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Abstract. In this note we introduce and investigate the concepts of dual entwining structures and
dual entwined modules. This generalizes the concepts of dual Doi–Koppinen structures and dual
Doi–Koppinen modules introduced (in the infinite case over rings) by the author in his dissertation.

Mathematics Subject Classifications (2000): 16W30, 18E15.

Key words: entwining structures, entwined modules, Doi–Koppinen structures, Doi–Koppinen mod-
ules, Hopf–Galois (co)extensions, duality, (co)module (co)algebras.

Introduction

This note deals with the following problem: let (A,C,ψ) be a given entwining
structure over a commutative base ring R. Find an R-subalgebra Ã ⊆ C∗ and an
R-coalgebra C̃ ⊆ A∗, such that (Ã, C̃, ψ∗) is an entwining structure.

For general entwining structures, it is not clear if such a dual entwining structure
exists. However, once it is found, we have the expected duality relations between
the corresponding categories of entwined modules. For the special case of Doi–
Koppinen structures over Noetherian rings, the problem was solved by the author
in his dissertation. Our results are formulated for right–right entwining structures.
Corresponding versions for left–left, right–left and left–right entwining structures
can be derived easily using the left–right dictionary (e.g., [9]).

The paper consists of three sections. In the first section, we give the necessary
definitions and results from the theory of Hopf algebras and entwining structures.
In the second section we present and investigate the concepts of dual entwining
structures and dual entwined modules. The third section is an extended version
of [2, § 3.4] formulated for right–right Doi–Koppinen structures. Our results in
the third section generalize also those achieved independently by L. Zhang [29] on
dual relative Hopf modules in the case of a commutative base field.

� Current address: Department of Mathematical Sciences, P.O. Box 5046, King Fahd University
of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia.
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Throughout this paper R denotes a commutative ring with 1R �= 0R. The cat-
egory of R-(bi)modules will be denoted by MR. For an R-coalgebra (C,�C, εC)

and an R-algebra (A,µA, ηA) we consider HomR(C,A) as an R-algebra with the
so called convolution product (f � g)(c) := ∑

f (c1)g(c2) and unity ηA ◦ εC . For
an R-algebra A and an A-module M , an A-submodule N ⊂ M will be called R-
cofinite, if M/N is f.g. in MR. We call an R-submodule K ⊆ M pure (in the sense
of Cohn), if the canonical map ιK ⊗ idN : K ⊗R N → M ⊗R N is injective for
every R-module N .

1. Preliminaries

In this section we give some definitions and lemmata from the theory of Hopf
algebras and entwining structures.

1.1. MEASURING R-PAIRINGS

If C is an R-coalgebra and A is an R-algebra with a morphism of R-algebras
κ: A → C∗, a �→ [c �→ 〈a, c〉], then we call P := (A,C) a measuring R-pairing.
In this case C is an A-bimodule through

a ⇀ c :=
∑

c1〈a, c2〉 and c ↼ a :=
∑

〈a, c1〉c2

for all a ∈ A, c ∈ C. (1)

Let (A,C) and (B,D) be measuring R-pairings, ξ : A → B an R-algebra mor-
phism and θ : D → C an R-coalgebra morphism. Then we say (ξ, θ): (B,D) →
(A,C) is a morphism of measuring R-pairings, if

〈ξ(a), d〉 = 〈a, θ(d)〉 for all a ∈ A and d ∈ D.

The category of measuring R-pairings and morphisms described above will be
denoted by Pm.

1.2. THE α-CONDITION

Let P = (A,C) be a measuring R-pairing. We say P satisfies the α-condition
(or P is a measuring α-pairing), if for every R-module M the following map is
injective:

αPM : M ⊗R C → HomR(A,M),
∑

mi ⊗ ci �→
[

a �→
∑

mi〈a, ci〉
]

. (2)

With P α
m ⊂ Pm we denote the full subcategory of measuring α-pairings.

We say an R-coalgebra C satisfies the α-condition, if (C∗, C) satisfies the α-
condition (equivalently, if RC is locally projective in the sense of B. Zimmermann-
Huignes [30, Theorem 2.1], [16, Theorem 3.2]).
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1.3. SUBGENERATORS

Let A be an R-algebra andK an A-module. We say an A-module N is K-subgene-
rated, ifN is isomorphic to a submodule of aK-generatedA-module (equivalently,
if N is Kernel of K-generated A-modules). The full subcategory of A-modules,
whose objects are the K-subgenerated A-modules is denoted by σ [K]. Moreover
σ [K] is the smallest Grothendieck full subcategory of the category of A-modules
that contains K . The reader is referred to [25] for the well developed theory of
categories of this type.

Rational Modules

1.4. Let P = (A,C) be a measuring α-pairing. Let M be a left (a right) A-module,
ρM : M → HomR(A,M) the canonical A-linear map and put RatC(AM) :=
ρ−1
M (M ⊗R C) (resp. CRat(MA) := ρ−1

M (C ⊗R M)). We call AM (resp. MA) C-
rational, if RatC(AM) = M (resp. CRat(MA) = M). If M is an A-bimodule,
then we set CRatC(AMA) = RatC(AM)∩ CRat(MA) and call M C-birational, if
CRatC(AMA) = M .

LEMMA 1.5 ([2, Lemma 2.2.7]). Let P = (A,C) be a measuring α-pairing. For
every left (resp. right) A-module M we have:

(1) RatC(AM) ⊂ M (resp. CRat(MA) ⊂ M) is an A-submodule.
(2) For every A-submodule N ⊂ M , it follows that RatC(AN) = N ∩ RatC(AM)

(resp. CRat(NA) = N∩ CRat(MA)).
(3) RatC(RatC(AM)) = RatC(AM) (resp. CRat(CRat(MA)) = CRat(MA)).
(4) For a left (resp. a right) A-module L and an A-linear map f : M → L, we

have f (RatC(AM)) ⊆ RatC(AL) (resp. f (CRat(MA)) ⊆ CRat(LA)).

NOTATION. For a measuring α-pairing (A,C) we denote with RatC(AM) ⊆ AM
(resp. CRat(MA) ⊆ MA, CRatC(AMA) ⊆ AMA) the full subcategory of C-rational
left A-modules (resp. C-rational right A-modules, C-birational A-bimodules).

THEOREM 1.6 ([2, Satz 2.2.16, Folgerung 2.2.22]). For a measuring R-pairing
P = (A,C) the following are equivalent:

(1) P satisfies the α-condition;
(2) RC is locally projective and κP (A) ⊆ C∗ is dense (w.r.t. the finite topology).

If these equivalent conditions are satisfied, then we have isomorphisms of cate-
gories

MC 
 RatC(AM) = σ [AC]

 RatC(C∗M) = σ [C∗C];

CM 
 CRat(MA) = σ [CA]
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 CRat(MC∗) = σ [CC∗];
CMC 
 CRatC(AMA) = σ [A(C ⊗R C)A]


 CRatC(C∗MC∗) = σ [C∗(C ⊗R C)C∗].

LEMMA 1.7 ([2, Lemma 2.1.23]). Let P = (A,C), Q = (B,D) be measuring
R-pairings and ξ : A → B, θ : D → C be R-linear maps with

〈ξ(a), d〉 = 〈a, θ(d)〉 for all a ∈ A and d ∈ D.

(1) Set P ⊗ P := (A⊗R A,C ⊗R C) and assume that C ⊗R C
χP⊗P
↪→ (A⊗R A)

∗
is an embedding. If ξ is an R-algebra morphism, then θ is an R-coalgebra
morphism. Moreover, if A is commutative, then C is cocommutative.

(2) Assume B
κQ
↪→ D∗ to be an embedding. If θ is an R-coalgebra morphism, then

ξ is an R-algebra morphism. Moreover, if C is cocommutative and A ⊆ C∗,
then A is commutative.

1.8 ([4, Theorem 2.8], [5, Remark 2.14, Proposition 2.15]). AssumeR to be Noethe-
rian. Let A be an R-algebra and consider A∗ as an A-bimodule through the left and
the right regular A-action (af )(b) = f (ba) and (f a)(b) = f (ab). We define the
finite dual of A as the R-module

A◦ := {f ∈ A∗ | AfA is f.g. in MR}
= {f ∈ A∗ | f (I ) = 0 for some R-cofinite ideal I � A}.

An R-algebra (resp. an R-bialgebra, a Hopf R-algebra) A with A◦ ⊂ RA pure will
be called an α-algebra (an α-bialgebra, a Hopf α-algebra). For every α-algebra
(resp. α-bialgebra, Hopf α-algebra) A, the finite dual A◦ becomes a locally projec-
tive R-coalgebra (resp. R-bialgebra, Hopf R-algebra). If A is an α-algebra and
C̃ ⊆ A◦ is an R-subcoalgebra, then (A, C̃) is a measuring α-pairing. For α-
algebras (resp. α-bialgebra, Hopf α-algebras) A,B and a morphism of R-algebras
(resp. R-bialgebras, Hopf R-algebras) f : A → B, it follows directly from
Lemma 1.7 that the restriction of f ∗: B∗ → A∗ to B◦ induces a morphism of
R-coalgebras (resp. R-bialgebras, Hopf R-algebras) f ◦: B◦ → A◦.

Remark 1.9 ([2, Folgerung 2.1.10(1)]). Let V,W be R-modules and X ⊆ V ∗,
Y ⊆ W ∗ be R-submodules. If R is Noetherian and X ⊂ RV is Y -pure (or Y ⊂ RW

is X-pure), then the following induced canonical map is injective:

� : X ⊗R Y → (V ⊗R W)∗, f ⊗ g �→ f ⊗ g,

where

(f ⊗ g)(v ⊗ w) := f (v)g(w).
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Entwined Modules

1.10. A right–right entwining structure (A,C,ψ) consists of an R-algebra
(A,µA, ηA), an R-coalgebra (C,�C, εC) and an R-linear map

ψ : C ⊗R A → A⊗R C, c ⊗ a �→
∑

aψ ⊗ cψ,

such that
∑

(ab)ψ ⊗ cψ =
∑

aψb� ⊗ cψ�,
∑

(1A)ψ ⊗ cψ = 1A ⊗ c,
∑

aψ ⊗�C(c
ψ) =

∑

aψ� ⊗ c�1 ⊗ c
ψ

2 ,
∑

εC(c
ψ)aψ = εC(c)a.

(3)

Let (A,C,ψ) and (B,D,�) be right–right entwining structures. A morphism
(γ, δ): (A,C,ψ) → (B,D,�) consists of right entwining structures anR-algebra
morphism γ : A → B and an R-coalgebra morphism δ: C → D, such that

∑

γ (aψ)⊗ δ(cψ) =
∑

γ (a)� ⊗ δ(c)�.

With E
•• we denote the category of right–right entwining structures. For defini-

tions of the categories of left–left, right–left and left–right entwining structures the
interested reader may refer to [9].

1.11. Let (A,C,ψ) be a right–right entwining structure. An entwined module cor-
responding to (A,C,ψ) is a right A-module M , which is also a right C-comodule,
such that

�M(ma) =
∑

m〈0〉aψ ⊗m
ψ

〈1〉 for all m ∈ M, a ∈ A.

For entwined modules M,N corresponding to (A,C,ψ) we denote with
HomC

A(M,N) the set of A-linear C-colinear morphisms from M to N . The cat-
egory of right–right entwined modules and A-linear C-colinear morphisms is de-
noted by MC

A(ψ). Entwined modules were introduced by T. Brzeziński and S. Ma-
jid in [8] as a generalization of Doi–Koppinen modules presented in [13] and [17].

LEMMA 1.12. Let (A,C,ψ) be a right–right entwining structure over R and set
C := A⊗R C.

(1) C is an A-coring with A-bimodules structure given by

a(̃a ⊗ c) := aã ⊗ c, (̃a ⊗ c)a :=
∑

ãaψ ⊗ cψ, (4)

comultiplication
�C : A⊗R C → (A⊗R C)⊗A (A⊗R C),

a ⊗ c �→
∑

(a ⊗ c1)⊗A (1A ⊗ c2)

and counity εC := ϑrA ◦ (idA ⊗ εC). Moreover MC
A(ψ) 
 MC .
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(2) #op
ψ (C,A) := HomR(C,A) is an A-ring with A-bimodule structure given by
(af )(c) := ∑

aψf (c
ψ), (f a)(c) := f (c)a, multiplication

(f · g)(c) =
∑

f (c2)ψg(c
ψ

1 ) (5)

and unity ηA ◦ εC .
(3) Consider ∗C := HomA−(C, A) as an A-ring with the canonical A-bimodule

structure, multiplication

(f �l g)(c) =
∑

g(c1f (c2)) for all f, g ∈ ∗C and c ∈ C

and unity εC . Then #op
ψ (C,A) 
 ∗C as A-rings via

ν: HomR(C,A) −→ HomA−(A⊗R C,A), f �→ [a ⊗ c �→ af (c)] (6)

with inverse h �→ [c �→ h(1A ⊗ c)].
Proof. (1) This was noticed first by M. Takeuchi and can be found in several

references (e.g., [7, Proposition 2.2]).
(2) For all a, b ∈ A, f ∈ #op

ψ (C,A) and c ∈ C we have

((ab)f )(c) =
∑

(ab)ψf (c
ψ) =

∑

aψb�f (c
ψ�)

=
∑

aψ(bf )(c
ψ) = (a(bf ))(c).

It is clear then that the left and the right A-actions given above define on #op
ψ (C,A)

a structure of an A-bimodule. Moreover we have for all f, g, h ∈ HomR(C,A) and
c ∈ C:

((f · g) · h)(c) =
∑

[(f · g)(c2)]ψ̂h(cψ̂1 )
=

∑

[f (c22)ψg(c
ψ

21)]ψ̂h(cψ̂1 )
=

∑

[f (c22)ψψ̂g(c
ψ

21)ψ ′ ]h((cψ̂1 )ψ
′
)

=
∑

[f (c2)ψψ̂g(c
ψ

12)ψ ′ ]h((cψ̂11)
ψ ′
)

=
∑

f (c2)ψg((c
ψ

1 )2)ψ ′h((cψ1 )
ψ ′
1 )

=
∑

f (c2)ψ(g · h)(cψ1 )
= (f · (g · h))(c).

It is clear that ηA ◦ εC is a unity for #op
ψ (C,A).

(3) Note that ν is given by the canonical isomorphisms

HomR(C,A) 
 HomR(C,HomA−(A,A)) 
 HomA−(A⊗R C,A).



DUAL ENTWINING STRUCTURES AND DUAL ENTWINED MODULES 281

For all a ∈ A, f ∈ #op
ψ (C,A) and c ∈ C we have

ν(af )(b ⊗ c) = b((af )(c)) = b
(∑

aψf (c
ψ)

)

=
∑

baψf (c
ψ) = ν(f )

(∑

baψ ⊗ cψ
)

= ν(f )((b ⊗ c)a) = (aν(f ))(b ⊗ c).

It is obvious that ν is right A-linear. For all f, g ∈ #op
ψ (C,A), a ∈ A and c ∈ C we

have

ν(f · g)(a ⊗ c) = a((f · g)(c)) = a
∑

f (c2)ψg(c
ψ

1 )

=
∑

af (c2)ψg(c
ψ

1 ) = ν(g)
(∑

af (c2)ψ ⊗ c
ψ

1

)

= ν(g)
(∑

(a ⊗ c1)f (c2)
)

= ν(g)
(∑

(a ⊗ c1)1Af (c2)
)

= ν(g)
(∑

(a ⊗ c1)ν(f )(1A ⊗ c2)
)

= (ν(f ) �l ν(g))(a ⊗ c).

Consequently, ν is an isomorphism of A-rings. �
1.13. Let (A,C,ψ) be a right–right entwining structure over R and consider the
corresponding A-coring C := A ⊗R C. We say that (A,C,ψ) satisfies the α-
condition (or is an α-entwining structure) if for every right A-module M, the
following map is injective

α
ψ

M : M ⊗R C → HomR(#
op
ψ (C,A),M), m⊗ c �→ [f �→ mf (c)]

(equivalently if AC is locally projective).
Inspired by [14, 3.1] we introduce

DEFINITION 1.14. Let (A,C,ψ) be a right–right entwining structure that satis-
fies the α-condition. Let M be a right #op

ψ (C,A)-module, ρM : M →
Hom−#op

ψ (C,A)
(#op
ψ (C,A),M) the canonical map and put RatC(M#op

ψ (C,A)
) :=

ρ−1
M (M ⊗R C). Then M will be called #-rational, if RatC(M#op

ψ (C,A)
) = M . For a

#-rational right #op
ψ (C,A)-module M we set �M := (α

ψ

M)
−1 ◦ ρM : M → M ⊗R C.

The category of #-rational right #op
ψ (C,A)-modules and #op

ψ (C,A)-linear maps will
be denoted with RatC(M#op

ψ (C,A)
).

THEOREM 1.15 ([3, Lemma 3.8, Theorem 3.10]). Let (A,C,ψ) be a right–right
entwining structure and consider the corresponding A-coring C := A⊗R C.

(1) If RC is flat, then AC is flat and MC
A(ψ) is a Grothendieck category with

enough injective objects.
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(2) If RC is locally projective (resp. f.g. projective), then AC is locally projective
(resp. f.g. projective) and

MC
A(ψ) 
 RatC(M#op

ψ (C,A)
) 
 σ [(A⊗R C)#op

ψ (C,A)
]

(resp. MC
A(ψ) 
 M#op

ψ (C,A)
). (7)

2. Dual Entwined Modules

In this section we fix the following: R is Noetherian, (A,C,ψ) is a right–right
entwining structure with A an α-algebra and Ã ⊆ C∗ is an R-subalgebra with
εC ∈ Ã, C̃ ⊆ A◦ is an R-subcoalgebra. So we have a measuring R-pairing (Ã, C)
and a measuring α-pairing (A, C̃). Besides the above technical assumptions we
assume moreover that ψ∗(C̃ ⊗R Ã) ⊆ Ã⊗R C̃, i.e. the following diagram

(A⊗R C)
∗ ψ∗

(C ⊗R A)
∗

C̃ ⊗R Ã ϕ Ã⊗R C̃

can be completed commutatively with an R-linear morphism

ϕ: C̃ ⊗R Ã → Ã⊗R C̃, f̃ ⊗ g̃ �→
∑

g̃ϕ ⊗ f̃ ϕ,

where
(∑

g̃ϕ ⊗ f̃ ϕ
)

(c ⊗ a) :=
∑

f̃ (aψ)g̃(c
ψ). (8)

THEOREM 2.1. (Ã, C̃, ϕ) is a right–right entwining structure and we have iso-
morphisms of categories

MC̃

Ã
(ϕ) 
 RatC̃(M#op

ϕ (C̃,Ã)
) = σ [(Ã⊗R C̃)#op

ϕ (C̃,Ã)
]. (9)

If moreover RC̃ is f.g. projective, then

MC̃

Ã
(ϕ) 
 M#op

ϕ (C̃,Ã)
. (10)

Proof. Let f̃ ∈ C̃, g̃, h̃ ∈ Ã, c ∈ C and a, b ∈ A be arbitrary. Then we have
∑

((g̃ � h̃)ϕ ⊗ f̃ ϕ)(c ⊗ a) =
∑

f̃ (aψ)(g̃ � h̃)(c
ψ)

=
∑

f̃ (aψ)g̃((c
ψ)1)̃h((c

ψ)2)

=
∑

f̃ (aψ�)g̃(c
�
1 )̃h(c

ψ

2 )

=
∑

(g̃ϕ ⊗ h̃� ⊗ f̃ ϕ�)(c1 ⊗ c2 ⊗ a)

=
∑

((g̃ϕ � h̃�) ⊗ f̃ ϕ�)(c ⊗ a)
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and
(∑

(εC)ϕ ⊗ f̃ ϕ
)

(c ⊗ a) =
∑

f̃ (aψ)εC(c
ψ) = f̃ (εC(c)a)

= (1Ã ⊗ f̃ )(c ⊗ a).

On the other hand we have
(∑

g̃ϕ ⊗ ((f̃ ϕ)1 ⊗ (f̃ ϕ)2)
)

(c ⊗ a ⊗ b)

=
(∑

g̃ϕ ⊗ f̃ ϕ
)

(c ⊗ ab)

=
∑

f̃ ((ab)ψ)g̃(c
ψ)

=
∑

f̃ (aψb�)g̃(c
ψ�)

=
∑

f̃1(aψ)f̃2(b�)g̃(c
ψ�)

=
∑

(g̃ϕ� ⊗ f̃ �1 ⊗ f̃
ϕ

2 )(c ⊗ a ⊗ b)

and
(∑

εC̃(f̃
ϕ)g̃ϕ

)

(c) =
∑

(g̃ϕ ⊗ f̃ ϕ)(c ⊗ 1)

=
∑

f̃ (1ψ)g̃(c
ψ) = f̃ (1A)g̃(c) = (εC̃(f̃ )g̃)(c).

Hence (Ã, C̃, ϕ) is a right–right entwining structure. Since (A, C̃) is a measuring
α-pairing, it follows by Theorem 1.6 that RC̃ is locally projective. The isomor-
phisms of categories 9 and 10 follow then by Theorem 1.15. �
LEMMA 2.2. Consider the entwining structure (Ã, C̃, ϕ).

(1) Consider the measuring α-pairing (A, C̃). Let M ∈ MC
A(ψ) and consider M∗

with the induced right Ã-module and left A-module structures. Then Mr :=
RatC̃(AM∗) ∈ MC̃

Ã
(ϕ).

If M,N ∈ MC
A(ψ) and f : M → N is A-linear C-colinear, then f ∗: Nr →

Mr is Ã-linear C̃-colinear.
(2) Assume the measuring R-pairing (Ã, C) to satisfy the α-condition (equiva-

lently, RC is locally projective and Ã ⊆ C∗ is dense). Let K ∈ MC̃

Ã
(ϕ) and

consider K∗ with the induced left Ã-module and right A-module structures.
Then Kr := RatC(ÃK

∗) ∈ MC
A(ψ).

If K,L ∈ MC̃

Ã
(ϕ) and g: K → L is Ã-linear C̃-colinear, then g∗: Lr → Kr

is A-linear C-colinear.

Proof. (1) Let M ∈ MC
A(ψ). Since (A, C̃) is a measuring α-pairing, Mr :=

RatC̃(AM∗) is by Theorem 1.6 a right C̃-comodule. Moreover we have for all a ∈
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A, g̃ ∈ Ã, m ∈ M and h ∈ Mr :

[a(hg̃)](m) = (hg̃)(ma)

= h(g̃[ma])
=

∑

h((ma)〈0〉g̃((ma)〈1〉))

=
∑

h(m〈0〉aψg̃(m
ψ

〈1〉))

=
∑

(aψh)(m〈0〉)g̃(m
ψ

〈1〉)

=
∑

h〈0〉(m〈0〉)h〈1〉(aψ)g̃(m
ψ

〈1〉)

=
∑

h〈0〉(m〈0〉)g̃ϕ(m〈1〉)h
ϕ

〈1〉(a)

=
∑

h〈0〉(g̃ϕm)h
ϕ

〈1〉(a)

=
∑

(h〈0〉g̃ϕ)(m)h
ϕ

〈1〉(a)

=
(∑

(h〈0〉g̃ϕ)h
ϕ

〈1〉(a)
)

(m),

i.e. hg̃ ∈ Mr with �(hg̃) = ∑
h〈0〉g̃ϕ ⊗ h

ϕ

〈1〉. Hence Mr ∈ MC̃

Ã
(ϕ).

The second statement follows now by Lemma 1.5(4) and Theorem 1.6.
(2) Let K ∈ MC̃

Ã
(ϕ). By assumption (Ã, C) satisfies the α-condition, hence

Kr := RatC(ÃK
∗) is by Theorem 1.6 a right C-comodule. Moreover we have for

all a ∈ A, g̃ ∈ Ã, k ∈ K and f ∈ Kr :

[̃g(f a)](k) = (f a)(kg̃)

= f (a(kg̃))

=
∑

f ((kg̃)〈0〉(kg̃)〈1〉(a))

=
∑

f (n〈0〉g̃ϕ(k
ϕ

〈1〉)(a))

=
∑

(g̃ϕf )(k〈0〉)k
ϕ

〈1〉(a)

=
∑

f〈0〉(k〈0〉)g̃ϕ(f〈1〉)k
ϕ

〈1〉(a)

=
∑

f〈0〉(k〈0〉)〈aψ, k〈1〉〉g̃(f ψ〈1〉)

=
∑

f〈0〉(aψk)g̃(f
ψ

〈1〉)

=
∑

(f〈0〉aψ)(k)g̃(f
ψ

〈1〉)

=
(∑

(f〈0〉aψ)g̃(f
ψ

〈1〉)
)

(k),

i.e. f a ∈ RatC(ÃK
∗) with �(f a) = ∑

f〈0〉aψ ⊗ f
ψ

〈1〉. Hence Kr ∈ MC
A(ψ). As

in (1), the second statement follows by Lemma 1.5 (4) and Theorem 1.6. �
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DEFINITION 2.3. With the same notation and assumptions as above, we call the
right–right entwining structure (Ã, C̃, ϕ) a dual entwining structure of (A,C,ψ).
We also call Mr (resp. Kr ) a dual entwined module of M (resp. of K).

THEOREM 2.4. Assume that (Ã, C) satisfies the α-condition. Then we have right
adjoint contravariant functors

(−)r : MC
A(ψ) → MC̃

Ã
(ϕ) and (−)r : MC̃

Ã
(ϕ) → MC

A(ψ).

Proof. LetM ∈ MC
A(ψ),K ∈ MC̃

Ã
(ϕ) and consider the canonicalR-linear maps

λM : M → (Mr)
∗ and λK : K → (Kr)∗.

Clearly λM is Ã-linear and λK is A-linear, hence λM(M) ⊆ (Mr)
r and λK(K) ⊆

(Kr)r by Lemma 1.5(4). It is easy then to see that the right-adjointness is given by
the functorial inverse isomorphisms

�M,K : HomC
A(M,K

r) → HomC̃

Ã
(K,Mr), f �→ f ∗ ◦ λK,

�M,K : HomC̃

Ã
(K,Mr) → HomC

A(M,K
r), g �→ g∗ ◦ λM. �

2.5. Let (A,C,ψ), (B,D,�) be right–right entwining structures and assume that
A,B are α-algebras. Let (γ, δ): (A,C,ψ) → (B,D,�) be a morphism in E

••,
γ ◦: B◦ → A◦ the induced R-coalgebra morphism and δ∗: D∗ → C∗ the induced
R-algebra morphism. Let C̃ ⊆ A◦, D̃ ⊆ B◦ be R-subcoalgebras and Ã ⊆ C∗,
B̃ ⊆ D∗ be R-subalgebras with εC ∈ Ã, εD ∈ B̃ and assume that γ ◦(D̃) ⊆ C̃

and δ∗(B̃) ⊆ Ã. Assume moreover that ψ∗(C̃ ⊗R Ã) ⊆ Ã⊗R C̃, �∗(D̃ ⊗R B̃) ⊆
B̃ ⊗R D̃ and let (Ã, C̃, ϕ) and (B̃, D̃,�) be the induced dual entwining structures
of (A,C,ψ) and (B,D,�) respectively. Then we have for all g̃ ∈ B̃, f̃ ∈ D̃,
d ∈ D and b ∈ B:

(∑

δ∗(g̃�) ⊗ γ ◦(f̃ �)
)

(c ⊗ a) =
∑

(g̃� ⊗ f̃ �)(δ(c)⊗ γ (a))

=
∑

(f̃ ⊗ g̃)(γ (a)� ⊗ δ(c)�)

=
∑

(f̃ ⊗ g̃)(γ (aψ)⊗ δ(cψ))

=
∑

(γ ◦(f̃ ) ⊗ δ∗(g̃))(aψ ⊗ cψ)

=
∑

(δ∗(g̃)ϕ⊗γ ◦(f̃ )ϕ)(c ⊗ a),

i.e. (δ∗, γ ◦): (B̃, D̃,�) → (Ã, C̃, ϕ) is a morphism in E
••.

3. Dual Doi–Koppinen Modules

Doi–Koppinen structures were presented independently by Y. Doi [13] and M.
Koppinen [17] and provide a fundamental example of entwining structures. The
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corresponding categories of Doi–Koppinen modules unify themselves many cat-
egories of modules well studied by Hopf-algebraists such as the categories of
Hopf modules [24, 4.1], relative Hopf modules [11], Doi’s [C,H ]-modules [11],
Dimodules, Yetter–Drinfeld modules and modules graded by G-sets [9].

Dual Module (Co)algebras & Comodule (Co)algebras

Before we present our dual Doi–Koppinen modules we introduce some definitions
and results concerning duality of (co)module (co)algebras.

DEFINITION 3.1. Let H be an R-bialgebra.

(1) A right H -module algebra is an R-algebra (A,µA, ηA)with a rightH -module
structure through φA: A⊗R H → A, such that µA and ηA are H -linear, i.e.

(ab)h =
∑

(ah1)(bh2) and 1Ah = εH (h)1A

for all a, b ∈ A and h ∈ H. (11)

In a similar way we define a left H -module algebra. An H -bimodule algebra,
is a left and a right H -module algebra, such that A is an H -bimodule with the
given left and right H -actions.

(2) A right H -module coalgebra is an R-coalgebra (C,�C, εC) with a right H -
module structure through φC : C⊗RH → C, such that�C and εC areH -linear
(equivalently, φC is an R-coalgebra morphism), i.e.

�C(ch) =
∑

c1h1 ⊗ c2h2 and εC(ch) = εC(c)εH (h)

for all c ∈ C and h ∈ H. (12)

In a similar way we define a left H -module coalgebra. An H -bimodule coal-
gebra, is a left and a right H -module coalgebra, which is an H -bimodule with
the given left and right H -actions.

(3) A right H -comodule algebra is an R-algebra (A,µA, ηA) with a right H -
comodule structure through �A: A → A ⊗R H , such that µA and ηA are
H -colinear (equivalently, �A is an R-algebra morphism), i.e.

�A(ab) =
∑

a〈0〉b〈0〉 ⊗ a〈1〉b〈1〉 and �A(1A) = 1A ⊗ 1H . (13)

In a similar way we define a left H -comodule algebra. An H -bicomodule
algebra is a left and right H -comodule algebra, which is an H -bicomodule
under the given left and right H -coactions.

(4) A right H -comodule coalgebra is an R-coalgebra (C,�C, εC) with a right
H -comodule structure through �C : C → C ⊗R H , such that �C and εC are
H -colinear, i.e.

∑

c〈0〉1 ⊗ c〈0〉2 ⊗ c〈1〉

=
∑

c1〈0〉 ⊗ c2〈0〉 ⊗ c1〈1〉c2〈1〉,
∑

εC(c〈0〉)c〈1〉 = εC(c)1H . (14)
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In a similar way we define a left H -comodule coalgebra. An H -bicomodule
coalgebra is a left and a right H -comodule coalgebra, which is an H -bico-
module with the given left and right H -coactions.

LEMMA 3.2. Let R be Noetherian and H an R-bialgebra. If A is a right (resp. a
left) H -module algebra, then A◦ ⊂ A∗ is a left (resp. a right) H -submodule. If A
is an H -bimodule algebra, then A◦ ⊆ H ∗ is an H -subbimodule.

Proof. Let A be a right H -module algebra. If f ∈ A◦, then we have for all
h ∈ H and a, b ∈ A:

(b(hf ))(a) = (hf )(ab)

= f ((ab)h)

= f
(∑

(ah1)(bh2)
)

=
∑

f1(ah1)f2(bh2)

=
[∑

(h2f2)(b)(h1f1)
]

(a).

So hf ∈ A◦ for every h ∈ H , i.e. A◦ ⊂ A∗ is a left H -submodule.
If A is a left H -module algebra, then a similar argument shows that A◦ ⊂ A∗ is

a right H -submodule. The last statement becomes then obvious. �
PROPOSITION 3.3. Let R be Noetherian, H an α-bialgebra and U ⊆ H ◦ an
R-subbialgebra.

(1) Consider the measuring R-pairing (U,H). If A is a right (a left) H -comodule
algebra, then A is a left (a right) U -module algebra and A◦ is a right (a
left) U -module coalgebra. If A is an H -bicomodule algebra, then A is a U -
bimodule algebra and A◦ is a U -bimodule coalgebra.

(2) Consider the measuring α-pairing (H,U).

(a) If A is a right (a left) U -comodule algebra, then A is a left (a right)
H -module algebra. If A is a U -bicomodule algebra, then A is an H -
bimodule algebra.

(b) IfA is a left (a right)H -module algebra, then RatU(HA) (resp. URat(AH))
is a right (a left) U -comodule algebra. If A is an H -bimodule algebra,
then URatU(HAH) is a U -bicomodule algebra.

Proof. (1) Without loss of generality assume that A is a right H -comodule
algebra through an R-algebra morphism �: A → A ⊗R H . For all a, b ∈ A and
f ∈ U we have

f ⇀ ab =
∑

(ab)〈0〉f ((ab)〈1〉)

=
∑

a〈0〉b〈0〉f (a〈1〉b〈1〉)
∑

a〈0〉b〈0〉f1(a〈1〉)f2(b〈1〉)

=
∑

(f1 ⇀ a)(f2 ⇀ b),
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and moreover

f ⇀ 1A =
∑

1〈0〉f (1〈1〉) = 1Af (1H ) = 1AεU(f ).

Hence A is a left U -module algebra.
Consider now the canonical R-linear map � : A◦ ⊗R U → (A ⊗R H)

◦. Then
(A,A◦), (A ⊗R H,A

◦ ⊗R U) are measuring α-pairings and we have a morphism
of R-pairings

(�, �◦ ◦�): (A⊗R H,A
◦ ⊗R U) → (A,A◦).

Moreover A◦ ⊗R A
◦ ↪→ (A ⊗R A)

∗ and it follows from the assumption and
Lemma 1.7(1) that �◦ ◦� : A◦ ⊗R U → A◦ is an R-coalgebra morphism, i.e. A◦
is a right U -module coalgebra. If A is an H -bicomodule, then A is a U -bimodule
by Theorem 1.6 and A◦ ⊆ A∗ is a U -subbimodule by Lemma 3.2, hence A is a
U -bimodule algebra and A◦ is a U -bimodule algebra.

(2) Consider the measuring α-pairing (H,U).

(a) Without loss of generality, let A be a right U -comodule algebra. Then we have
for all h ∈ H and a, b ∈ A:

h ⇀ (ab) =
∑

(ab)〈0〉〈h, (ab)〈1〉〉
=

∑

a〈0〉b〈0〉〈h, a〈1〉 � b〈1〉〉
=

∑

a〈0〉b〈0〉〈h1, a〈1〉〉〈h2, b〈1〉〉
=

∑

(h1 ⇀ a)(h2 ⇀ b)

and

h ⇀ 1A = ε(h)1A,

i.e. A is a left H -module algebra. If A is a U -bicomodule algebra, then A is
by Theorem 1.6 an H -bimodule, hence an H -bimodule algebra.

(b) Assume now that A is a left H -module algebra. Then we have for all a, b ∈
RatU(HA) and h ∈ H :

(h ⇀ ab) =
∑

(h1 ⇀ a)(h2 ⇀ b)

=
∑

a〈0〉〈h1, a〈1〉〉b〈0〉〈h2, b〈1〉〉
=

∑

a〈0〉b〈0〉〈h, a〈1〉 � b〈1〉〉,
i.e. ab ∈ RatU(HA) with �(ab) = ∑

a〈0〉b〈0〉 ⊗ a〈1〉 � b〈1〉. Note also that
h ⇀ 1A = εH (h)1A, i.e. 1A ∈ RatU(HA), with �(1A) = 1A ⊗ εH =
1A ⊗ 1U . Hence, RatU(HA) is a right U -comodule algebra. If A is an H -
bimodule algebra, then URatU(HAH) is by Theorem 1.6 a U -bicomodule,
hence a U -bicomodule algebra. �
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PROPOSITION 3.4. Let R be Noetherian, H an α-bialgebra and U ⊆ H ◦ an
R-subbialgebra.

(1) Consider the measuring α-pairing (H,U). If C is a right (a left) H -module
coalgebra, then C∗ is a left (a right) H -module algebra and RatU(HC∗) is a
right (a left) U -comodule algebra. If C is an H -bimodule coalgebra, then C∗
is an H -bimodule algebra and URatU(HC∗

H ) is a U -bicomodule algebra.
(2) Consider the measuring R-pairing (U,H). If C is a right (a left) H -comodule

coalgebra, then C is a left (a right) U -module coalgebra and C∗ is a right
(a left) U -module algebra. If C is an H -bicomodule coalgebra, then C is a
U -bimodule coalgebra and C∗ is a U -bimodule algebra.

Proof. (1) LetC be a rightH -module coalgebra. Then we have for all f, g ∈ C∗,
h ∈ H , c ∈ C:

(h ⇀ (f � g))(c) = (f � g)(ch) =
∑

f ((ch)1)g((ch)2)

=
∑

f (c1h1)g(c2h2) =
∑

(h1f )(c1)(h2g)(c2)

=
(∑

(h1f ) � (h2g)
)

(c)

and

(hεC)(c) = εC(ch) = εC(c)εH (h) = (εH (h)εC)(c),

i.e. C∗ is a left H -module algebra. By Proposition 3.3(2-b), RatU(HC∗) is a right
U -comodule algebra. If C is an H -bimodule coalgebra, then C∗ is an H -bimodule
algebra and URatU(HC∗

H ) is a U -bicomodule by Theorem 1.6, hence a U -bico-
module algebra.

(2) Without loss of generality, assume that C is a right H -comodule coalgebra.
For all c ∈ C, f ∈ U we have

∑

(f ⇀ c)1 ⊗ (f ⇀ c)2 =
∑

c〈0〉1 ⊗ c〈0〉2f (c〈1〉)

=
∑

c1〈0〉 ⊗ c2〈0〉f (c1〈1〉c2〈1〉)

=
∑

c1〈0〉 ⊗ c2〈0〉f1(c1〈1〉)f2(c2〈1〉)

=
∑

c1〈0〉f1(c1〈1〉)⊗ c2〈0〉f2(c2〈1〉)

=
∑

f1 ⇀ c1 ⊗ f2 ⇀ c2

and

εC(f ⇀ c) =
∑

εC(c〈0〉)f (c〈1〉) = f (εC(c)1H) = εC(c)εU(f ),

i.e.C is a leftU -module coalgebra. Analogous to (1) one can show thatC∗ is a right
U -module algebra. If C is an H -bicomodule coalgebra, then C is a U -bimodule
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by Theorem 1.6. Hence, C is a U -bimodule coalgebra and C∗ is a U -bimodule
algebra. �

The following result generalizes ([22, Example 4.1.10]):

COROLLARY 3.5. Let H be an R-bialgebra and consider H ∗ as an H -bimodule
with the regular left and right H -actions.

(1) Since H is an H -bimodule coalgebra, it follows (by Proposition 3.4(1)) that
H ∗ is an H -bimodule algebra. If moreover R is Noetherian and H is an α-
algebra, then H ◦ ⊂ H ∗ is an H -subbimodule algebra.

(2) Let R be Noetherian, H an α-algebra and U ⊆ H ◦ an R-subbialgebra. Since
H is an H -bicomodule algebra, it follows (by Proposition 3.3(1)), that H is a
U -bimodule algebra. In particular H is an H ◦-bimodule algebra.

Doi–Koppinen Modules

3.6. A right–right Doi–Koppinen structure over R is a triple (H,A,C) consisting
of an R-bialgebra H , a right H -comodule algebra A and a right H -module coal-
gebra C. Let (H,A,C), (K,B,D) be right–right Doi–Koppinen structures. Then
a morphism (β, γ, δ): (H,A,C) → (K,B,D) of Doi–Koppinen structures, con-
sists of an R-bialgebra morphism β: H → K , an R-algebra morphism γ : A → B

and an R-coalgebra morphism δ: C → D, such that
∑

γ (a〈0〉)⊗ δ(ca〈1〉) =
∑

γ (a)〈0〉 ⊗ δ(c)γ (a)〈1〉 for all a ∈ A and c ∈ C.

The category of right–right Doi–Koppinen modules is denoted by DK
•
•. For defini-

tions of the categories of left–left, right–left and left–right Doi–Koppinen structures
the reader may refer to [9].

3.7. Let (A,H,C) be a right–right Doi–Koppinen structure. A right–right Doi–
Koppinen module corresponding to (H,A,C) is a right A-module M , which is
also a right C-comodule, such that

�M(ma) =
∑

m〈0〉a〈0〉 ⊗m〈1〉a〈1〉 for all m ∈ M and a ∈ A.

For Doi–Koppinen modules M,N corresponding to (A,H,C) we denote with
HomC

A(M,N) the set of all A-linear C-colinear maps from M to N . By M(H)CA
we denote the category of right–right Doi–Koppinen modules corresponding to
(A,H,C) and with A-linear C-colinear morphisms. Setting

ψ : C ⊗R A → A⊗R C, c ⊗ a �→
∑

a〈0〉 ⊗ ca〈1〉, (15)

it follows by [6, page 295] that (A,C,ψ) is a right–right entwining structure and
M(H)CA 
 MC

A(ψ). Moreover #op(C,A) := HomR(C,A), introduced first in [17,
2.2], is an R-algebra with multiplication
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(f · g)(c) =
∑

f (c2)〈0〉g(c1f (c2)〈1〉) (16)

and unity ηA ◦ εC .

Duality Theorems

In what follows we present for every α-bialgebra H over a Noetherian ground ring
R and every right H -module coalgebra (left H -module coalgebra) C a right H ◦-
comodule R-algebra (a left H ◦-comodule algebra) C0, that plays an important role
by the dualization process in the rest of this note. In our infinite versions of duality
theorems, C0 will play the role of C∗ in the finite versions (e.g., [28]).

DEFINITION 3.8. Let R be Noetherian, H an α-bialgebra and consider the mea-
suring α-pairing (H,H ◦). For every right (resp. left) H -module coalgebra C we
have by Proposition 3.4(1) the right (resp. the left) H ◦-comodule algebra

C0 := RatH
◦
(HC

∗) (resp. C0 := H ◦
Rat(C∗

H)).

In view of 1.3 and Propositions 3.3, 3.4 we get

THEOREM 3.9. Let R be Noetherian.

(1) Let (H,A,C) be a right–right Doi–Koppinen structure and assume that H,A
are α-algebras. Then (H ◦, C0, A◦) is a dual right–right Doi–Koppinen struc-
ture of (H,A,C) and we have isomorphism of categories

M(H ◦)A
◦

C0 
 RatA
◦
(M#op(A◦,C0)) = σ [(C0 ⊗R A

◦)#op(A◦,C0)].
If, moreover, RA is f.g. projective, then

M(H ◦)A
∗

C0 
 M#op(A∗,C0).

(2) Let (β, γ, δ): (H,A,C) → (K,B,D) be a morphism in DK
•
•. If H,K,A,B

are α-algebras and δ∗(D0) ⊆ C0 (e.g., δ is H -linear, or C0 = C∗), then
(β◦, δ0, γ ◦): (K◦,D0, B◦) → (H ◦, C0, A◦) is a morphism in DK

•
•.

As a corollary of Theorem 2.4 we get the following theorem:

THEOREM 3.10. Let R be Noetherian, (H,A,C) a right–right Doi–Koppinen
structure with H,A α-algebras and consider the dual right–right Doi–Koppinen
structure (H ◦, C0, A◦).

(1) There is a contravariant functor

(−)0: M(H)CA → M(H ◦)A
◦

C0, M �−→ M0 := RatA
◦
(AM

∗).
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(2) If P := (C0, C) satisfies the α-condition (equivalently RC is locally projective
and C0 ⊂ C∗ is dense), then there is a contravariant functor

(−)�: M(H ◦)A
◦

C0 → M(H)CA, K �−→ K� := RatC(C0K∗). (17)

Moreover the contravariant functors (−)0 and (−)� are right adjoint.

DEFINITION 3.11. We say an R-algebra A is R-c-cogenerated, if for every R-
cofinite ideal I � A, the R-module A/I is R-cogenerated.

Remark 3.12. Let R be Noetherian and A an α-algebra. For every right (resp.
left) A-module M , set M0 := RatA

◦
(AM

∗) (resp. M0 := A◦
Rat(M∗

A)). If A is
R-c-cogenerated, then we have by [2, Proposition 3.3.15]

M0 := {f ∈ M∗| f (MI) = 0 (resp. f (IM) = 0)

for some R-cofinite ideal I � A}. (18)

EXAMPLE 3.13. Let A be an R-algebra, C an R-coalgebra and consider the
category of right A-modules and right C-comodules satisfying the compatibility
relation

�M(ma) =
∑

m〈0〉a ⊗m〈1〉 for all m ∈ M and a ∈ A.

The category of such modules andA-linear C-colinear morphisms is called the cat-
egory of Long dimodules, denoted by LC

A, and was introduced by F. Long in [21].
Considering A as a trivial R-comodule algebra and C as a trivial right R-module
coalgebra we get a right–right Doi–Koppinen structure (R,A,C) and it follows
that LC

A 
 M(R)CA. IfA is an α-algebra, then (R,C∗, A◦) is a dual right–right Doi–
Koppinen structure of (R,A,C) and the contravariant functors (−)0: LC

A → LA◦
C∗

and (−)�: LA◦
C∗ → LC

A are right adjoint.

Inspired by [20] and in contradiction to [1, page 138], the following example
shows that for a Hopf R-algebra H and an H -module algebra A over a field, the
dual R-coalgebra A◦ need not be an H ◦-comodule coalgebra.

COUNTEREXAMPLE 3.14. LetR be a field andH a coreflexive HopfR-algebra
with dim(H) = ∞ (e.g., the Hopf R-algebra of [19, Example 5]). By Lemma 3.5
H ∗ is a rightH -module algebra. IfH ∗◦ 
 H were a rightH ◦-comodule coalgebra,
then we would have an R-cofinite ideal J � H with

0 = 〈1H ,H ∗ ↼ J 〉 = 〈J,H ∗〉.
But we would get then J = 0 (which contradicts the assumption dim(H) = ∞).



DUAL ENTWINING STRUCTURES AND DUAL ENTWINED MODULES 293

Remark 3.15. Let H be an R-bialgebra, A a right H -module algebra and C
a right H -comodule coalgebra. Then (H,A,C) is called a right–right alterna-
tive Doi–Koppinen structure. Such structures were introduced by P. Schauenburg
in [23], who showed that with

ψ : C ⊗R A → A⊗R C, c ⊗ a �→
∑

ac〈1〉 ⊗ c〈0〉,

(A,C,ψ) is a right–right entwining structure. Moreover he gave an example of
such an entwining structure that cannot be derived form a Doi–Koppinen structure.
The previous counterexample shows that, even over base fields, (H ◦, C0, A◦) may
not be a dual alternative Doi–Koppinen structure of (H,A,C).

Cleft H-Extensions

Hopf–Galois extensions were presented by S. Chase and M. Sweedler [10] for a
commutative R-algebra acting on a Hopf R-Hopf and are considered as general-
ization of the classical Galois extensions over fields (e.g., [22, 8.1.2]). In [18] H.
Kreimer and M. Takeuchi extended these to the noncommutative case.

3.16. H-EXTENSIONS ([12])

Let H be an R-bialgebra, B a right H -comodule algebra and A := BcoH = {a ∈
B | �(a) = a ⊗ 1H }. Then A is an R-algebra and the algebra extension A ↪→ B is
called a right H -extension.

A (total) integral for B is an H -colinear map γ : H → B (with γ (1H) = 1B).
If B admits an integral, that is invertible in (HomR(H,B), �), then A ↪→ B is
called a cleft right H -extension.

EXAMPLE 3.17. Let H be an R-bialgebra. By [15, Corollary 6] H/R is a cleft
H -extension, iff H is a Hopf R-algebra. In this case idH : H → H is an invertible
total integral with inverse the antipode SH .

3.18. H-COEXTENSIONS

LetH be anR-bialgebra andD a rightH -module coalgebra. ThenH+ := Ker(εH )
is anH -coideal,DH+ is aD-coideal and C := D/DH+ is a rightH -module coal-
gebra with the inducedH -module structure. The canonical coalgebra epimorphism
π : D → C is called a right H -coextension of D.

A (total) cointegral for D is an H -linear map ω: D → H (with εH ◦ ω = εD).
A right H -coextension π : D → C is called cocleft, if D admits cointegral, that is
invertible in (HomR(D,H), �).

As a corollary of our results in this section we get
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PROPOSITION 3.19. Let R be Noetherian, H a Hopf α-algebra with bijective
antipode, D a right H -module coalgebra and C := D/DH+. If π : D → C is a
(cocleft) right H -coextension, then π◦: C0 ↪→ D0 is a (cleft) right H ◦-extension.

Proof. Let D be a right H -module coalgebra through φD: D ⊗R H → D.
By Proposition 3.4(1) D0 is a right H ◦-comodule algebra through φ◦

D: D0 →
D0 ⊗R H

◦. Moreover we have C∗ = (D∗)H := {g ∈ D∗ | hg = ε(h)g for
every h ∈ H }. Hence (D0)coH ◦ = (D0)H = C0 (by [2, Lemma 2.5.15]), i.e.
π◦: C0 ↪→ D0 is a right H ◦-extension.

If ω: D → H is a cointegral for D, then ω is by definition H -linear and so
ω◦ ∈ HomH−(H ◦,D0) = HomH ◦

(H ◦,D0), i.e. ω◦ is an integral for D0.
Let ω be invertible in (HomR(D,H), �)with inverse ω−1: D → H . In a similar

way to [29] we get

ω−1(dh) = SH(h)ω
−1(d) for all h ∈ H and d ∈ D.

If f ∈ H ◦, then we have for all d ∈ D and h ∈ H :

(h(ω−1)◦(f ))(d) = ((ω−1)◦(f ))(dh) = f (ω−1(dh))

= f (S(h)ω−1(d)) =
∑

f1(S(h))f2(ω
−1(d))

=
∑

(S◦(f1))(h)((ω
−1)◦(f2))(d)

=
(∑

S◦(f1)(h)(ω
−1)◦(f2)

)

(d),

i.e. (ω−1)◦ ∈ D0 with �((ω−1)◦) = ∑
(ω−1)◦(f2)⊗ S◦(f1). Moreover we have for

all f ∈ H ◦ and d ∈ D:

((ω◦ � (ω−1)◦)(f ))(d) = ((ω◦ ⊗ (ω−1)◦)(�(f )))(d)

=
(∑

ω◦(f1) � (ω
−1)◦(f2)

)

(d)

=
(∑

ω◦(f1) ⊗ (ω−1)◦(f2)
)

(d1 ⊗ d2)

=
∑

ω◦(f1)(d1)(ω
−1)◦(f2)(d2)

=
∑

f1(ω(d1))f2(ω
−1(d2))

=
∑

f (ω(d1)ω
−1(d2))

= f ((ω � ω−1)(d))

= f (εD(d)1H)

= εH ◦(f )εD(d),

i.e. ω◦ �(ω−1)◦ = idHomR(H
◦,D0). In a similar way, one can prove that (ω−1)◦ �ω◦ =

idHomR(H
◦,D0). So ω◦ is �-invertible with inverse (ω−1)◦ and π◦: C0 ↪→ D0 is a

cleft right H ◦-extension. �
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6. Brzeziński, T.: On modules associated to coalgebra Galois extensions, J. Algebra 215 (1999),

290–317.
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