermionic) Gogny-HFB energy surface to the
(bosonic) IBM one by requiring that the position of the
minimum is reproduced for each unperturbed configura-
tion.

The expectation value of the total Hamiltonian Ĥ in
the coherent state Eq. (5) leads to a 3× 3 matrix [42]:

E =

 E0(β, γ) Ω01(β) 0
Ω01(β) E1(β, γ) + ∆1 Ω12(β)

0 Ω12(β) E2(β, γ) + ∆2

 , (7)

with diagonal and off-diagonal elements accounting for
the expectation values of the unperturbed and mixing
terms, respectively. The three eigenvalues of E corre-
spond to specific energy surfaces. It is customary to take
the lowest-energy one [42] as the IBM energy surface.
Both Ek(β, γ) and Ωkk+1(β) are computed analytically.
Their expressions can be found in Ref. [26].

C. Derivation of the IBM parameters: the fitting
procedure

The Hamiltonian in Eq. (1) contains 16 parameters.
They have been determined along the following lines:

(i) The unperturbed Hamiltonians are determined by
using the procedure of Refs. [23, 25, 43]: each di-
agonal matrix element Ek(β, γ) in Eq. (7) is fit-
ted to reproduce the topology of the Gogny-HFB
energy surface in the neighborhood of the corre-
sponding minimum. The normal [nb] configuration
is assigned to the HFB minimum with the smallest
β deformation, the [nb+2] configuration is assigned
to the minimum with the second smallest β defor-
mation and the [nb + 4] configuration is associated
to the minimum with the third smallest β deforma-
tion. In this way, each unperturbed Hamiltonian is
determined independently.

(ii) The energy offset ∆k+1 (k = 0, 1) is determined so
that the energy difference between the two minima
of the Gogny-HFB energy surface, associated with
the [nb + 2k] and [nb + 2(k + 1)] configurations, is
reproduced.
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(iii) The strength parameter ωkk+1 (k = 0, 1) of the

mixing interaction term Ĥmix
kk+1 is determined so as

to reproduce the shapes of the barriers between
the minima corresponding to the [nb + 2k] and
[nb + 2(k + 1)] configurations [44, 45]. Steps (ii)
and (iii) are repeated until the best match is ob-
tained between the HFB and IBM energy surfaces.

We have assumed that the boson-number dependence of
the κ parameter is consistent with earlier IBM calcula-
tions [23, 35], i.e., κ decreases in magnitude as a function
of nb, to determine the parameters of the unperturbed
Hamiltonians. In step (i), the link of the unperturbed
configurations with the deformed minima is based on the
assumption that the interpretation of shape coexistence
in the neutron-deficient lead region [46–48] also holds
here. Obviously, this assumption can only be tested a
posteriori as a function of the results obtained for the
considered nuclei.

Once the IBM parameters are determined for each
Kr nucleus, the Hamiltonian Ĥ is diagonalized in the
[nb] ⊕ [nb + 2] ⊕ [nb + 4] space by using the code IBM-
1 [49]. The IBM wave functions resulting from the di-
agonalization are then used to compute electromagnetic
properties, including E2 and E0 transitions, that could
be considered signatures of shape coexistence and shape
transitions. The B(E2) transition probability reads

B(E2; Ji → Jf ) =
1

2Ji + 1
|〈Jf ||T̂ (E2)||Ji〉|2, (8)

where Ji and Jf are the spins of the initial and final
states, respectively. On the other hand, the ρ2(E0) val-
ues are computed as

ρ2(E0; 0+i → 0+f ) =
Z2

R4
0

|〈0+f ||T̂
(E0)||0+i 〉|

2 (9)

where R0 = 1.2A1/3 fm.
The E0 and E2 operators take the form T̂ (E0) =∑
n=0,1(es0,nn̂s + ed0,nn̂d) and T̂ (E2) =

∑
n=0,1 e2,nQ̂, re-

spectively. For the effective charges for the E0 opera-
tor we have assumed es0,0 = es0,1 = es0,2 ≡ es0 as well as

ed0,0 = ed0,1 = ed0,2 ≡ ed0. Also, the ratio ed0/e
s
0 = 1.4 has

been assumed so as to obtain an overall agreement with
the experimental trend of the ρ2(E0; 0+2 → 0+1 ) values
around N = 40. The remaining parameter es0 is fitted to
reproduce the experimental ρ2(E0; 0+2 → 0+1 ) value for
76Kr. For the E2 effective charges, we have assumed the
ratios e2,1/e2,0 = κ1/κ0 and e2,2/e2,0 = κ2/κ0, based on
the fact that both the effective charge and quadrupole
interaction are proportional to the mean-square proton
radius [39, 40]. We have then fitted the overall factor e2,0
to the experimental B(E2; 2+1 → 0+1 ) value for 76Kr [50].

III. RESULTS

In this section, we discuss the results of our calcu-
lations for the selected set of Kr isotopes. First, in

Sec. III A, we discuss the (β, γ)-deformation energy sur-
faces obtained from the SCMF calculations as well as
the mapped IBM ones. The IBM parameters derived
via the mapping procedure and the configurations em-
ployed in the calculations are presented in Sec. III B. In
Secs. III C and III D, we discuss spectroscopic properties
such as the systematics of the energy spectra and the
transition rates predicted in our calculations in compar-
ison with the available experimental data. The detailed
spectroscopy of a selected sample of Kr isotopes is dis-
cussed in Sec. III E. Finally, in Sec. III F, we consider the
sensitivity of the results with respect to the underlying
EDF used in the mapping procedure.

A. Deformation energy surfaces

The Gogny-D1M HFB energy surfaces are depicted in
Fig. 1 for the studied 70−100Kr isotopes. In the case of
70Kr, one observes an absolute oblate and a secondary
prolate minima. The energy surface obtained for 72Kr
exhibits a complex topology with two oblate (β ≈ 0.2
and ≈ 0.3) and a prolate (β ≈ 0.4) minima. For 74Kr,
the two oblate minima (β = 0.04 and 0.15) are much
softer in β, while the prolate one becomes more pro-
nounced. Thus, 74Kr presents one of the best examples
for the prolate-oblate shape coexistence in this region of
the nuclear chart. In the case of 76Kr, we find a spherical
global minimum that could be associated with the neu-
tron N = 40 sub-shell closure and a very shallow oblate
minimum around β = 0.17. On the other hand, the pro-
late minimum becomes less pronounced. For the nucleus
78Kr, we have obtained an almost invisible prolate mini-
mum while for 80−86Kr only a single nearly-spherical min-
imum is found reflecting, the effect of the N = 50 shell
closure. On the neutron-rich side with N > 50, one re-
alizes that the Gogny-D1M surfaces for 88−92Kr exhibit
a pronounced γ softness. An oblate and γ-soft minimum
develops for 94Kr. In the case of 96−100Kr, the prolate
local minimum appears at β ≈ 0.4. Those nuclei exhibit
a spectacular prolate-oblate shape coexistence, similarly
to 72−76Kr on the neutron-deficient side.

Let us mention, that similar energy surfaces have been
obtained for the considered nuclei with the Gogny-D1S
and D1N EDFs. However, we observe certain quantita-
tive differences between the Gogny-D1M and the rela-
tivistic EDFs, especially for those nuclei around N = 40
and N = 60. Hence we present in Fig. 2 the SCMF
energy surfaces obtained for 74,76Kr and 96,98Kr using
relativistic Hartree-Bogoliubov calculations based on the
DD-PC1 EDF. The DD-PC1 EDF provides stiffer energy
surfaces with much higher barriers between the minima
than the Gogny-D1M ones. We have also confirmed that
there are no significant differences between the energy
surfaces obtained with the relativistic DD-PC1 and DD-
ME2 mean-field Lagrangians.

Finally we present in Fig. 3 the mapped IBM energy
surfaces based on the Gogny-D1M ones already shown
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FIG. 1. (Color online) SCMF (β, γ)-deformation energy surfaces for the 70−100Kr nuclei, obtained with the Gogny-D1M EDF.
The energy difference between neighboring contours is 100 keV.

FIG. 2. (Color online) The same as in Fig. 1, but for 74Kr,
76Kr, 96Kr and 98Kr, computed with the DD-PC1 EDF.

in Fig. 1. The comparison between the Gogny-D1M and
IBM surfaces reveals that the latter mimic key features
of the former in the neighborhood of the minima (their
locations and depths, the curvatures along the β and γ
directions). As in previous works [25, 26], the IBM sur-
faces look simpler than the mean-field ones. For instance,
in the region far from each minimum the IBM surfaces
become too flat. Such a discrepancy can be attributed to
the simplified form of the considered IBM Hamiltonian
and/or to the limited boson model space built only on the

valence nucleons. Nevertheless, as will be shown later on
in this paper, the low-lying collective states are deter-
mined mainly by the configurations around the minima,
while the regions far from the minima are dominated by
single-particle degrees of freedom. This is the reason why
we have tried to reproduce the topology of the Gogny-
D1M energy surfaces only in the neighborhood of the
corresponding minima.

B. Configurations and derived parameters

The (β, γ)-coordinates on the Gogny-D1M energy sur-
faces associated with the unperturbed IBM Hamiltoni-
ans of the [nb], [nb + 2] and [nb + 4] configurations are
given in Table I. Let us mention, that the assignment of
the unperturbed configurations for 70Kr and 94Kr does
not follow the rule mentioned in Sec. II C [step (i)]. For
those nuclei, the normal [nb] configuration is assigned to
the oblate minimum while the [nb + 2] configuration is
assigned to the prolate one with smaller β value than the
former. The reason is that we assume that the intrin-
sic structure of each unperturbed Hamiltonian does not
change too much from one nucleus to the next. As can be
seen from the table, the assignment of the [nb] and [nb+2]
configurations to oblate and prolate shapes in the nuclei
72Kr and 92,96Kr is similar to the cases of 70Kr and 94Kr,
respectively. It is also apparent from the table that the
number of configurations included in the model space dif-
fers from nucleus to nucleus. Let us stress, that intruder
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FIG. 3. (Color online) The same as in Fig. 1, but for the mapped IBM energy surfaces.

configurations are included in our calculations depending
on whether the curvatures around the HFB minimum in
both β and γ directions are large enough to uniquely
determine the corresponding unperturbed Hamiltonian.

TABLE I. The (β, γ) coordinates on the Gogny-D1M energy
surfaces associated with the unperturbed IBM Hamiltonians
in the [nb], [nb + 2] and [nb + 4] configurations.

[nb] [nb + 2] [nb + 4]
70Kr (0.26, 60◦) (0.23, 0◦) -
72Kr (0.19, 60◦) (0.32, 60◦) (0.40, 0◦)
74Kr (0.04, 60◦) (0.15, 60◦) (0.48, 0◦)
76Kr (0.0, 0◦) (0.17, 60◦) (0.43, 0◦)
78Kr (0.0, 0◦) (0.15, 60◦) -
80Kr (0.04, 0◦) - -
82Kr (0.11, 0◦) - -
84Kr (0.06, 0◦) - -
86Kr (0.0, 0◦) - -
88Kr (0.08, 0◦) - -
90Kr (0.14, 0◦) - -
92Kr (0.19, 60◦) (0.21, 0◦) -
94Kr (0.25, 60◦) (0.21, 0◦) -
96Kr (0.31, 60◦) (0.40, 0◦) -
98Kr (0.28, 60◦) (0.40, 0◦) -
100Kr (0.25, 60◦) (0.38, 0◦) -

The parameters of the IBM Hamiltonian Eq. (1) are
plotted in Fig. 4 as functions of the neutron number N .
In the case of the unperturbed Hamiltonians [panels (a)

to (d)] those parameters reflect the structural evolution
along the considered isotopic chain. For example, the ε
value for the [nb] configuration becomes larger towards
the neutron sub-shell closure N ≈ 40 [see, panel (a)]
though this is not taken into account explicitly in the
model space we have employed in this study. On the
other hand, the parameter κ [panel (b)] is much larger
than the one employed in the IBM-1 phenomenology [51].
Such a large κ value is required to reproduce the cur-
vature around the minimum of the Gogny-D1M energy
surface. The positive (negative) values of the parameter
χ [panel (c)] correspond to oblate (prolate) shapes. The

V̂ddd term Eq. (3) is only relevant for γ softness. There-
fore, the strength parameter κ′ has only been considered
for those configurations corresponding to γ-soft minima.
The behavior of the mixing strength ω [panel (e)] and the
energy offset ∆ [panel (f)] around N = 36 and 60 corre-
spond to the significant change expected in the nuclear
structure around those neutron numbers.

C. Systematics of excitation spectra

Even though the analysis of the (β, γ)-deformation en-
ergy surfaces provides useful insights into both the shape
transition and shape coexistence phenomena in the stud-
ied Kr isotopes, a more quantitative analysis should go
beyond the mean-field level to examine spectroscopic
properties such as the excitation spectra and transition
rates which can be directly compared with the available
experimental data. In this and the following Sec. III D,
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FIG. 4. (Color online) Derived IBM parameters for the [nb],
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70−100Kr as functions of N . The theoretical results are ob-
tained with the Gogny-D1M and relativistic DD-PC1 EDFs.

we turn our attention to those properties.
The excitation energies of the 2+1 [panel (a)], 4+1 [panel

(b)], 0+2 [panel (c)] and 2+2 [panel (d)] states are plotted in

Fig. 5 as functions of the neutron number N . The results
obtained with the parametrization D1M of the Gogny-
EDF are compared with those obtained using the DD-
PC1 relativistic mean-field Lagrangian as well as with
the available experimental data [10–13, 50]. The fraction
of the three configurations [nb], [nb + 2] and [nb + 4] in
the wave functions of the 0+1 , 2+1 , 0+2 and 2+2 states are
given in Table II.

The energy spectra, computed with the D1M and
DD-PC1 EDFs display a reasonable agreement with the
experimental data. The E(2+1 ) excitation energy can
be regarded as one of the basic quantities signalling a
shape/phase transition [1, 2]. The predicted E(2+1 ) ener-
gies, shown in panel (a) of Fig. 5, nicely follow the exper-
imental trend though at N = 36 our calculations rather
underestimate the experiment. Note, that the lowering
of the E(2+1 ) towards the midshells, on both the neutron-
deficient (N ≈ 40) and the neutron-rich (N ≈ 64) sides,
signals the emergence of quadrupole collectivity. Further-
more, the decrease of the predicted E(2+1 ) energies on the
neutron-rich side agrees well with the smooth onset of de-
formation suggested by recent experiments [9, 10]. Simi-
lar results are obtained for the E(4+1 ) excitation energies
[panel (b)]. However, they overestimate the experimental
data at N = 50 due to the limited IBM space consisting
only of s and d bosons. Those results also indicate the
need of including Jπ = 4+ (or g) bosons in our calcula-
tions. Work along these lines is in progress and will be
reported elsewhere.

The E(0+2 ) excitation energies are plotted in panel (c)
of Fig. 5. As can be seen, our calculations describe fairly
well the experimental data around N = 40 where a pro-
nounced coexistence between oblate and prolate shapes is
suggested by the corresponding Gogny-D1M energy sur-
faces (see, Fig. 1). The predicted values overestimate the
experimental ones from N = 44 to 50 since configuration
mixing has not been performed for those nuclei. Beyond
the neutron shell closure N = 50 one observes a lowering
in the predicted energies towards N = 64.

The E(0+2 ) values obtained with both the D1M and
DD-PC1 EDFs display a peak at N = 60. This could be
a consequence of the prolate local minimum that emerges
for 96Kr at β ≈ 0.4 (see, Fig. 1). The 0+2 state in this nu-
cleus is mainly made of the prolate configuration (see, Ta-
bles I and II). The Gogny-D1M result exhibits an abrupt
decrease from N = 60 to 62, where the prolate minimum
becomes much more pronounced. A similar observation
can be made for the systematics of the E(2+2 ) excitation
energies in panel (d). In the case of the DD-PC1 EDF,
higher E(0+2 ) and E(2+2 ) excitation energies than those
obtained with the Gogny-D1M EDF are predicted for the
neutron-rich Kr isotopes. This difference can be mainly
attributed to the different topology of the corresponding
energy surfaces. In fact, as we have already shown in
Figs. 1 and 2, the DD-PC1 surfaces are generally stiffer
than the D1M ones.
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TABLE II. Fraction (in units of percent) of the three config-
urations [n0], [n1] and [n2] (nk = nb + 2k) in the 0+

1 , 0+
2 , 2+

1

and 2+
2 wave functions of those Kr nuclei where configuration

mixing has been performed in the present calculation.

0+
1 0+

2 2+
1 2+

2

[n0] [n1] [n2] [n0] [n1] [n2] [n0] [n1] [n2] [n0] [n1] [n2]
70Kr 89 11 - 18 82 - 94 6 - 23 77 -
72Kr 58 42 0 42 58 0 43 56 0 57 43 0
74Kr 5 77 18 2 17 82 2 54 44 2 44 54
76Kr 23 74 3 68 28 3 12 85 4 13 68 19
78Kr 56 44 - 44 56 - 42 58 - 49 51 -
94Kr 83 17 - 17 83 - 87 13 - 20 80 -
96Kr 93 7 - 10 90 - 96 4 - 19 81 -
98Kr 60 40 - 42 58 - 50 50 - 56 44 -
100Kr 32 68 - 68 32 - 21 79 - 79 21 -

D. Systematics of E2 and E0 transition rates
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FIG. 6. (Color online) The experimental [4, 50, 52] and
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1 → 0+
1 ) (a), B(E2; 4+

1 → 2+
1 ) (b),

B(E2; 0+
2 → 2+

1 ) (c), and B(E2; 2+
2 → 2+

1 ) (d) transition
strengths (in Weisskopf units), and ρ2(E0; 0+

2 → 0+
1 ) values

for the 70−100Kr nuclei depicted as functions of the neutron
number. The theoretical calculations have been performed
based on the Gogny-D1M and relativistic DD-PC1 EDFs.

In this section we discuss the systematics of the B(E2)
and ρ2(E0) transition strengths. In Fig. 6 we have
plotted, the experimental [4, 50, 52] and theoretical

B(E2; 2+1 → 0+1 ) [panel (a)], B(E2; 4+1 → 2+1 ) [panel (b)],
B(E2; 0+2 → 2+1 ) [panel (c)], and B(E2; 2+2 → 2+1 ) [panel
(d)] transition strengths as well as the ρ2(E0; 0+2 → 0+1 )
values [panel (e)], as functions of the neutron number N .
Results have been obtained with the Gogny-D1M and
DD-PC1 EDFs.

The B(E2; 2+1 → 0+1 ) and B(E2; 4+1 → 2+1 ) transi-
tion probabilities agree reasonably well with the exper-
imental data. They display the well-known systemat-
ics signaling the development of collectivity, i.e., they
increase when departing from the shell closure and be-
come maximal around midshell. On the other hand,
the B(E2; 0+2 → 2+1 ) transition probabilities can be re-
garded as a measure of shape mixing. As can be seen
from panel (c), the B(E2; 0+2 → 2+1 ) values, obtained
with both the D1M and DD-PC1 EDFs, exhibit a peak
around N = 40 where the corresponding mean-field en-
ergy surfaces display coexisting minima and their mix-
ing is expected to be strong. However, the theoretical
B(E2; 0+2 → 2+1 ) values for 74,76Kr considerably under-
estimate the experimental ones [4]. Note, that the ex-
perimental value B(E2; 0+2 → 2+1 ) = 255±27 W.u [4] for
74Kr is too large compared to the one obtained in our
calculations and, therefore, not shown in the figure. This
is due to the fact (see, Table II) that the compositions of
the 0+2 and 2+1 IBM wave functions are rather different.
Furthermore, the small B(E2; 0+2 → 2+1 ) values obtained
for neutron-rich Kr isotopes indicate that there is almost
no mixing between the 0+2 and 2+1 states. A pronounced
difference between the D1M and DD-PC1 EDFs is ob-
served in the case of 74Kr for which the B(E2; 0+2 → 2+1 )
value obtained with the latter is almost zero. As can be
seen from Figs. 1 and 2, the DD-PC1 energy surface for
74Kr displays three minima within 1 MeV a structure,
more complex than the corresponding Gogny-D1M one.
Therefore, the IBM Hamiltonian used in this study seems
to be too simple to account for the large experimental
B(E2; 0+2 → 2+1 ) value.

Experimental data are also available for the
B(E2; 2+2 → 2+1 ) transition probability. They are
depicted in panel (d) of Fig. 6. Our calculations, with
both the Gogny-D1M and DD-PC1 EDFs, follow the
experimental trend from N = 44 to 50. However, they
overestimate the experimental values for 76,78Kr. As can
be seen from Table II, the 2+1 and 2+2 wave functions for
those nuclei have a similar structure, leading to large E2
matrix elements.

Finally, another signature of shape coexistence is pro-
vided by the ρ2(E0; 0+2 → 0+1 ) values [3]. They are com-
pared in panel (e) with the experiment [52]. Both the
experimental and theoretical ρ2(E0; 0+2 → 0+1 ) values are
notably large around N = 38 − 40 signalling the shape
coexistence in those isotopes. Note that, regardless of
the considered EDF, the agreement with the experimen-
tal data is rather good.
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E. Detailed spectroscopy of selected isotopes
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FIG. 7. (Color online) The theoretical low-energy excitation
spectra and B(E2) transition strengths (in W.u., indicated
along arrows) of the 74Kr and 76Kr isotopes obtained from
the Gogny-D1M EDF, in comparison to the available experi-
mental data [4, 50].

We now turn our attention to a more detailed anal-
ysis of the low-energy spectroscopy of individual nuclei.
To this end, we consider the neutron-deficient 74,76Kr
and the neutron-rich 96,98Kr isotopes that exhibit a pro-
nounced shape coexistence. The corresponding IBM
states have been grouped into bands according to the
dominant E2 decay patterns.

The Gogny-D1M energy surfaces for 74,76Kr display
coexisting spherical, oblate and prolate minima (see,
Fig. 1). One of the most remarkable features of the spec-
tra obtained for those nuclei is, the presence of low-lying
0+2 states (see, Fig. 5). As can be seen from Fig. 7, the
low-energy excitation spectra obtained for 74,76Kr, with
the Gogny-D1M EDF, agree reasonably well with the ex-
perimental ones [4]. In our calculations, the 0+1 ground
states for both 74,76Kr are mainly oblate in nature while
the 0+2 states are predominantly prolate and spherical,
respectively (see, Tables I and II). In the case of 74Kr,
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FIG. 8. (Color online) The same as in Fig. 7, but for 96Kr and
98Kr. The experimental data have been taken from Refs. [10,
12, 13].

our calculations suggest rather large inter-band B(E2)
transitions between the lowest-spin states of the ground-
state and the first excited bands. This is confirmed by
the strong B(E2; 0+2 → 2+1 ) and B(E2; 2+2 → 2+1 ) val-
ues which are, about the same order of magnitude as
the B(E2; 2+1 → 0+1 ) rate. Note, however, that the pre-
dicted B(E2; 0+2 → 2+1 ) value accounts for only half the
experimental one [4]. As already mentioned above, this
disagreement suggests that a much stronger mixing be-
tween those states would be necessary to reproduce the
large experimental B(E2; 0+2 → 2+1 ) transition proba-
bility. Previous five-dimensional collective Hamiltonian
(5DCH) calculations [6] based on the relativistic PC-PK1
EDF also underestimate the strong B(E2; 0+2 → 2+1 ) rate
for 74Kr. On the other hand, the 5DCH calculations
based on the Gogny-D1S EDF [4] account for it. Our
results also suggest that in the case of 74Kr the quasi-γ
band is built on the 2+3 state. The computed 0+3 ex-
citation energy agrees well with the experimental result
whereas the B(E2; 0+3 → 2+1 ) value is too small compared
to the latter.

As shown in the lower panel of Fig. 7, our calculations
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provide a reasonable agreement with the experimental
data for 76Kr. However, as in the case of 74Kr, they
underestimate the B(E2; 0+2 → 2+1 ) transition strength.
Note, that the theoretical 3+ and 4+ levels in the quasi-γ
band, i.e., the second excited band built on the 2+3 state,
of 76Kr are reversed. This might be a consequence of
the strong level repulsion among the 4+ states due to
configuration mixing.

In Fig. 8, we have plotted the low-energy excitation
spectra for the neutron-rich nuclei 96,98Kr. which ex-
hibit spectacular coexistence between prolate and oblate
shapes (see, Fig. 1). As can be seen from Tables I and II,
for both nuclei the 0+1 and 0+2 states are mainly arising
from the oblate and prolate configurations, respectively,
while the two configurations are more strongly mixed in
98Kr than in 96Kr. The predicted level schemes for both
nuclei look rather similar and reproduce the experimental
systematics [10, 12, 13] for the lowest-lying states.

Note, that the level of accuracy of our results in de-
scribing the low-energy spectra shown in Figs. 7 and 8 is,
comparable with that of the recent symmetry-projected
GCM calculation, based on the Gogny-D1S EDF, in
which the triaxial deformation was included as a gener-
ating coordinate [7]. In Ref. [7], similar low-energy band
structure to ours has been obtained for 74,76Kr as well as
for 96,98Kr. The energy spectra for 96,98Kr in the present
calculation, however, generally look more stretched than
those obtained in Ref. [7].

F. Sensitivity test

Among the various factors that could affect the spec-
troscopic properties obtained for the studied nuclei, the
choice of the EDF at the mean-field level is a relevant
one since the parameters of the IBM Hamiltonian are
determined as so to reproduce the topology of the SCMF
energy surfaces. In this section, we analyze the sensitiv-
ity of the calculated excitation spectra with respect to
the choice of the underlying EDF. To this end, in Fig. 9,
we have compared the low-energy excitation spectra ob-
tained for 76Kr (upper panel) and 98Kr (lower panel).
Calculations have been carried out with three different
parametrizations of the Gogny-EDF, i.e., D1S [28], D1M
[27] and D1N [29] as well as with two parametrizations of
the relativistic mean-field Lagrangian, i.e., DD-ME2 [30]
and DD-PC1 [31]. The experimental data are also in-
cluded in the plots. As can be seen from the figure, all the
EDFs provide similar excitation spectra for 76Kr. On the
other hand, in the case of 98Kr, the spectra obtained with
the three Gogny EDFs are rather similar while there are
significant differences with the ones provided by the DD-
ME2 and DD-PC1 parameter sets which provide much
more stretched energy levels, particularly for the non-
yrast states.
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FIG. 9. (Color online) Comparison of the low-energy excita-
tion spectra obtained for 76Kr and 98Kr with the Gogny D1S,
D1M and D1N EDFs as well as with the relativistic DD-ME2
and DD-PC1 EDFs. The corresponding experimental spectra
are also included in the plot.

IV. SUMMARY AND PERSPECTIVES

In this paper, we have studied the shape transition
and shape coexistence phenomena along the Kr iso-
topic chain. To this end, the nuclei 70−100Kr have been
taken as an illustrative sample. We have resorted to a
fermion-to-boson mapping procedure based on mapping
the fermionic (β, γ) energy contour plot onto the expecta-
tion value of the IBM Hamiltonian that includes configu-
ration mixing. The parameters of the IBM Hamiltonian
have been determined through this procedure and used
to compute spectroscopic properties that characterize the
structural evolution along the Kr isotopic chain. The mi-
croscopic input to our calculations is provided by SCMF
calculations based on the nonrelativistic Gogny-EDF as
well as different parametrizations of the relativistic mean-
field Lagrangian. In particular, for the former we have
considered the three parameter sets D1S, D1N and D1M
while for the latter we have considered the DD-ME2 and
DD-PC1 parametrizations.
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The Gogny-D1M energy surfaces suggest an oblate
ground state for 70Kr, coexisting oblate and prolate min-
ima in the case of 72,74Kr and spherical-oblate-prolate
triple shape coexistence for 76,78Kr. On the other hand,
nearly spherical ground states are found for 80−86Kr
while γ-softness emerges in the case of 88,90,92Kr. An
oblate ground state is predicted for 94Kr. Moreover,
prolate-oblate shape coexistence is obtained for the heav-
ier nuclei 96,98,100Kr.

The evolution of the low-energy excitation spectra,
B(E2) transition rates and the ρ2(E0) values, as func-
tions of the neutron number, correlates well with the sys-
tematics of the Gogny-D1M energy surfaces. Despite the
simplicity of the considered (mapped) IBM approach, the
predicted spectroscopic properties exhibit a reasonable
agreement with the available experimental data. We have
also studied the robustness of our approach by compar-
ing the excitation spectra obtained from several nonrela-
tivistic and relativistic EDFs. Such a comparison reveals
no essential difference between the predictions obtained
for neutron-deficient Kr isotopes. On the other hand,
we have found that the relativistic and non-relativistic
EDFs provide notably different predictions in the case of
neutron-rich systems.

Several approximations have been made at various lev-
els of the mapping procedure. This leads to a disagree-
ment with the experimental data in some spectroscopic
properties. For example, near N = 40 our approach

does not reproduce the inter-band B(E2; 0+2 → 2+1 ) and
B(E2; 2+2 → 2+1 ) transitions. Therefore, further improve-
ment of our mapping procedure is still required to prop-
erly account for shape mixing. A similar conclusion has
been reached in our previous studies of nuclei in this re-
gion of the nuclear chart [25, 26] regardless of the under-
lying EDF employed in the mapping procedure. A possi-
ble improvement would be to use a more general form of
the IBM Hamiltonian that includes additional degrees of
freedom like proton and neutron bosons. This, however,
would increase the number of parameters in our model.
Those parameters could not be uniquely determined just
by looking at the (static) mean-field energy surfaces and
additional microscopic input would be needed for the
mapping procedure. Work along these lines is in progress
and will be reported elsewhere.
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and J. E. Garćıa-Ramos, Phys. Rev. C 81, 024310 (2010).
[33] A. Bohr and B. M. Mottelsson, Nuclear Structure, Vol. 2

(Benjamin, New York, USA, 1975) p. 45.
[34] F. Iachello and A. Arima, The interacting boson model

(Cambridge University Press, Cambridge, 1987).
[35] T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A

309, 1 (1978).
[36] U. Kaup and A. Gelberg, Zeitschrift fur Physik A Atoms

and Nuclei 293, 311 (1979).
[37] P. Duval, D. Goutte, and M. Vergnes, Physics Letters B

124, 297 (1983).
[38] E. Padilla-Rodal, O. Castanos, R. Bijker, and

A. Galindo-Uribarri, Rev. Mex. Fis. S 52, 57 (2006).
[39] P. D. Duval and B. R. Barrett, Phys. Lett. B 100, 223

(1981).
[40] P. D. Duval and B. R. Barrett, Nucl. Phys. A 376, 213

(1982).
[41] K. Nomura, N. Shimizu, D. Vretenar, T. Nikšić, and
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