
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220724032

Shortest Remaining Response Time Scheduling for Improved Web Server

Performance

Conference Paper in Lecture Notes in Business Information Processing · May 2008

DOI: 10.1007/978-3-642-01344-7_7 · Source: DBLP

CITATIONS

3
READS

573

2 authors:

Some of the authors of this publication are also working on these related projects:

Arabic Search Results Disambiguation View project

Revising IPv6 Secure Neighbor Discovery View project

Ahmad Alsadeh

Birzeit University

20 PUBLICATIONS 223 CITATIONS

SEE PROFILE

Adnan Yahya

Birzeit University

49 PUBLICATIONS 507 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ahmad Alsadeh on 28 October 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220724032_Shortest_Remaining_Response_Time_Scheduling_for_Improved_Web_Server_Performance?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220724032_Shortest_Remaining_Response_Time_Scheduling_for_Improved_Web_Server_Performance?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Arabic-Search-Results-Disambiguation?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Revising-IPv6-Secure-Neighbor-Discovery?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Alsadeh-2?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Alsadeh-2?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Alsadeh-2?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adnan-Yahya?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adnan-Yahya?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adnan-Yahya?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Alsadeh-2?enrichId=rgreq-f2f4d06d7d746e98fe360b12ddc7c78a-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcyNDAzMjtBUzoxNTcyODkyNDM3NTA0MDBAMTQxNDUxMjA4NjI2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

J. Cordeiro et al. (Eds.): WEBIST 2008, LNBIP 18, pp. 82–94, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Shortest Remaining Response Time Scheduling for
Improved Web Server Performance

Ahmad AlSa'deh and Adnan H. Yahya

Computer Systems Engineering Department, Birzeit Univeristy, Palestine
{asadeh,yahya}@birzeit.edu

Abstract. The Shortest-Remaining-Response-Time (SRRT) policy has been
proposed for scheduling static HTTP requests in web servers to reduce the
mean response time. The SRRT prioritizes requests based on a combination of
the current round-trip-time (RTT), TCP congestion window size (cwnd) and
the size of what remains of the requested file. We compare SRRT to Shortest-
Remaining-Processing-Time (SRPT) and Processor-Sharing (PS) policies. The
SRRT shows the best improvement in the mean response time. SRRT gives an
average improvement of about 7.5% over SRPT. This improvement comes at a
negligible expense in response time for long requests. We found that under
100Mbps link, only 1.5% of long requests have longer response times than
under PS. The longest request under SRRT has an increase in response time by
a factor 1.7 over PS. For 10Mbps link, only 2.4% of requests are penalized,
and SRRT increases the longest request time by a factor 2.2 over PS.

Keywords: Web server Performance, Request scheduling policy, Remaining
response time scheduling, Comparative scheduling performance.

1 Introduction

Today busy web servers are required to service many clients simultaneously,
sometimes up to tens of thousands of concurrent clients [3]. If a busy web server’s
total request rate increases above the total link capacity or the total server concurrent
users, the number of rejected requests increases dramatically and the server offers
poor performance and long response time, where the response time of a client is
defined as the duration from when the client makes a request until the entire file is
received by the client. The slow response times and difficult navigation are the most
common complaints of Internet users [1]. Research shows the need for fast response
time. The response time should be around 8 seconds as the limit of people's ability to
keep their attention focus while waiting [2]. The question arises, what can we do to
improve the response time at busy web servers?

It is possible to reduce the mean response time of requests at a web server by
simply changing the order in which we schedule the requests. A traditional
scheduling policy in web servers is Processor-Sharing (PS) scheduling. In PS each
of n competing requests (processes) gets 1/n of the CPU time, and is given an equal
share of the bottleneck link. The PS is fair, and prevents long flows from
monopolizing server resources. It has been known from queuing theory that

Shortest Remaining Response Time Scheduling for Improved Web Server Performance 83

Shortest-Remaining-Processing-Time (SRPT) scheduling policy is an optimal
algorithm for minimizing mean response time [10] and [11]. However, the optimal
efficiency of SRPT depends on knowing the response time of the requests in advance,
and under the assumption that preemption in SRPT implies no additional overhead.

The SRPT scheduling policies on web servers [4], [14], and [15] used the job size,
which is well known to the server, to refer to processing time (response time) of the
job to implement SRPT for web servers to improve user-perceived performance. In
the Internet environment, depending only on the file size for estimating the response
time is not enough since it does not take into consideration the client-server
interaction parameters over the Internet, like Round-Trip-Time (RTT), bandwidth
diversity, and loss rate. Dong Lu et al. [18] have shown that the correlation between
the file size and the response time are low, and that the performance of SRPT
scheduling on web servers degrade dramatically due to weak correlation between the
file size and the response time in many regimes.

To better estimate the user response time we proposed a new scheduling policy in
web servers which is called Shortest-Remaining-Response-Time (SRRT) to improve
the mean response time of clients [27]. The proposed method estimates the response
time for a web client by benefiting from the TCP implementation at the server
side only, without introducing extra traffic into the network or even storing historical
data on the server. The SRRT estimates the client response time in each visit to a
server, and then schedules the requests based on the shortest remaining response time
request first. SRRT uses RTT and TCP congestion window size (cwnd) in addition to
the size of the requested file for estimating the response time. The getsockopt() Linux
system call is used by SRRT to get the RTT value and the cwnd “on-the-fly” for each
connection. See section 3 for the complete description of SRRT algorithm.

For our experiment, we use a web workload generator to generate requests with
certain distribution and focus only on static HTTP requests which form a major
percentage of the web traffic [8] and [14]. In 2004, logs from proxy servers show that
67-73% of the requests are for static content [29]. The experiment uses the Linux
operating system and Apache web server. Network Emulator represents the WAN
environment.

The SRRT is compared to the PS and SRPT scheduling policies in web servers.
We find that the SRRT gives the minimum mean response time. We conclude that the
client response time is affected by the Internet conditions. So the priority based
scheduling policy in web servers should take into consideration the Internet
conditions to prioritize the requests.

The rest of the paper is structured as follows. Section 2 discusses relevant previous
work in web server requests scheduling. The SRRT scheduling algorithm is presented
in section 3. The modifications for Apache web server and Linux operating system to
implement SRRT are covered in section 4. The experiment setup and results analysis
are given in section 5. Section 6 summarizes the results obtained and discusses
possible future work.

2 Literature Review

It is well known from scheduling theory literature [10], [11], [12], and [13] that if the
task sizes are known, the SRPT scheduling is optimal for reducing the queuing time

84 A. AlSa'deh and A.H. Yahya

and therefore reducing the mean response time. The work based on the SRPT
algorithm for web server scheduling can be divided into three categories: web server
scheduling theoretical studies, scheduling simulation studies, and scheduling
implementation.

The queuing theory is an old area of mathematics that provides the tools needed for
analysis of scheduling algorithms in general. N. Bansal and M. Harchol-Balter [7]
compare the SRPT policy and the PS policy analytically for an M/G/1 queue with job
size distributions that are modeled by a Bounded Pareto distribution. They show that
with link utilization 0.9, the large jobs perform better under the M/G/1 SRPT queue
than the M/G/1 PS queue. Then they prove that for link utilization 0.5, the SRPT
improves performance over PS with respect to mean response time for every job and
for every job size distribution. For the largest jobs, the slowdown (response time
divided by job size) under SRPT is only slightly worse than under PS [20]. In [19]
and [20], interesting results on the mean response in heavy traffic were obtained that
show that SRPT performs significantly better than FIFO if the system is under heavy
traffic.

In addition to theoretical studies, there are simulation studies of scheduling
algorithms for web servers. C. Murta and T. Corlassoli [9] introduce and simulate an
extension to SRPT scheduling called Fastest-Connection-First (FCF) that takes into
consideration the wide area network (WAN) conditions in addition to request size
when making scheduling decisions. This scheduling policy gives higher priority to
HTTP requests for smaller files issued through faster connections. This work is done
only by simulation without providing a clear idea on how to implement it in real web
servers. M. Gong and C. Williamson [16] identify two different types of unfairness:
endogenous unfairness that is caused by an inherent property of a job, such as its size.
And exogenous unfairness caused by external conditions, such as the number of other
jobs in the system, their sizes, and their arrival times. They then continue to evaluate
SRPT and other policies with respect to these types of unfairness. E. Friedman et
al.[17] propose a new protocol called Fair-Sojourn-Protocol (FSP) for use in web
servers. FSP orders the jobs according to the processor sharing (PS) policy and then
gives full resources to the job with the earliest PS completion time. The FSP is a
modified version of SRPT and it has been proven through analysis and simulation that
FSP is always more efficient and fair than PS given any arrival sequence and
distribution. Their simulation results show that FSP performs better than SRPT for
large requests, while the SRPT is better than FSP for small requests.

The work that implements scheduling for web servers based on the SRPT was done
on both the application level, and at the kernel level to prioritize HTTP requests. M.
Crovella et al. [4] experimented with the SRPT connection scheduling at the
application level. They get an improvement in the mean response times, but at the
cost of drop in the throughput by a factor of almost 2. This drop comes as a result of
no adequate control over the order in which the operating system services the
requests. M. Harchol-Balter et al. [14] implemented SRPT connection scheduling at
the kernel level. They get much larger performance improvements than in [4] and the
drop in the throughput was eliminated. B. Schroeder et al. [15] show an additional
benefit from performing SRPT scheduling for static content web requests. They show
that SRPT scheduling can be used to alleviate the response time effects of transient
overload conditions without excessively penalizing large requests. SWIFT

Shortest Remaining Response Time Scheduling for Improved Web Server Performance 85

algorithm[5] extends the work in [14] based on SRPT, but taking into account in
addition to the size of the file, the RTT to represent the distance between the client
and the server. With this technique, they obtained a response time improvement for
large-sized files by 2.5% to 10% additional to the SRPT. In the SWIFT algorithm
implementation, they assumed that the HTTP requests are embedded with the RTT in
their trace driven experiment. This assumption is not a realistic scenario. Moreover,
the implementation of the SWIFT requires additional modifications on the web server
to support functions that parse requests to extract the RTT that assumed to be part of
client requests. Accordingly, we did not implement the SWIFT to compare it with
SRRT. SRRT gets the RTT and congestion window size (cwnd) at the server side for
each connection "on-the-fly" by using getsockopt() Linux system call to use it with
the file size to better estimate the response time in a WAN environment.

3 SRRT Algorithm

The SRRT algorithm benefits from TCP implementation to address most of the client-
server interaction on the Internet. TCP has no advance knowledge of network
conditions, thus it has to adapt its behavior to network current state by TCP’s
congestion control mechanism. Due to TCP’s congestion control mechanism, TCP
window sizes (cwnd) can be bound to the maximum transfer rate R = (cwnd/RTT)
bps despite the actual bandwidth capacity of the network path. Also, the TCP
congestion control mechanism involves Time-outs that cause retransmissions. Each
transmitted packet has a Time-out: an acknowledgment must reach the sender before
the Time-out expires; otherwise the packet is assumed lost. RTT is monitored and
Time-out is set based on RTT [23] and [24].

After processing an HTTP request, the server code uses the getsockopt() to get
these useful information about the network condition (cwnd, RTT) that will be used in
estimating the remaining response time of the request on the server side. The
requested file size is already known by the server. Hence, the remaining response time
(RRT) can be approximated as follows (recall that R = (cwnd/RTT)):

⎟
⎠
⎞

⎜
⎝
⎛

×
+=+≈

MSScwnd

RFS
RTT

R

RFS
RTTRRT 1 (1)

Where RFS is remaining length of the requested file(s) in bytes, R is the approximated
TCP transfer rate, and MSS is the maximum segment size for the connection in bytes.

As seen above, the estimation of RRT depends on three variables; RFS, current
RTT, and the current cwnd. Thus we consider almost all aspects that affect data
transfer over the Internet since the RTT and the cwnd change dynamically according
to network conditions. The estimated RRT is influenced by network conditions. The
highest priority is given to the connection that has the best-estimated performance: the
connection that needs to transfer small file through an un-congested path, which has
short RTT and large cwnd.

86 A. AlSa'deh and A.H. Yahya

4 SRRT Implementation

The experiments have been done using Apache web server since it is the most popular
web server [30]. To build SRRT based on Apache running on Linux, basically two
things are needed. First, to set up several priority queues at the Ethernet interface.
Second, to modify the Apache source code to assign priorities to the corresponding
requests.

The data being passed from user space is stored in socket buffers corresponding to
each connection. When data streaming passes from the socket buffers to TCP layer
and IP layer, the TCP headers and the IP headers are added to form packets. The
packet flow corresponding to each socket is kept separate from other flows [14].
After that, packets are sent from IP layer to queuing discipline (qdisc). The default
qdisc under Linux is the pfifo_fast qdisc. Figure 1 shows the default data flow in
standard Linux. pfifo_fast qdisc is a classless queuing discipline, so it cannot be
configured. The packet priorities are determined by the kernel according to the so-
called Type-Of- Service (TOS) flag and priority map (priomap) of packets. However,
all packets using the default TOS value are queued to the same band (band 1 in the
Figure 1). So the three bands appear as a single FIFO queue in which all streams feed
in a round-robin service: all requests from processes or threads are given an equal
share of CPU time and share the same amount of link capacity, Processor Sharing
(PS). Packets leaving this queue drain in a network device (NIC) queue and then out
to the physical medium (network link).

Fig. 1. Data flow in standard Linux

To implement SRRT, we need several configurable priority queues. This can be
achieved by Priority (prio) qdisc with 16 priority queues, numbered 0 though 15,
which can be configured. The prio qdisc works on a very simple principle. When it is
ready to dequeue a packet, the first band (queue) is checked for a packet. If there is

Shortest Remaining Response Time Scheduling for Improved Web Server Performance 87

one, it gets dequeued. If there is no packet, then the next band is checked, until the
queuing mechanism has no more classes to check. Figure 2 shows the prio queuing
discipline to implement SRRT.

Fig. 2. Data flow in Linux operating system after enabling prio qdisc and adding SRRT
algorithm

In the SRRT implementation, the Apache code is responsible for assigning the
priorities to the corresponding connection by using setsockopt() to determine in which
band a packet will be enqueued. Therefore, we made changes to the Apache HTTP
Server code to prioritize connections. The modifications are fairly isolated to two
specific files: protocol.c and core.c. The installation of the SRRT-modified Apache
server is the same as the installation of standard Apache. The only thing that might
need to change when experimenting with SRRT server is the priority array values, in
the form of response time ranges, to determine the priority class of the socket
according to the type of the load.

TCP SYN-ACKs gets by default into the highest priority band (band 0). Here, we will
take into consideration the recommendation given by [14]. Because the start up of the
connection is an essential part of the total response delay, especially for short requests
before the size of the file is known, no sockets are assigned to priority band0, but are
assigned to other bands of lower priority, to prevent packets sent during the connection
start up waiting in a long queue. The SYN-ACKs constitute a negligible fraction of the
total load. Thus assigning them to higher priority does not affect the performance.

5 Setup and Results

5.1 Experiment Setup

The experimental setup consists of seven machines connected by 10Mbps hub in the
first experiment and by 100Mbps Fast Ethernet connection switch in the second

88 A. AlSa'deh and A.H. Yahya

experiment. Each machine has an Intel Pentium 4 CPU 3.20 GHz, 504 MB of RAM.
We used the Linux 2.6.18. One of the machines (the server) runs Apache 2.2.3. The
other machines act as web clients. The client machines generate loads using the
Scalable URL Request GEnerator (SURGE) [21]. On each client machine, Network
Emulator (netem [22]) is used to emulate the properties of a Wide Area Network
(WAN).

Request sizes in the World Wide Web are known to follow a heavy-tailed
distribution [14] and [28]. We chose SURGE to generate the HTTP 1.1 requests to the
server such that they follow the heavy-tailed request size distribution. More than
300,000 requests were generated in each experiment run. We used 2000 different file
sizes at the server by running files program from SURGE package at the server
machine. Most files have a size less than 10KBytes. The requested file sizes ranged
from 77B to 3MB. We represent the system load by the number of concurrent users,
defined as the number of user’s equivalents (UEs) generated by the SURGE workload
generator. The web server was run under different UEs. For each number of UEs, the
experiment is run for 10 minutes to ensure that all jobs were completed. For each run
we measure the mean response time at the client side by using the pbvalclient
program from the SURGE package.

In our experiments, we assume that clients experience heterogeneous WANs. We
have divided our experimental space into six WANs; where each of the six client
machines represents a different WAN that shares common WAN parameters by
setting the netem parameters. The WAN factors on each client machine are shown in
Table 1. We experiment with delays between 50ms and 350ms and loss rates from
0.5% to 3.0%. This range of values was chosen to cover values reported in the
Internet Traffic Report [25]. These WAN parameters are applied to incoming
(ingress) packets on the network interface of client machines by using tc Linux
command.

Table 1. Experiment WAN Parameters

WANs RTT(ms) Loss (%)
WAN1 50±10 0.5
WAN2 100±20 1.0
WAN3 150±30 1.5
WAN4 200±40 2.0
WAN5 250±40 2.5
WAN6 350±50 3.0

On a web server servicing primarily static files, network bandwidth is the most
likely source of bottleneck [14] and [31]. Therefore, our scheduling policy for static
contents is applied on the access link out of the web server. We represent the system
load (link utilization) by the number of concurrent users UEs generated by SURGE.
Neither the CPU utilization nor the memory usage is the bottleneck at the server. For
all experiments, the number of concurrent connections did not reach the maximum
number of Apache processes (MaxClients).

Shortest Remaining Response Time Scheduling for Improved Web Server Performance 89

5.2 Results

We compare SRRT with the existing algorithms, namely PS and SRPT. We analyze
our observations from the client’s point of view in terms of mean response time under
the 10Mbps and 100Mbps link capacity. The graphs in Figure 3 show the mean
response time for all WANs as a function of server load (number of UEs) for the
10Mbps and 100Mbps link capacities. Since the workload was generated using six
client machines; we just merge and sort the log files from the various clients into a
single log file and then run the pbvalclnt program to find the mean response time of
all WANs. SRRT and SRPT show an improvement in the mean response time over
PS. Also, the SRRT shows an improvement over SRPT.

Fig. 3. Mean response time of all WANs under 10Mbps and 100mbps

Table 2 shows the improvement percentage of SRRT over SRPT and PS, in
addition to the percentage improvement of SRPT over PS for the two different link
capacities; 10Mbps and 100Mbps. This improvement comes from the fact that the
bandwidth is shared for all requests under PS. Therefore, all incomplete requests still
take fair share of the bandwidth from other requests. Hence, the mean response time
of short requests increases. While under the SRRT and SRPT, long requests do not
receive any bandwidth and short requests are completely isolated from the long
requests. Therefore, completing short requests first and then long requests do not
increase the mean response time by giving the chance to the small requests to
complete first without competition from long requests. As a result, the PS shows a
faster increase in mean response time than under SRRT and SRPT.

90 A. AlSa'deh and A.H. Yahya

Table 2. Percentage improvement of SRRT and SRPT

Improvement
Link

Algorithms
Compared Average Max.

SRRT:SRPT 7.5% 13.2%
SRRT:PS 13.6% 24.2% 10Mbps
SRPT: PS 6.8% 13.7%

SRRT:SRPT 7.4% 11.6%
SRRT:PS 7.1% 16.2% 100Mbps
SRPT: PS 2.6% 5.8%

SRRT has the best results especially at high loads. This is likely because our
approach better estimates the response time by taking into consideration the client-
server interaction over the WAN environment. For low loads, the three algorithms
show almost similar mean response time. Since for low load the available link
capacity is large enough to serve all requests, which in turn results in keeping the
number of packets in the transmission queue small so that the effect of scheduling is
not noticeable. However, in the low load case the RTT dominates the total
communication delay so SRRT shows better behavior over SRPT in this region since
SRRT takes into account RTT in estimating response time. For high load but before
the link saturates, the improvement of SRRT over SRPT starts to become noticeable.
For high load, the SRRT shows a great improvement over the SRPT for all WANs.

The overall requests average percentage improvement of SRRT and SRPT over PS
for 10/100Mbps for all WANs is shown in Figure 4. The network WAN1 has the best
network conditions (delay and loss) compared to other WANs, so the requests get
higher priorities under SRRT and therefore minimize the mean response time. So
WAN1 has the best average improvement percentage in SRRT over PS compared to
the other WANs. Also, we can see that bad network conditions decrease the
improvement of both SRRT and SRPT scheduling techniques over PS. However,
SRPT is more affected by bad network conditions than SRRT since it uses only the
file size to approximate the expected response time. Server delay dominates the
response time for the case of a network with no loss, and in which we ignore RTT. In
contrast, under bad condition WANs (large RTT and high loss rate) the transmission
and retransmission delays are the dominant parts of the communication delay rather
than the delay at the server. The mean response time increases as the RTT and the loss
rate increase. Higher RTTs make loss recovery more expensive since the
retransmission time-outs (RTO) depend on the estimated RTT. Hence, lost packets
cause very long delays based on the RTT and RTO values in TCP. SRRT takes these
into consideration indirectly, TCP throughput for a connection being inversely
proportional to the square root of the loss [26], by decreasing the cwnd. When losses
increase the cwnd decreases. Accordingly, the estimated response time in SRRT
increases, so the corresponding connection receives less priority. Therefore, SRRT
improvement is slightly decreased by the poor network conditions. As mentioned
in[14], “While propagation delay and loss diminish the improvement of SRPT over
PS, loss has a much greater effect". SRRT considers the user’s network conditions by
benefiting from the TCP interaction between the server and the network to take into
consideration the realistic WAN factors that can dominate the mean response time.

Shortest Remaining Response Time Scheduling for Improved Web Server Performance 91

Fig. 4. Average improvement of SRRT and SRPT over PS for 10/100Mbps links

The SRRT/SRPT add an additional overhead compared to PS since they need to
assign priorities to the request by invoking setsockopt() system call. In addition to
setsockopt() call, SRRT uses getsockopt() system call to get the RTT and the cwnd.
However, the additional overhead is not critical under the assumption that the CPU is
not the bottleneck. We found about 1% increase in the CPU utilization under SRRT
over the PS.

5.3 Starvation Analysis

To see if the improvement in mean response time comes at the expense of starvation
for long requests, we look to the response time for each individual request under
SRPT and SRRT scheduling algorithms. To quantify the starvation, we use the
starvation stretch metric, which is introduced by C. Jechlitschek, and S. Gorinsky
in[6]. Starvation stretch Sx(r) of request r under algorithm X is the ratio of response
time RTx(r) under X to response time RTps(r) under PS:

)(

)(
)(

rRT

rRT
rS

ps

x
x = (2)

The starvation occurs under the algorithm X if Sx(r) > 1.

92 A. AlSa'deh and A.H. Yahya

Under SRPT, we found that 2.3% of the requests have starvation stretch greater
than 1 under the 100Mbps link capacity, and the largest file (3119822B) has a
starvation stretch of 2.1. Under the 10Mps capacity, 2.6% of the requests starved. The
largest file has a starvation stretch of 2.4. The SRRT shows better performance than
SRPT since it has more information about the response time. For SRRT only 1.5% of
the long requests starved under the 100Mbps link. The longest response has a
starvation stretch 1.7. Under the 10Mbps, 2.4% of the requests starved. The longest
response has a starvation stretch 2.2.

6 Conclusions and Future Work

The performance of SRPT degrades dramatically in the Internet environment which
has high diversity in bandwidth, propagation delay and packet loss rate. Thus, we
proposed SRRT to better estimate the response time by getting useful TCP
information, which is available at web server about the connection, in addition to the
file size, without producing additional traffic. The SRRT uses the RTT, the
congestion window size, and the file size to approximate the response time. The
request with shortest SRRT receives the highest priority.

We proposed, implemented and evaluated the SRRT scheduling policy for web
servers. The SRRT improves the client-perceived response time in comparison to the
default Linux scheduling (PS) and the SRPT scheduling policies. The SRRT performs
better than SRPT and PS at high and moderate uplink load and especially under
overload condition. The performance improvement is achieved under different uplink
capacities, for a variable range of network parameters (RTTs and loss rate). This
improvement does not unduly penalize the long requests and without loss in byte
throughput. The implementation of SRRT was done on an Apache web server running
Linux to prioritize the order in which the socket buffers are drained within the kernel.
The priority of the requests is determined based on the priority array values we have
coded in the Apache source code. The choice of these values is based on the
experiment trials. After experimenting with different values, we found that the values
adopted gave us good results. But we do not claim that this choice is optimal. Also, it
is better to make these values configurable by the Apache configuration file to be able
to change them as needed or even learn them during experimentation.

Another improvement on SRRT may be done by trying to take other factors that
may affect the response time like queue delay approximation and the TCP connection
loss rate. To check the validity of this algorithm, it is better to test it on a real web
server. Also, it is good to evaluate the SRRT algorithm analytically to examine the
validity of the experimental results if possible.

The SRRT is applied to static web requests. Future work can be enhancing it to
also schedule dynamic requests where the approximation of the response time is not
as easy as for static requests. Also, this work may extend to other operating systems
and other web servers. Also, SRRT algorithm may combine with other quality of
service measures. For example, if connectivity quality is bad for one client, the server
selects a lower quality image to send to the client to improve the response time.

We believe that SRRT scheduling will continue to be applicable in the future,
although better link speeds become available and the bandwidth cost decreases. Due

Shortest Remaining Response Time Scheduling for Improved Web Server Performance 93

to financial constrains, many users will not upgrade their connectivity conditions.
Also, the variance in network distance and environment will persist and diversity in
delay will continue to exist.

References

1. King, A.: Speed up your site: web site optimization, 1st edn. New Riders, Indiana (2003)
2. Nielsen, J.: The need for speed (1997),

http://www.useit.com/alertbox/9703a.html
3. Kegel, D.: The C10K problem (2006), http://www.kegel.com/c10k.html
4. Crovella, M., Frangioso, R.: Connection scheduling in web servers. In: USENIX

Symposium on Internet Technologies and Systems (1999)
5. Rawat, M., Kshemkayani, A.: SWIFT: Scheduling in web servers for fast response time.

In: Second IEEE International Symposium on Network Computing and Applications
(2003)

6. Jechlitschek, C., Gorinsky, S.: Fair Efficiency, or Low Average Delay without Starvation.
Computer Communications and Networks (2007)

7. Bansal, N., Harchol-Balter, M.: Analysis of SRPT scheduling: investigating unfairness.
ACM SIGMETRICS Performance Evaluation Review 29(1), 279–290 (2001)

8. Manley, S., Seltzer, M.: Web facts and fantasy. In: Proceedings of the 1997 USITS 1997
(1997)

9. Murta, C., Corlassoli, T.: Fastest connection first: A new scheduling policy for web
servers. In: The 18th International Teletra#c Congress, ITC-18 (2003)

10. Schrage, L., Miller, L.: The queue M/G/1 with the shortest remaining processing time
discipline. Operations Research 14(4), 670–684 (1966)

11. Schrage, L.: A proof of the optimality of the shortest remaining processing time discipline.
Operations Research 16(3), 678–690 (1968)

12. Smith, D.: A new proof of the optimality of the shortest remaining processing time
discipline. Operations Research 26(1), 197–199 (1976)

13. Goerg, C.: Evaluation of the optimal SRPT strategy with overhead. IEEE Transactions on
Communications 34, 338–344 (1986)

14. Harchol-Balter, M., Schroeder, B., Agrawal, M., Bansal, N.: Size-based scheduling to
improve web performance. ACM Transactions on Computer Systems (TOCS) 21(2), 207–
233 (2003)

15. Schroeder, B., Harchol-Balter, M.: Web servers under overload: How schedule can help.
ACM TOIT 6(1), 20–52 (2006)

16. Gong, M., Williamson, C.: Quantifying the properties of SRPT scheduling. In:
MASCOTS, pp. 126–135 (2003)

17. Friedman, E., Henderson, S.: Fairness and efficiency in web server protocols. In: ACM
SIGMETRICS, pp. 229–237 (2003)

18. Lu, D., Sheng, H.: Effects and implications of file size/service time correlation on web
server scheduling policies. In: MASCOTS, pp. 258–267 (2005)

19. Bansal, N.: On the average sojourn time under M/M/1 SRPT. ACM SIGMETRICS
Performance Evaluation Review 31(2), 34–35 (2003)

20. Bansal, N., Gamarnik, D.: Handling load with less stress. Queueing Systems 54(1), 45–54
(2006)

94 A. AlSa'deh and A.H. Yahya

21. Barford, P., Crovella, M.: Generating representative web workloads for network and
server performance evaluation. In: ACM Joint International Conference on Measurement
and Modeling of Computer Systems, pp. 151–160 (1998)

22. Linux Foundation.: Network Emulation (Netem) (2007),
http://www.linux-foundation.org/en/Net:Netem

23. Karn, P., Partridge, C.: Improving round-trip time estimates in reliable transport protocols.
ACM SIGCOMM Computer Communication Review 25(1), 66–74 (1995)

24. Jacobson, V.: Congestion avoidance and Control. ACM SIGCOMM Computer
Communication Review 25(1), 157–187 (1995)

25. Network Services & Consulting Corporation.: Internet Traffic Report (2007),
http://www.internettrafficcreport.com

26. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling tcp reno performance: A simple
model and its empirical validation. IEEE/ACM Transactions on Networking (TON) 8(2),
133–145 (2000)

27. Sa’deh, A., Yahya, A.: Implementation of a new Scheduling Policy in Web Servers.
WEBIST (1), 22–29 (2008)

28. Crovella, M., Taqqu, M., Bestavros, A.: Heavy-tailed probability distributions in the
World Wide Web. In: A Practical Guide To Heavy Tails, pp. 3–26. Chapman & Hall, New
York (1998)

29. IRCache Home.: The trace files (2004), http://www.ircache.net/Traces
30. Netcraft.: Internet monitoring company (2007), http://news.netcraft.com
31. Padmanabhan, V., Sripanidkulchai, K.: The Case for Cooperative Networking. In:

Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 178.
Springer, Heidelberg (2002)

View publication stats

https://www.researchgate.net/publication/220724032

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

