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Abstract In this paper we study the asymptotic behavior and periodicity of the equa-
tion xn+1 = pn+ xn

xn−1
, where x0 ≥ 0, x−1 > 0 and pn is a positive bounded sequence.
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1 Introduction

In this paper, we study the dynamics of the non-autonomous difference equation

xn+1 = pn + xn
xn−1

(1)

where x0 ≥ 0, x−1 > 0 and pn is a positive bounded sequence. This kind of difference
equations has been considered in some articles cited below. Interested reader can go
bach to these titles and the references cited therein. In [10] the authors studied the
difference equation

xn+1 = An + x p
n−1

xqn
, (2)
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where x−1 ≥ 0, x0 > 0, the sequence An is a positive bounded sequence, p and
q ∈ [0,∞). In [12] the authors studied an extension of this equation, which is

xn+1 = A + x p
n−1

xqn
. (3)

In addition, the authors in [4,6,11] studied the dynamics of the difference equation

xn+1 = α + x p
n−k

x p
n

(4)

where p, α ∈ [0,∞) and x−1, x0 are positive numbers.
Finally, in [5,8,14] the authors studied the difference equation

xn+1 = pn + xn−1

xn
(5)

where x0 > 0, x−1 ≥ 0 and pn is a positive bounded sequence.
Motivated by the above papers we will study the boundedness and attractivity of

the equation

xn+1 = pn + xn
xn−1

, (6)

where x0 ≥ 0, x−1 > 0 and pn is a positive bounded sequence.
Studying the dynamics of Nonautonomous difference equations is an impor-

tant and interesting subject in its own right. Nonautonomous difference equations
have many applications in different areas such as economics, social sciences, biol-
ogy,…etc. We cite here the book by Sedaghat [13] for applications of nonautonomous
difference equations. Equation (1) could be obtained from the population model
yn+1 = (μKn yn)/(Kn yn−1 + (μ − 1)yn) by taking xn = 1/yn .

In order to have a self-content article, we list below some definitions of basic
concepts discussed in the paper.

Definition 1.1 We say that a solution {xn} of a difference equation xn+1 =
f (xn, xn−1, . . . , xn−k) is bounded and persists if there exist positive constants m and
M such that m ≤ xn ≤ M for n = −1, 0, . . .

Definition 1.2 We say that a solution {xn} of a difference equation xn+1 =
f (xn, xn−1, . . . , xn−k) is periodic if there exists a positive integer p such that
xn+p = xn . The smallest such positive integer p is called the prime period of the
solution of the difference equation.

Definition 1.3 The equilibrium point of the equation xn+1 = f (xn, xn−1, . . . , xn−k),

n = 0, 1, . . . is the point that satisfies the condition x̄ = f (x̄, x̄, . . . , x̄).

Definition 1.4 Consider the difference equation xn+1 = f (xn, xn−1, . . . , xn−k).
Then
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(a) A positive semi-cycle of a solution {xn} of this equation is a string of terms
{xl , xl+1, . . . , xm}, all greater than or equal to the equilibrium x̄ , with l ≤ −k and
m ≤ ∞ and such that either l = −k or l > −k and xl−1 < x̄ and either m = ∞
or m < ∞ and xm+1 < x̄ .

(b) A negative semi-cycle of a solution {xn} of this equation is a string of terms
{xl , xl+1, . . . , xm}, all less than or equal to the equilibrium x̄ , with l ≥ −k and
m ≤ ∞ and such that either l = −k or l > −k and xl−1 ≥ x̄ and either m = ∞
or m < ∞ and xm+1 ≥ x̄ .

Definition 1.5 A solution of the difference equation xn+1 = f (xn, xn−1, . . . , xn−k)

is called nonoscillatory if there exists N ≥ −k such that xn > x̄ for all n ≥ N of
xn < x̄ for all n ≤ N . A solution {xn} is called oscillatory if it is not nonoscillatory.

In the next section, we discuss boundedness, persistence and invariant interval
of solutions of Eq. (6). Then, semi-cycle behavior and attractivity of solutions are
considered. Finally, existence of periodic solutions is studied.

2 Boundedness and persistence

Let pn is a positive bounded sequence with

lim inf
n→∞ pn = p ≥ 0 and lim sup

n→∞
pn = q < ∞. (7)

The following results can be obtained and proved directly as in [5]. For the convenience
of the reader, we refer to the main arguments in the proof.

Lemma 2.1 Assume Eq. (7) is satisfied. Let xn be a solution of (6). Then,

(i) If p > 0, then {xn} persists.
(ii) If p > 1, then {xn} is bounded from above.

Proof Assume that p > 0. It’s clear that xn+1 > pn from which we conclude that
lim infn→∞ xn ≥ p. Thus, xn persists. To prove the second part we assume that p > 1.
From part (i) we have xn+1 ≥ p − ε. Then we have xn+1 ≤ pn + xn

p−ε
. Referring to

theorem B in [5], we get the result. ��
The following results are readily obtained as in [5]

Lemma 2.2 Assume that Eq. (7) is satisfied and p > 1, and let xn be a solution of
Eq. (6). If

λ = lim inf
n→∞ xn and μ = lim sup

n→∞
xn,

then
pq − 1

q − 1
≤ λ ≤ μ ≤ pq − 1

p − 1
(8)
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Proof Let ε > 0, then for n ≥ N0(ε), we have λ − ε ≤ xn ≤ μ + ε and p − ε ≤
pn ≤ q + ε. Then,

xn+1 ≥ p − ε + λ − ε

μ + ε
, as n → ∞ λ ≥ p + λ

μ
, (9)

and
xn+1 ≤ q + ε + μ + ε

λ − ε
, as n → ∞ μ ≤ q + μ

λ
. (10)

Hence,

μp + λ ≤ λμ ≤ qλ + μ.

Then,

μ(p − 1) ≤ λ(q − 1),

so we get

μ

λ
≤ q − 1

p − 1
and

λ

μ
≥ p − 1

q − 1
.

For n > N0 Eqs. (9) and (10) give

xn+1 ≥ p − ε + λ − ε

μ + ε
= pq − 1

q − 1
+ O(ε),

and

xn+1 ≤ q + ε + μ + ε

λ − ε
= pq − 1

p − 1
+ O(ε).

Then,

λ ≥ pq − 1

q − 1
, and μ ≤ pq − 1

p − 1
.

So we get

pq − 1

q − 1
≤ λ ≤ μ ≤ pq − 1

p − 1
.

which is the required result. ��
Theorem 2.1 Consider the interval I = [ PQ−1

Q−1 ,
PQ−1
P−1 ], where 1 < P ≤ pn ≤ Q,

for n = 0, 1, 2, . . . If xn is a solution of Eq. (6) such that x−1, x0 ∈ I , then xn ∈ I for
all n = 1, 2, . . .
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Proof

x1 = p0 + x0
x−1

.

Now, x−1, x0 ∈ I =
[
PQ−1
Q−1 ,

PQ−1
P−1

]
then,

x1 = p0 + x0
x−1

≤ PQ − 1

P − 1
,

and

x1 = p0 + x0
x−1

≥ PQ − 1

Q − 1
.

So x1 ∈ I . Then we proceed by induction. ��

3 Attractivity

Assume that x̄ is a positive solution of (6). Here we are interested in finding sufficient
conditions such that x̄ attracts all the positive solutions of the equation xn of Eq. 6.
Now, let

yn = xn
x̄n

, n = −1, 0, 1, . . . . (11)

Equation (6) becomes after substituting from (11)

yn+1 =
pn + x̄n

x̄n−1

yn
yn−1

pn + x̄n
x̄n−1

. (12)

Lemma 3.1 Let xn be a positive solution of Eq. (6). Then the following are true

(i) Equation (12) has a positive equilibrium solution ȳ = 1.
(ii) If for some n, yn−1 < yn, then yn+1 > 1. Similarly, if for some n, yn−1 ≥ yn,

then yn+1 ≤ 1.

Proof (ii)Assume that for some n, yn−1 < yn , then
yn

yn−1
> 1.

yn+1 =
pn + x̄n

x̄n−1

(
yn

yn−1

)

pn + x̄n
x̄n−1

>
pn + x̄n

x̄n−1

pn + x̄n
x̄n−1

= 1.

So yn+1 > 1.
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Similarly, assume yn−1 ≥ yn , then
yn

yn−1
≤ 1. Now,

yn+1 =
pn + x̄n

x̄n−1

(
yn

yn−1

)

pn + x̄n
x̄n−1

≤
pn + x̄n

x̄n−1

pn + x̄n
x̄n−1

= 1.

So yn+1 ≤ 1. ��
Theorem 3.1 (a) Assume that there exists n such that yn−1 < 1 and yn > 1 and

yn+2 < yn+3 < yn+4 < · · ·
(i) If yn > yn+1, then yn+k > 1 for all k = 4, 5, . . .
(ii) If yn < yn+1 and yn+2 > yn+1, then yn+k > 1 for all k = 1, 2, . . .

(b) Assume that there exists n such that yn−1 > 1 and yn < 1 and yn+2 < yn+3 <

yn+4 < · · ·
(i) If yn > yn+1 and yn+2 > yn+1, then yn+k > 1 for all k = 3, 4, . . .
(ii) If yn < yn+1, then yn+k > 1 for all k = 2, 3, . . .

Proof (a) Assume that yn−1 < 1 and yn > 1, then yn
yn−1

> 1, which concludes that

yn+1 =
pn + x̄n

x̄n−1

(
yn

yn−1

)

pn + x̄n
x̄n−1

>
pn + x̄n

x̄n−1

pn + x̄n
x̄n−1

= 1.

(i) It follow that yn+2 and yn+3 are less than 1.
Now, to prove the main result we will use the mathematical induction.
Assume that yn+2 < yn+3 < yn+4 < . . .

For k = 4

yn+4 =
pn+3 + x̄n+3

x̄n+2

(
yn+3
yn+2

)

pn+3 + x̄n+3
x̄n+2

>
pn+3 + x̄n+3

x̄n+2
.(1)

pn+3 + x̄n+3
x̄n+2

= 1.

Assume that yn+k > 1 for all k = 5, 6, 7, . . . ,m. We will prove the result for k =
m+1. According to the assumption yn+m > yn+m−1, then

yn+m
yn+m−1

> 1, and as a result

yn+m+1 =
pn+m + x̄n+m

x̄n+m−1

(
yn+m

yn+m−1

)

pn+m + x̄n+m
x̄n+m−1

>
pn+m + x̄n+m

x̄n+m−1
.(1)

pn+m + x̄n+m
x̄n+m−1

= 1

Hence yn+k > 1 for all k = 4, 5, 6, . . .
(ii)One can easily show that yn+2 and yn+3 are greater than 1.Assume that yn+k > 1

for all k = 4, 5, 6, . . . ,m. We will prove the result for k = m + 1. According to the
assumption yn+m > yn+m−1, then

yn+m
yn+m−1

> 1, and as a result

yn+m+1 =
pn+m + x̄n+m

x̄n+m−1

(
yn+m

yn+m−1

)

pn+m + x̄n+m
x̄n+m−1

>
pn+m + x̄n+m

x̄n+m−1
.(1)

pn+m + x̄n+m
x̄n+m−1

= 1.
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Hence yn+k > 1 for all k = 1, 2, . . .
(b) Assume that yn−1 > 1 and yn < 1, then yn

yn−1
< 1, thus we have

yn+1 =
pn + x̄n

x̄n−1

(
yn

yn−1

)

pn + x̄n
x̄n−1

<
pn + x̄n

x̄n−1
.(1)

pn + x̄n
x̄n−1

= 1.

(i) The assumption in this implies that yn+2 < 1 and yn+3 > 1.
Assume that the result holds for k = 4, 5, 6, . . . ,m. We need to prove the result

for k = m + 1. It’s assumed that yn+m−1 < yn+m , so
yn+m

yn+m−1
> 1 and as a result

yn+m+1 =
pn+m + x̄n+m

x̄n+m−1

(
yn+m

yn+m−1

)

pn+m + x̄n+m
x̄n+m−1

>
pn+m + x̄n+m

x̄n+m−1
.(1)

pn+m + x̄n+m
x̄n+m−1

= 1.

Then yn+k > 1 for all k = 3, 4, . . .
(ii) Clearly, we have yn+2 > 2 in this case.
Assume that the result holds for k = 3, 4, . . . ,m, we must prove that this result

holds for k = m + 1 and we have that yn+m−1 < yn+m . Thus

yn+m+1 =
pn+m + x̄n+m

x̄n+m−1

(
yn+m

yn+m−1

)

pn+m + x̄n+m
x̄n+m−1

>
pn+m + x̄n+m

x̄n+m−1
.(1)

pn+m + x̄n+m
x̄n+m−1

= 1.

Hence, yn+k > 1 for all k = 2, 3, . . . ��
We have also the following theorem which can be proved as above.

Theorem 3.2 (a) Assume that there exists n such that yn−1 < 1, yn > 1 and yn+2 >

yn+3 > yn+4 > · · ·
(i) If yn > yn+1, then yn+k < 1 for all k = 2, 3, . . .
(ii) If yn < yn+1 and yn+2 < yn+1, then yn+k < 1 for all k = 3, 4, . . .

(b) Assume that there exists n such that yn−1 > 1, yn < 1 and yn+2 > yn+3 >

yn+4 > · · ·
(i) If yn < yn+1, then yn+k < 1 for all k = 4, 5, . . .
(ii) If yn > yn+1, then yn+k < 1 for all k = 1, 2, . . .

Theorem 3.3 If yn > yn+1 > 1 and yn+k
yn+k−1

> 1 for k = 2l + 1, where l is an odd

number and yn+k
yn+k−1

< 1 for k = 4l + 1, l = 1, 2, 3, . . ., then every semicycle has two
terms with positive semicycle followed by negative semicycle each of which consists
of two terms.

Proof To prove this theorem we use mathematical induction. Assume yn+1 > 1 and
yn+2 < 1, then yn+3 < 1 and according to the assumption yn+4 > 1, consequently
yn+5 > 1.Assume that the result holds for l, in other words for k = 7, 11, . . . , 2l + 1,
where l is an odd number we have that yn+k

yn+k−1
> 1, and for k = 5, 9, . . . , 4l + 1,
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where l = 1, 2, . . . we have that yn+k
yn+k−1

< 1 , and thus every positive semicycle with
two terms is followed by a negative semicycle with two terms, in other words

yn+2l+2 =
pn+2l+1 + x̄n+2l+1

x̄n+2l

(
yn+2l+1
yn+2l

)

pn+2l+1 + x̄n+2l+1
x̄n+2l

> 1

and yn+2l+3 > 1, the elements yn+2l+2 and yn+2l+3 constitute a positive semicycle
with two terms. And

yn+4l+2 =
pn+4l+1 + x̄n+4l+1

x̄n+4l

(
yn+4l+1
yn+4l

)

pn+4l+1 + x̄n+4l+1
x̄n+4l

< 1

and yn+4l+3 > 1, the elements yn+4l+2 and yn+4l+3 form a negative semicycle with
two terms.

Now, for k = 2(l + 2) + 1 = 2l + 5, l is an odd number we have

yn+k+1 =
pn+k + x̄n+k

x̄n+k−1

(
yn+k

yn+k−1

)

pn+k + x̄n+k
x̄n+k−1

.

yn+2l+6 =
pn+2l+5 + x̄n+2l+5

x̄n+2l+4

(
yn+2l+5
yn+2l+4

)

pn+2l+5 + x̄n+2l+5
x̄n+2l+4

> 1,

and yn+2l+7 > 1, so {yn+2l+6, yn+2l+7} is a positive semicycle with two terms.
For k = 4(l + 1) + 1 = 4l + 5, where l = 1, 2, . . .

yn+4l+6 =
pn+4l+5 + x̄n+4l+5

x̄n+4l+4

(
yn+4l+5
yn+4l+4

)

pn+4l+5 + x̄n+4l+5
x̄n+4l+4

< 1,

and yn+4l+7 < 1, so {yn+4l+6, yn+4l+7} is a negative semicycle with two terms. ��
Theorem 3.4 If yn+1 > yn > 1 and yn+k

yn+k−1
< 1 for k = 2l + 1, l is an odd number

and yn+k
yn+k−1

> 1 for k = 2, k = 4l + 1, l = 1, 2, 3, . . ., then every semicycle has two
terms with positive semicycle followed by two terms negative semicycle.

Theorem 3.5 If yn < yn+1 < 1 and yn+k
yn+k−1

< 1 for k = 2l + 1, l is an odd number

and yn+k
yn+k−1

> 1 for k = 4l + 1, l = 1, 2, 3, . . ., then every semicycle has two terms
with positive semicycle followed by negative semicycle.

Theorem 3.6 If yn+1 < yn < 1 and yn+k
yn+k−1

< 1 for k = 2, k = 4l+1, l = 1, 2, 3, . . .

and yn+k
yn+k−1

> 1 for k = 2l + 1, l is an odd n, then every semicycle has two terms with
negative semicycle followed by positive semicycle.
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Theorem 3.7 Every nonoscillatory solution to Eq. (12) converges to 1.

Proof Let yn be a nonoscillatory solution of Eq. (12), then

yn < 1, or yn > 1, n ≥ N0.

Without loss of generality, assume that yn < 1, for n ≥ N0.
Claim

yn+1 < yn .

In order to prove this claim, assume the contrary, in other words there exists m such
that

ym+1 > ym .

Now,

ym+1

ym
> 1,

which implies that ym+2 > 1. This contradicts the assumption, so our claim is valid.
Hence,

yn+1 < yn, n ≥ N0.

Now,

yn+1 =
pn + x̄n

x̄n−1

yn
yn−1

pn + x̄n
x̄n−1

.

|yn+1 − 1| =
∣∣∣∣∣∣

x̄n
x̄n−1

(
yn

yn−1
− 1

)

pn + x̄n
x̄n−1

∣∣∣∣∣∣
. (13)

pn is a positive sequence. So

|yn+1 − 1| < 1.

∣∣∣∣
yn
yn−1

− 1

∣∣∣∣

Now, yn
yn−1

< 1 and yn+1 < 1, hence,

1 − yn+1 < 1 − yn
yn−1

,
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then

−yn+1 < − yn
yn−1

,

thus,

yn+1 >
yn
yn−1

, (14)

yn+1 < 1, so as n → ∞ we have lim infn→∞ yn = η ≤ 1, that is

lim inf
n→∞ yn = η ≤ 1.

And according to Eq. (14) we conclude that

yn+1yn−1y
−1
n > 1.

As n → ∞

η1+1−1 = η ≥ 1.

So

η = lim inf
n→∞ yn = 1.

Also we have yn+1 < 1, so as n → ∞ we have lim supn→∞ yn = γ ≤ 1, that is

lim sup
n→∞

yn = γ ≤ 1.

And according to Eq. (14) we conclude that

yn+1yn−1y
−1
n > 1.

As n → ∞

γ 1+1−1 = γ ≥ 1.

So

γ = lim sup
n→∞

yn = 1.

Then, lim infn→∞ yn = lim supn→∞ yn = 1, then limn→∞ yn = 1. ��
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4 Periodic solutions

Definition 4.1 We say that {pn} is periodic with prime period k if

pn+k = pn for n = −1, 0, . . .

Assume that {pn} is periodic with prime period k.

p = lim inf
n→∞ pn

and

q = lim sup
n→∞

pn

Lemma 4.1 A necessary condition for the existence of a periodic solution {xn} of Eq.
(6) with prime period k is that {pn} is periodic with prime period k.

Proof Assume that xn is a periodic solutionwith primeperiod k, sowehave xn+k = xn ,
for n = −1, 0, . . ., we have

xn+k+1 = pn+k + xn+k

xn+k−1
.

So we get that

pn+k = xn+k+1 − xn+k

xn+k−1
= xn+1 − xn

xn−1
= pn .

Then pn+k = pn , this means that pn is periodic with period k. ��
Theorem 4.1 Assume that pn is periodic with prime period k, and let 1 < p < q.

Then there exists a positive periodic solution {x̄n} of Eq. (6) with prime period k.

Proof We aim here to show that there is a periodic solution for Eq. (6) with period k.
It is enough to show that the system has a positive solution

x1 = p0 + x0
x−1

= pk + xk
xk−1

x2 = p1 + x1
x0

= p1 + x1
xk

...

xk = pk−1 + xk−1

xk−2
.

123
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Define a function F : Rk+ → Rk+ such that,

F(u1, u2, . . . , uk) =
(
pk + uk

uk−1
, p1 + u1

uk
, . . . , pk−1 + uk−1

uk−2

)
.

In addition define an interval I =
[
pq−1
q−1 ,

pq−1
p−1

]
. Now, we aim to show that I k is

invariant under the function F . If u1, u2, . . . , uk ∈ I , we have

pi + ui
u j

≤ pq − 1

p − 1
, i = 1, 2, . . . , k, j = (i − 1)mod(k),

pi + ui
u j

≥ pq − 1

q − 1
, i = 1, 2, . . . , k, j = (i − 1)mod(k).

Then pi + ui
u j

∈ I for i = 1, . . . , k, j = (i − 1)mod(k). So I k is invariant under the

function F . Now, we have F : I k → I k and F is continuous on I k and I k is convex
and compact. Then, by Brower Fixed Point Theorem F has a fixed point in I k .

Assume that the fixed point is (ū1, ū2, . . . , ūk) ∈ I k . Define the sequence

x̄−1 = ūk−1, x̄0 = ūk and x̄mk+i = ūi , for i = 1, 2, . . . , m = 0, 1, . . . .

This sequence satisfies the Eq. (6) and is periodic with period k. ��
Corollary 4.1 Assume that {pn} is a convergent sequence and

lim
n→∞ pn = p > 1.

Then every solution {xn} of Eq. (6) is convergent and

lim
n→∞ xn = p + 1.

Proof pn is bounded so {xn} is bounded and persists according to (2.1). Moreover,
we have

λ = lim inf
n→∞ xn and μ = lim sup

n→∞
xn .

And

p = lim inf
n→∞ pn and q = lim sup

n→∞
pn .

And from Lemma (2.2) we have that

pq − 1

q − 1
≤ λ ≤ μ ≤ pq − 1

p − 1
.
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pn is convergent so p = lim infn→∞ pn = lim supn→∞ pn = q. Then we have that

p + 1 = p2 − 1

p − 1
≤ λ ≤ μ ≤ p2 − 1

p − 1
= p + 1.

So we have λ = μ = p + 1. Then as a result we get limn→∞ xn = p + 1. ��
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