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Stochastic-based pavement rehabilitation model at the network
level with prediction uncertainty considerations

Khaled A. Abaza

Civil Engineering Department, Birzeit University, West Bank, Palestine

ABSTRACT
An optimumnetwork-level pavement rehabilitationmodel has been devel-
oped for generating a long-term rehabilitation schedule comprised of
a specified number of annual rehabilitation cycles. The optimum model
deploys the discrete-time Markov model to predict the performances of
both original and rehabilitatedpavementswherein thepavement improve-
ment rates are incorporated into the transition probability matrix. The
model implements continuous cyclic improvements in the long-term per-
formance curve compared to the traditionally assumed vertical improve-
ments. A Markov chain with (m) condition states can incorporate (m-1)
rehabilitation treatments with an expected improvement outcome being
the upgrade to condition state (1), the state with best pavement condition.
The optimummodel deploys an effective decision-making policy thatmax-
imises the long-termperformancewhileminimising rehabilitation cost. The
optimummodel canbe solvedusingexhaustive searchwith functional eval-
uations. The sample results obtained for a pavement network comprised of
(12) highways indicated the efficiency of proposedmodel in yielding practi-
cal long-term rehabilitation schedules. The sample results also provided the
minimal annual budget required to progressively remove the ‘very poor’
pavements that greatly affect the life-cycle cost. Furthermore, investigation
of prediction uncertainty resulted in a relatively mild impact when con-
sidering lower and upper-limit performance values using 95% confidence
level.
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1. Introduction

The highway system is the vital transportation system for the movement of goods and people in all
nations around theWorld. It is crucial for the development andprosperity of any nation. Also, the high-
way system represents a huge economic investment that should be maintained to provide the public
with safe and efficient driving conditions. The pavement structure is the highway element that carries
the traffic loads, thus suffering from pavement deterioration over time. This calls for pavement main-
tenance and rehabilitation (M&R) remedies aimed to preserve/upgrade the pavement condition over
time. Because nations have to deal with large pavement networks in the presence of limited resources,
a mathematical tool called pavement management system (PMS) has emerged to provide the pave-
ment engineers with optimal solutions concerning the best M&R plan that should be implemented.
Classically, the M&R treatment types, the pavements receiving the M&R treatments, and the appro-
priate M&R timings are essential elements of any M&R plan (Abaza, 2007; Hafez et al., 2021; Khattak
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et al., 2008; Kim et al., 2018; Li et al., 2006; Sebaaly et al., 1996; Torres-Machí et al., 2015). Therefore, any
reliable PMS is expected to provide answers to these important questions.

Typically, there are four major components associated with any sound PMS (Abaza & Murad, 2007;
Jorge & Ferreira, 2012; Mandiartha et al., 2012; Santos et al., 2017). The first one is a performance pre-
dictionmodel that can detect the pavement future conditions. The second one is anM&Rmodule that
can provide information on the potential M&R treatments in terms of cost and effectiveness. The third
one is an effective decision-making policy formulated to yield optimal M&R plans capable of max-
imising the pavement long-term performance and minimising life-cycle cost. The last component is
an appropriate optimisation method that can generate reliable optimal solutions for the formulated
decision-making strategy. Along these guidelines, several PMSs have been developed using advanced
optimisation methods (Abaza & Murad, 2007; Jorge & Ferreira, 2012; Khavandi Khiavi & Mohammadi,
2018;Mathew& Isaac, 2014; Santos et al., 2017, 2019; Zhang&Gao, 2012). However, very fewones have
gained international recognition because they are deemed as either too complex to use in practice or
too demanding in terms of data requirements with some being labelled as ‘data hungry’.

It is typical that highway agencies develop their own PMSs that can meet their personal require-
ments and specifications. Therefore, locally developed PMSs can significantly vary with respect to
data requirements and methodological approach used. However, the majority of advanced PMSs are
designed to provide optimal M&R solutions at the network-level for both highway and airfield pave-
ments. Generally, the advancedPMSs vary in complexity dependingon the typeof performancemodel
used to predict future pavement conditions, efficiency of the formulated decision-making policy, and
optimisation method used to yield optimal M&R plans. Also, they vary in terms of data requirements,
and details associated with the derived optimal M&R solutions. For instance, the solution details may
include the specific M&R treatments to be applied to particular pavement sections for a given year
over a specified analysis period. However, as the size of the pavement network increases, optimal con-
vergence becomes a critical issue in terms of computation time and solution reliability. Some recent
publications have provided review/overview of current practices and methodologies used in PMSs
(Miah et al., 2020; Peraka & Biligiri, 2020).

The main data requirement for any PMS is related to the observed pavement performance over
time. The traditional approach for obtaining pavement condition records requires conducting man-
ual or automatic pavement distress assessment on annual or biennial basis (Vyas et al., 2021a). The
manual assessmentmethod is considered as time-consuming, costly, error-prone andhazardous com-
pared to automatic distress assessment. Sholevar et al. (2022) presented a survey on automated and
semi-automated pavement condition data collectionmethods, and pavement condition indices to be
estimated from collected data. Typically, a unified pavement condition index is derived to represent
the overall pavement condition to be used in pavement management applications (Abaza, 2017). A
unified condition indicator is normally required when defining and analyzing pavement serviceability
over time. The serviceability concept has been adopted by the pavement engineering community to
evaluate the overall condition of a pavement structure, and it defines the ability of a specific pavement
segment to support traffic loads in its current condition. Road serviceability also denotes the quality
of road surface as perceived by users, and it has been quantified using different measurable distresses
of road surface (Fuentes et al., 2021).

2. Research objectives

In this paper, it is proposed to develop a simplified network-level pavement management model
that mainly focuses on pavement rehabilitation actions expected to produce major improvement
outcomes. The main objective is to design a ‘macroscopic’ model wherein a limited number of reha-
bilitation variables are used to represent a limited number of potential rehabilitation strategies. In the
macroscopic approach, the rehabilitation variables represent the pavement proportions to be treated
in the relevant condition states using specific rehabilitation strategies for every calendar year within
the analysis period. The actual pavement segments to be scheduled for rehabilitation are to be field
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selected in each condition state according to worst-first criterion. This is considered as a major advan-
tage compared to the ‘microscopic’ approach used by the vast majority of PMSs wherein optimal
M&R solutions are to be generated for individual pavement segments, thus making the pavement
management problem highly complicated. The other main research objectives include:

• It is proposed to apply the discrete-time Markov model in predicting pavement performance
wherein the rehabilitation improvement rates are incorporated into the transition probability
matrix. However, theproposedapproachallows to incorporatedifferentdeterioration rates forboth
original and rehabilitated pavements, which is considered an enhancement compared to other
similar models. This represents a new contribution.

• It is proposed to apply continuous cyclic improvements in the long-term performance curve under
the assumption that rehabilitationwork at thenetwork-level is to be spannedover the entire year as
usually implemented in practice, which is an improvement compared to the traditionally assumed
immediate vertical improvements typically applicable to individual pavement projects. This is also
considered as a new contribution.

• It is proposed to apply an effective decision-making policy that attempts to minimise a cost-
effectiveness index defined as the ratio of pavement rehabilitation cycle cost and performance
rating change. This is considered as a simplified but yet effective approach compared to other
complex ones. This is again a new contribution.

• It is proposed to apply a simple exhaustive search approach to yield reliable optimal solutions with
minimal data requirements. Again, this is a major advantage when compared to other advanced
PMSs using complex optimisation methods.

• It is proposed to generate optimal long-term rehabilitation schedule for a specified analysis period
wherein the annual rehabilitation variables represent the pavement proportions in various condi-
tion states to be treated every year using relevant rehabilitation strategies.

• It is finally proposed to investigate the impact of prediction uncertainty on the optimal solutions.
This is mainly related to uncertainties associated with the transition probabilities estimated for a
given network comprised of a number of pavement projects.

All previously outlined features of the proposed rehabilitation model should make it attractive to
the pavement engineering community. In summary, it is attractive because of its simplicity, effective-
ness, and minimal data requirements.

3. Overview of performance predictionmodels

Probably, the most critical component of any sound PMS is the performance prediction model. This
is because there are uncertainties involved in condition data collection methods, and uncertainties
inherited in the prediction models themselves wherein some models are superior to others. There-
fore, a model capable of accurately predicting the pavement future conditions is a key requirement
for yielding reliable optimal M&R solutions. There are several types of performance predictionmodels
that havebeenused in relation topavement deteriorationmodelling. Themostwidely usedprediction
models can generally be classified as deterministic, probabilistic, and Artificial Neural Networks (ANN)
(Abed et al., 2019; Alaswadko & Hwayyis, 2022; Vyas et al., 2021b; Xiao et al., 2022). The deterministic
models are mainly regression-based, while the probabilistic ones include Bayesian and Markov mod-
els. Pavement deterioration is a complicated process and stochastic in nature due to variable climate,
traffic and material characteristics (Pranav et al., 2020). Hence, the probabilistic-based models have
been extensively used in modelling pavement performance.

The ANN models are also capable of predicting future pavement conditions with a high degree of
accuracy, however the majority of used ANN models are deterministic in nature (Xiao et al., 2022).
Justo-Silva et al. (2021) provided a review on machine learning techniques used to develop pave-
ment performance prediction models, and presented their advantages and disadvantages. Hu et al.
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(2022) reviewed the empirical methods of pavement performance modelling, and presented their
main features, strengths, and weaknesses. Sholevar et al. (2022) provided a comprehensive review
of machine learning methods used in analyzing pavement condition data. However, only recently
some researchers haveproposed to integratemachine learningmethods intopavementmanagement
modelling (Barua & Zou, 2022).

The Markov models have been extensively used in pavement management applications (Abaza &
Murad, 2007; Lethanh & Adey, 2012; Lethanh et al., 2015; Yamany & Abraham, 2021). Generally, the
Markovmodels have gainedwide publicity in infrastructure assetmanagement (Abaza, 2022; Meidani
& Ghanem, 2015; Wang et al., 2022; Yamany et al., 2021). Different types of Markov model have been
cited in the literature including discrete-time Markov chain, semi-Markov chain, exponential hidden
Markov chain, PoissonhiddenMarkov chain, randomMarkov chain, and recurrentMarkov chain (Abaza
&Murad, 2007; Lethanh & Adey, 2012; Lethanh et al., 2015; Meidani & Ghanem, 2015; Yang et al., 2006;
Zhang & Gao, 2012). However, the most popular one is the discrete-time Markov model with discrete
number of transitions and condition states. It is popular due to its simplicity and efficacy, minimal data
requirements, and ease of integration into pavement management modelling. Markovian modelling
has been also used in several pavement management applications such as overlay thickness design,
life-cycle analysis, and pavement design (Abaza &Murad, 2009, 2017, 2021; Galvis Arce & Zhang, 2021;
Pittenger et al., 2012).

Generally, the Markov model provides a convenient approach to predict the future based on the
present only, so the past has no impact, an indication of the model’s ‘memoryless’ property. The
main elements of the Markov chain are state probabilities, duty cycle (i.e. transition period), and
transition probabilities. The discrete-time Markov model requires using a discrete number of condi-
tion states typically defined using an appropriate pavement condition indicator (Abaza, 2021, 2022),
and a discrete duty cycle typically taken as one-year in pavement management applications. The
state probabilities define the pavement proportions that exist in the various condition states at a
given discrete-time, while the transition probabilities denote the probabilities of pavement transit-
ing from one state to another during one duty cycle. The discrete-time Markov model can use either
homogeneous or non-homogeneous Markov chains.

The homogeneous Markov chain assumes the transition probabilities remain unchanged during
each duty cycle, while the non-homogenous Markov chain applies different transition probabilities
for each duty cycle. The semi-Markov chain requires estimating a new set of transition probabilities
for each holding time, which is the time the pavement takes to leave its current state. The pavement
lifetime is typically divided into uneven holding times based on the pavement performance curve
(Yamany et al., 2021). Semi-Markov models assume the holding times could follow any continuous-
time distribution, so they are more flexible than the traditional Markovmodels which assume holding
times follow exponential distribution (Thomas & Sobanjo, 2013). Generally, semi-Markov models out-
perform the homogeneous Markov models, but they require more extensive data to estimate the
distribution of the holding times. However, they could be computationally less expensive than the
non-homogeneous Markov models (Yamany et al., 2021).

4. Researchmethodology

The main objective of developing the proposed network-level management model is to generate a
long-term pavement rehabilitation schedule comprised of (n) annual rehabilitation cycles as shown
in Figure 1. Each rehabilitation cycle is achieved by applying a number of potential rehabilitation
treatments. The discrete-time Markov chain is used to model the associated long-term pavement
deterioration and improvement mechanisms in the search for an optimal rehabilitation schedule.
Three types of deterioration rates (i.e. transition probabilities) are considered in the modelling proce-
dure, namely original, improvement and hypothetical transition probabilities. Practically, they should
be estimated from observed pavement condition data collected on both original and rehabilitated
pavements. The improvement transition probabilities are incorporated into the transition probability
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Figure 1. Typical long-term pavement rehabilitation schedule with (n) annual rehabilitation cycles.

matrix. A reliable and efficient decision-making policy is proposed which aims to minimising annual
rehabilitation cycle cost while maximising pavement improvement.

4.1. Pavement performance prediction

Pavement performance has been typically evaluated using several performance indices such as
present serviceability index (PSI), pavement condition index (PCI), and international roughness index
(IRI). The PSI is highly related to pavement roughness and can be estimated from the IRI using
regression-basedmodels. However, the PCI is mainly dependent on the extent and severity of prevail-
ing pavement distresses typically assessed using visual inspection with simple linear measurements.
Pavement sections with small length are usually used in the assessment procedure. Assessment of
a pavement project can be done in two ways. The first one requires assigning a performance rating
for each pavement section, and then computing the average of all section ratings to represent the
project performance rating. The second one requires the estimation of pavement proportions for a
number of deployed condition states/classes. The condition states are typically defined using equidis-
tance ranges of a particular performance index. Theproject performance rating is then computed from
themultiplication product of pavement proportions, Si(k), and expected state performance ratings (R̄i)
as defined in Equation (1) (Abaza, 2017, 2021, 2022). Equation (1) yields the expected project perfor-
mance rating, R(k), for the kth year considering (m) condition states. The expected state performance
ratings are simply the mid-values of the equidistance ranges.

R(k) =
∑
i

R̄i × Si(k) (i = 1, 2, . . . .,m) (1)

where:
∑

i Si(k) = 1.0.
For example, using the PCI with 100-point scale, 5 condition states (m), and equidistance ranges of

(100-80, 80-60, 60-40, 40-20, 20-0) results in expected state performance ratings (R̄i) of (90, 70, 50, 30,
10). The future pavement performance can stochastically be predicted using the discrete-timeMarkov
model wherein Equation (1) is used to estimate the kth year performance rating, R(k), as a function of
the pavement proportions, Si(k), called state probabilities as outlined next.

4.2. Original pavement performance

The state probabilities associatedwith original pavement canbeestimatedusing Equation (2),which is
an application of the discrete-timeMarkovmodel. The corresponding transition probability matrix (A)
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only incorporates two statemovements that can take place during a duty cycle, namely either remain-
ing in the current condition state (i) with probability (Ai,i) or transiting to the next worst state (i+ 1)
with probability (Ai,i + 1). This transition matrix form has been used by several researchers and found
to be reliable in predicting pavement performance provided it deploys a reasonably small number of
condition states (Abaza, 2022; Abed et al., 2019; Galvis Arce & Zhang, 2021; Wang et al., 2022; Yamany
et al., 2021). Equation (2) only predicts the original state probabilities in the absence of any rehabili-
tation work as all entries below the main diagonal are assigned zero values. The initial/present state
probabilities, SAi(0), are required to estimate the corresponding values, SAi(1), after one transition. One
transition (i.e. duty cycle) is typically taken equal to one year in pavement management applications.
Both SA(k) and SA(k-1) are row vectors.

SA(k) = SA(k − 1)A (k = 1, 2, . . . ..) (2)

where: SA(k) = [SA1(k), SA2(k), . . . ., SAm(k)]

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 A1,2 0 0 0 0 . . . 0
0 A2,2 A2,3 0 0 0 . . . 0
0 0 A3,3 A3,4 0 0 . . . 0

...

...

...
0 0 . . . 0 Am−1,m−1 Am−1,m

0 0 0 . . . . . . 0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The model presented in Equation (2) deploys (m) condition states, therefore the state probabili-
ties represent the pavement proportions that exist in the various deployed states at the kth transition.
Whereas the transition probabilities indicate the pavement deterioration rates prevailing during every
transition assuming homogeneous Markov chain. It is recommended that the deterioration transi-
tion probabilities (Ai,i+ 1) be estimated from observed condition data collected on original pavement.
Abaza (2021, 2022) proposed simplified but yet effective approaches to estimate the corresponding
transition probabilities. The initial and first-year performance ratings, RA(0) & RA(1), shown in Figure 1
are estimated from Equation (1) using the corresponding original state probabilities, SA(0) & SA(1).

4.3. Rehabilitated pavement performance

Theexpected improvementof rehabilitatedpavement in termsof the rehabilitation stateprobabilities,
SBi(k), can be estimated using Equation (3). The corresponding transition probability matrix (B) incor-
porates both deterioration transition probabilities (Bi,i & Bi,i+ 1) in the presence of rehabilitation, and
improvement transition probabilities (Qi,1). The solid lines depicted in Figure 1 indicate continuous
pavement improvement through the application of (n) annual rehabilitation cycles. It is continuous
because the rehabilitation work is assumed to be spanned over the entire year in consistency with
the definition of transition probabilities. Equation (3a) indicates that the first-year rehabilitation state
probabilities, SBi(1), are dependent on the initial original state probabilities, SAi(0). The SBi(1) are used
to estimate the corresponding rehabilitation performance rating, RB(1), shown in Figure 1. However,
Equation (3b) is used for the subsequent years wherein the rehabilitation performance ratings [RB(k),
k≥ 2] are estimated from Equation (1) using the corresponding rehabilitation state probabilities.

SB(1) = SA(0)B (k = 1) (3a)

SB(k) = SB(k − 1)B (k = 2, 3, . . . ., n) (3b)
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where: SB(k) = [SB1(k), SB2(k), . . . ., SBm(k)].

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1,1 B1,2 0 0 0 0 . . . 0
Q2,1 B2,2 B2,3 0 0 0 . . . 0
Q3,1 0 B3,3 B3,4 0 0 . . . 0

...

...

...
Qm−1,1 0 . . . 0 Bm−1,m−1 Bm−1,m

Qm,1 0 0 . . . . . . 0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The pavement improvement rates (Qi,j ; i = 2, 3, . . . ., m, j = 1) incorporated into the rehabilitation tran-
sition probability matrix (B) assumes the improvement outcomes will be the upgrading of pavements
from condition states (2, 3, . . . ., m) to state (1). Each improvement rate denotes a specific rehabilitation
treatment that can achieve the intendedpavement upgrade. The deterioration transition probabilities
associated with the first row (B1,1 & B1,2) are the same as the corresponding values (A1,1 & A1,2) pro-
vided in matrix (A). However, the deterioration transition probabilities provided in the other matrix
rows need to be adjusted so that the sum of any row remains equal to one as shown in Equation (4).

Qi,1 + Bi,i + Bi,i+1 = 1.0 (4)

It also requires to assume that the ratio of original transition probabilities remains the same as
the ratio of the corresponding transition probabilities in the presence of rehabilitation as stated in
Equation (5).

Ai,i+ 1

Ai,i
= Bi,i+ 1

Bi,i
(5)

Enforcement of the above two conditions results in Equation (6) to be used in computing the dete-
rioration transition probabilities (Bi,i and Bi,i + 1) in the presence of pavement improvement. However,
Equation (6) is only applicable to the first-year rehabilitation cycle (k = 1). This is because pavement
deterioration for the subsequent cycles may be associated with deterioration transition probabilities
that are different from the ones provided in matrix (A) as outlined next.

Bi,i+1 = Ai,i+1 (1 − Qi,1)

Bi,i = Ai,i(1 − Qi,1)

Bm,m = 1 − Qm,1 (6)

4.4. Hypothetical pavement performance

The deterioration of rehabilitated pavement had the pavement not been rehabilitated is shown in
Figure 1 as broken lines starting at the second transition (k≥ 2). The relevant hypothetical deteriora-
tion rates (Ci,i and Ci,i + 1) may not be the same as for the original pavement, therefore Equation (7) is
similar to Equation (2) but it incorporates a different transition probability matrix (C). The hypothetical
state probabilities, SCi(k), are also dependent on the rehabilitation state probabilities, SBi(k-1), associ-
atedwith the preceding transition as can be verified fromFigure 1. The hypothetical state probabilities
are used in Equation (1) to determine the corresponding hypothetical performance ratings, RC(k), as
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depicted in Figure 1.

SC(k) = SB(k − 1)C (k = 2, 3, . . . ., n) (7)

where: SC(k) = [SC1(k), SC2(k), . . . ., SCm(k)].

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1,1 C1,2 0 0 0 0 . . . 0
0 C2,2 C2,3 0 0 0 . . . 0
0 0 C3,3 C3,4 0 0 . . . 0

...

...

...
0 0 . . . 0 Cm−1,m−1 Cm−1,m

0 0 0 . . . . . . 0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Equation (7) is used to calculate the hypothetical state probabilities, SCi(k), had the pavement not
been rehabilitated, which are then used to estimate the relevant hypothetical performance ratings
[RC(k), k≥ 2] as shown in Figure 1. The improvement transition probabilities, (Qi,1), should therefore be
incorporated inmatrix (C) for rehabilitation cycles (k≥ 2). This simply results inmodifying Equation (6)
so that the deterioration transitionprobabilities (Ai,i & Ai,i+ 1) are replacedby the corresponding values
(Ci,i & Ci,i+ 1) to still yield the required improvement transition probabilities (Bi,i and Bi,i+ 1). Similarly,
the hypothetical deterioration probabilities (Ci,i+ 1) should be estimated fromcondition data collected
on rehabilitated pavement.

4.5. Pavement rehabilitationmodelling

The rehabilitationwork is considered to be uniformly spanned over the entire (k) transitionwhen deal-
ing with a large pavement network, which is consistent with the definition of improvement transition
probabilities to be taken place during the full transition. Therefore, Figure 1 shows improvements
achieved by rehabilitation cycles are represented by continuously increasing straight lines, and not
instantaneous vertical rises as traditionally assumed. The assumption of immediate vertical rises in
the long-term performance curve is mainly applicable when rehabilitation work can be carried out in
a short-time period. However, when considering a large pavement network, the rehabilitation work
cannot practically be achieved in a short-time period, and it is logical to assume its extension over the
entire year.

The amount of rehabilitation work to be carried out during the kth year depends on the rehabil-
itation state probabilities, SBi(k-1), associated with the preceding transition, and deterioration state
probabilities, SCi(k), had the pavement not been rehabilitated. It cannot only depend on SBi(k-1)
because additional pavement deteriorationwould have takenplace during the kth year. Therefore, it is
assumed that the state probabilities, Si(k), available for rehabilitation during the kth year are the aver-
ages of rehabilitation state probabilities, SBi(k-1), and deterioration state probabilities, SCi(k), had the
pavement not been rehabilitated as provided in Equation (8). The only exception is for the 1st rehabil-
itation cycle (k = 1) wherein the corresponding average state probabilities, Si(1), are computed from
the original state probabilities, SAi(0) & SAi(1), as indicated by Equation (8a) and Figure 1.

Si(1) = [SAi(0) + SAi(1)]/2 (k = 1) (8a)

Si(k) = [SBi(k − 1) + SCi(k)]/2 (k = 2, . . . .., n) (8b)

The amounts of rehabilitation work as state probabilities (i.e. proportions) cannot exceed the aver-
ages computed using Equation (8). Therefore, the amounts of rehabilitation work in terms of the
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rehabilitation variables, Xi,1(k), are estimated from themultiplication of improvement transition prob-
abilities, Qi,1(k), and average state probabilities, Si(k), as defined in Equation (9). Each rehabilitation
variable represents a specific rehabilitation treatment so that a particular rehabilitation cycle can
include (m-1) potential rehabilitation treatments.

Xi,1(k) = Qi,1(k) Si(k) (i = 2, 3, . . . ., m) (9)

Consequently, the rehabilitation variables,Xi,1(k), represent thepavement proportions tobededucted
from the average state probabilities. The rehabilitation variables are to be used in the proposed
optimum network-level rehabilitation model outlined next.

4.6. Optimumnetwork-level rehabilitationmodel

The successful implementation of any pavement management model requires deploying an effective
decision-making policy. Therefore, the optimum network-level rehabilitationmodel proposes to min-
imise a cost-effectiveness index, ICE(k), defined as the ratio of total rehabilitation cycle cost, TC(k), and
performance rating change, �R(k), as presented in Equation (10) considering the kth rehabilitation
cycle. The total rehabilitation cycle cost is computed as a multiplication of the total pavement sur-
face area (Ap), unit costs of applicable rehabilitation treatments, UCi(k), and rehabilitation variables,
Xi,1(k). The performance rating change, �R(k), is defined as the difference between the rehabilitated
performance rating, RB(k), and hypothetical performance rating had the pavement not been reha-
bilitated. The hypothetical performance rating is equal to the original performance rating, RA(1), for
the 1st rehabilitation cycle, and equal to RC(k) for the subsequent cycles. Therefore, the model pro-
posed in Equation (10) attempts to yield the optimal annual rehabilitation plan that minimises the
total rehabilitation cycle cost while maximising expected performance improvement.

Minimize : ICE(k) = TC(k)/�R(k) (k = 1, 2, . . . .., n) (10)

where: TC(k) = AP × ∑m
i=2 UCi(k) × Xi,1(k), Xi ,1(k) = Qi ,1(k)× Si(k), �R(k) = RB(k) – RA(k) (k = 1),

�R(k) =
RB(k) – RC(k) (k≥ 2)

Subject to:

(1) 0.0 ≤ Qi,1 ≤ 1.0
(2) 0.0 ≤ Xi,1(k) ≤ Si(k)
(3) �R(k)> 0
(4) TC(k) ≤ AB(k)

The optimum model outlined in Equation (10) is subject to four sets of constraints. The first set
requires the improvement transition probabilities (Qi,1) to be between zero and one. The second set
maintains the non-negativity values of rehabilitation variables (Xi,1) and assures they don’t exceed the
average state probabilities, Si(k). The third one simply enforces the performance rating change,�R(k),
to be greater than zero. Lastly, the fourth set imposes that the total rehabilitation cycle cost be less
than or equal to the allocated annual budget, AB(k). The optimisation method that is best suitable to
solve the optimum model previously described is the one that deploys functional evaluations using
an appropriate exhaustive search algorithm as deployed next in the sample presentation section. This
is especially true when dealing with a limited number of rehabilitation variables.

5. Sample presentation

A case study is presented in this section to demonstrate the potential use of the proposed optimum
network-level rehabilitation model. The case study considers a sample of 12 minor highways with
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Table 1. Sample highway initial and terminal transition probabilities.

Highway number 1 2 3 4 5 6 7 8 9 10 11 12

P1,2 0.18 0.25 0.26 0.29 0.32 0.35 0.38 0.39 0.47 0.52 0.58 0.64
P4,5 0.38 0.36 0.69 0.51 0.74 0.31 0.49 0.75 0.85 0.49 0.52 0.50

low traffic volume wherein the minor highways are used to connect villages in the northern district
of Nablus, West Bank, Palestine, with nearby major highways. The minor highways were constructed
using a flexible pavement structure with two layers, namely asphalt concrete surface and aggregate
base. The initial and terminal transition probabilities (P1,2 & P4,5) associated with the highway sam-
ple were previously estimated and used in a former publication as provided in Table 1 (Abaza, 2021).
There are different methods proposed to estimate the transition probabilities mainly relying on his-
torical records of pavement distress (Abaza, 2022; Costello et al., 2016; Yamany & Abraham, 2021). In
particular, a simplified and efficient method has been proposed to estimate the transition probabili-
ties for individual projects based on two consecutive annual performance ratings (Abaza, 2022). The
initial/present state probabilities, SAi(0), associated with the sample pavement network are estimated
to be equal to (0.192, 0.257, 0.354, 0.126, 0.071) considering a Markov chain with (m = 5) condition
states designated as very good, good, fair, poor and very poor, respectively.

5.1. Sample transition probabilitymatrices

The application of the proposed optimum network-level rehabilitation model requires the estimation
of three transition probability matrices, namely the original transition matrix (A), rehabilitation matrix
(B), and hypothetical matrix (C). Thesematrices need to represent the deterioration of the entire pave-
ment network, which can be accomplished by using the averages of the initial and terminal transition
probabilities provided in Table 1. The resulting averages are (0.386 & 0.549), thus representing the net-
work initial and terminal transition probabilities (A1,2 & A4,5), respectively, which are two main entries
in matrix (A). The remaining entries in matrix (A) can be estimated using linear interpolation as indi-
cated by Equation (11). Linear interpolation was used in former publications and found to be reliable
in pavement performance prediction (Abaza, 2017, 2022).

Ai,i+1 = A1,2 + Am−1,m − A1,2
m − 2

(i = 2, 3, . . . . , m − 2) (11)

Therefore, the remaining deterioration probabilities (A2,3 & A3,4) of matrix (A) are estimated from
Equation (11) using (m = 5) condition states. The resulting transition probabilitymatrix (A) is provided
in Equation (12) wherein the sumof any row adds up to one. This samplematrix (A) follows the general
form presented in Equation (2).

A =

⎡
⎢⎢⎢⎢⎣

0.614 0.386 0.000 0.000 0.000
0.000 0.560 0.440 0.000 0.000
0.000 0.000 0.505 0.495 0.000
0.000 0.000 0.000 0.451 0.549
0.000 0.000 0.000 0.000 1.000

⎤
⎥⎥⎥⎥⎦

(12)

Estimation of the hypothetical deterioration transition matrix (C) can be done using the same pro-
cedure outlined in constructing matrix (A) wherein the corresponding initial and terminal transition
probabilities are to be estimated fromhistorical distress records. However, amuch simpler approach is
proposed for the purpose of sample presentation. It is proposed to estimatematrix (C) frommatrix (A)
by simply multiplying the transition probabilities (Ai,i+ 1) by an adjustment factor (F) to yield the tran-
sition probabilities (Ci,i+ 1) as stated in Equation (13). The adjustment factor is expected to be lower
than one if the rehabilitated pavement is stronger than the original pavement implying the corre-
sponding deterioration rates (Ci,i+ 1) are lower than original values (Ai,i+ 1), thus resulting in superior
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performance. It is also expected to be greater than one if the rehabilitated pavement is weaker indi-
cating the corresponding deterioration rates are larger than original values, thus resulting in inferior
performance. Therefore, experience and engineering judgement can be deployed to estimate the
appropriate adjustment factor. It can also be estimated from the structural capacities associated with
both original and rehabilitated pavements (Abaza, 2017). Alternatively, it can be computed as the ratio
of average annual condition ratings to be estimated over a specified service period considering both
pavements.

Ci,i+1 = F × Ai,i+1 (13)

For the purpose of sample presentation, the adjustment factor is assumed equal to (1.1), an indica-
tion of weaker rehabilitated pavement. The resulting transitionmatrix (C) is provided in Equation (14).
Again, sample matrix (C) deploys only two state movements similar to matrix (A).

C =

⎡
⎢⎢⎢⎢⎣

0.575 0.425 0.000 0.000 0.000
0.000 0.516 0.484 0.000 0.000
0.000 0.000 0.456 0.544 0.000
0.000 0.000 0.000 0.396 0.604
0.000 0.000 0.000 0.000 1.000

⎤
⎥⎥⎥⎥⎦

(14)

The rehabilitation matrix (B) can now be computed for the 1st rehabilitation cycle (k = 1) from
Equation (6) using sample matrix (A) and improvement transition probabilities (Qi,1). A trial sample
matrix (B) is presented in Equation (15) which only represents the 1st rehabilitation cycle. The trial
improvement transition probabilities are assumed equal to (Q3,1 = 0.7, Q4,1 = 0.5, Q5,1 = 0.2) imply-
ing that rehabilitation work is only applied to pavements in condition states (3, 4, 5), respectively.
Please note the first two rows in matrix (B) are the same as the corresponding ones in matrix (A).
Matrix (B) for the subsequent rehabilitation cycles (k≥ 2) is to be determined in the same way but
using matrix (C) instead of matrix (A).

B =

⎡
⎢⎢⎢⎢⎣

0.614 0.386 0.000 0.000 0.000
0.000 0.560 0.440 0.000 0.000
0.700 0.000 0.152 0.148 0.000
0.500 0.000 0.000 0.226 0.274
0.200 0.000 0.000 0.000 0.800

⎤
⎥⎥⎥⎥⎦

(15)

The improvement transition probabilities (Qi,1) are to be varied over their theoretical range [0,1] in
the search for the optimal rehabilitation plan (i.e. cycle) consisting of (m-1) rehabilitation treatments as
applied to condition states (2,3, . . . .,m) as outlined earlier. However, only threepotential rehabilitation
treatments are considered in this sample presentation. The first rehabilitation treatment is applied to
pavements in condition state (3), which involves removal of (3 cm) asphalt surface by coldmilling to be
replaced by (3 cm) new asphalt mix at an estimated unit cost (UCi) of ($13/m2). The second rehabilita-
tion treatment is applied to pavements in condition state (4), which requires removal and replacement
of (5 cm) asphalt at a unit cost of ($20/m2). The third treatment is applied to state (5) requiring as amin-
imum the complete removal of existing asphaltic surface and replacement of new asphalt surface at
an estimated unit cost of ($30/m2). The use of only three sample potential rehabilitation treatments is
consistent with the common practice worldwide, and appropriate for aMarkov chain with 5 condition
states. The total surface area (AP) associated with the sample pavement network is estimated to be
(2.52× 105 m2).

5.2. Sample optimal rehabilitation schedules

The optimum network-level rehabilitation model outlined in Equation (10) has been used to obtain
three sample optimal rehabilitation schedules with different annual budget. Each sample optimal
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Figure 2. Sample optimal rehabilitation schedule using $0.50 million annual budget.

schedule is derived for 7 years analysis period, thus resulting in 7 annual rehabilitation cycles. In the
search for the optimal solution, an exhaustive search approach with functional evaluation has been
applied wherein the search is simultaneously made with respect to the three deployed improve-
ment transition probabilities (Qi,1) until theminimum cost-effectiveness index value, ICE(k), is reached.
This requires the calculation of the total rehabilitation cycle cost, TC(k), as outlined in Equation (10).
It also requires to compute the performance improvement change, �R(k), with the relevant perfor-
mance ratings RA(k), RB(k) and RC(k) are determined based on matrices (A), (B) and (C), respectively.
The corresponding state probabilities are first computed using relevant discrete-time Markov mod-
els as outlined in the methodology section, then Equation (1) is used to calculate the three involved
performance ratings.

Table 2 provides the optimal solutions for the sample rehabilitation schedule associated with $0.5
million annual budget. The provided optimal solutions include the rehabilitation variables, average
state probabilities, and corresponding performance improvement change. The average state proba-
bilities are computed as outlined in Equation (8) and used to define the rehabilitation variables, Xi,1(k),
as per Equation (9). Therefore, the optimal improvement transition probabilities, Qi,1(k), can simply
be computed from dividing the rehabilitation variables by the corresponding average state proba-
bilities. This means the rehabilitation variables represent pavement proportions to be taken from the
relevant average state probabilities. Table 2 indicates that the 1st rehabilitation treatment (X3,1) has
dominated the optimal solutions with the 2nd rehabilitation treatment (X4,1) slightly used in rehabili-
tation cycles 3 and 4. However, the 3rd rehabilitation treatment (X5,1) has not been used at all because
of its least cost-effectiveness. Figure 2 displays the long-term performance curve associated with the
sample rehabilitation schedule presented in Table 2. The middle curve is the one corresponding to
the optimal solutions provided in Table 2 because average network transition probabilities have been
used in constructing the deployed transition probability matrices. The relevant curve starts with a rel-
atively sharp decline in the pavement performance rating, RB(k), and begins levelling at around the
5th rehabilitation cycle.

Table 3 provides the sample optimal rehabilitation schedule associated with $0.75 million annual
budget. The optimal solutions have made more use of the 1st and 2nd rehabilitation treatments, and
some limited use of the 3rd treatment in only two rehabilitation cycles. In these two cycles (i.e. cycles 3
& 4), it can be noticed the full use of 1st and 2nd rehabilitation treatments wherein the values of reha-
bilitation variables are equal to the corresponding values of the average state probabilities. Overall,
higher performance improvements have been achieved with $0.75 million annual budget compared
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Table 2. Sample optimal rehabilitation schedule with $0.50 million annual budget.

Optimal rehab. variables Optimal average state probabilities, S̄(k)

Year (k) X3,1(k) X4,1(k) X5,1(k) S̄1(k) S̄2(k) S̄3(k) S̄4(k) S̄5(k) Optimal�R(k)

1 0.1526 0.0000 0.0000 0.1550 0.2374 0.3230 0.1790 0.1056 8.35
2 0.1526 0.0000 0.0000 0.2246 0.2257 0.2039 0.1606 0.1852 7.91
3 0.1507 0.0013 0.0000 0.2516 0.2447 0.1507 0.09623 0.2567 6.66
4 0.1443 0.0054 0.0000 0.2476 0.2608 0.1443 0.0546 0.2927 6.00
5 0.1526 0.0000 0.0000 0.2342 0.2643 0.1545 0.0423 0.3047 6.23
6 0.1526 0.0000 0.0000 0.2312 0.2617 0.1578 0.0391 0.3102 6.36
7 0.1526 0.0000 0.0000 0.2315 0.2597 0.1572 0.0384 0.3132 6.39

Figure 3. Sample optimal rehabilitation schedule using $0.75 million annual budget.

Table 3. Sample optimal rehabilitation schedule with $0.75 million annual budget.

Optimal rehab. variables Optimal average state probabilities, S̄(k)

Year (k) X3,1(k) X4,1(k) X5,1(k) S̄1(k) S̄2(k) S̄3(k) S̄4(k) S̄5(k) Optimal�R(k)

1 0.2289 0.0000 0.0000 0.1550 0.2374 0.3230 0.1790 0.1056 12.52
2 0.1731 0.0363 0.0000 0.2905 0.2435 0.1731 0.1202 0.1727 10.76
3 0.1420 0.0495 0.0047 0.3230 0.2909 0.1420 0.0495 0.1946 7.88
4 0.1706 0.0354 0.0017 0.2960 0.3168 0.1706 0.0354 0.1812 6.76
5 0.1880 0.0266 0.0000 0.2743 0.3170 0.1880 0.0412 0.1795 7.71
6 0.1890 0.0260 0.0000 0.2771 0.3121 0.1890 0.0423 0.1795 7.91
7 0.1857 0.0281 0.0000 0.2819 0.3116 0.1857 0.0413 0.1795 7.72

to $0.50 million budget as evident from the optimal performance changes, �R(k), and middle curve
depicted in Figure 3. Similarly, Table 4 provides the optimal results for $1.0 million annual budget
where it can be noticed the full use of 1st and 2nd rehabilitation treatments in cycles (2–7), and
more use of the 3rd rehabilitation treatment. It can also be noticed that the average state probabil-
ity, S̄5(k), associated with condition state (5) has consistently decreased over time. The same average
state probability has steadily increased in Table 2, and remained almost stable in Table 3. Therefore,
the optimal rehabilitation schedule associatedwith $1.0million annual budget is superior to the other
two schedules not just because it yields better overall pavement improvements as per Figure 4, but it
also gradually eliminates the pavements in ‘very poor’ condition, thus substantially reducing routine
maintenance cost and added user cost.
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Figure 4. Sample optimal rehabilitation schedule using $1.0 million annual budget.

Table 4. Sample optimal rehabilitation schedule with $1.0 million annual budget.

Optimal rehab. variables Optimal average state probabilities, S̄(k)

Year (k) X3,1(k) X4,1(k) X5,1(k) S̄1(k) S̄2(k) S̄3(k) S̄4(k) S̄5(k) Optimal�R(k)

1 0.3053 0.0000 0.0000 0.1550 0.2374 0.3230 0.1790 0.1056 16.69
2 0.1423 0.0799 0.0174 0.3564 0.2612 0.1423 0.0799 0.1602 12.26
3 0.1506 0.0287 0.0479 0.3663 0.3294 0.1506 0.0287 0.1250 9.20
4 0.1932 0.0401 0.0218 0.3316 0.3580 0.1932 0.0401 0.0771 9.25
5 0.2125 0.0467 0.0090 0.3242 0.3613 0.2125 0.0467 0.0553 9.46
6 0.2149 0.0476 0.0074 0.3289 0.3623 0.2149 0.0476 0.0463 9.50
7 0.2154 0.0476 0.0072 0.3330 0.3652 0.2154 0.0476 0.0388 9.48

Interpretation of optimal solutions is outlined in relation to the sample results provided in Table 4.
Theoptimal solutionassociatedwith the first rehabilitation cycle (k = 1) consists of onlyX3,1 = 0.3053,
which represents the proportion of pavements in condition state (3) to be rehabilitated during the
first-year out of the available S̄3(k) =0.3230 proportion at the beginning of the 1st year. This is to be
accomplished using the first rehabilitation treatment (i.e. removal and replacement of 3 cm asphalt
surface). It is equivalent to (0.3053/0.3230)× 100% = 94.52% of pavement available in state (3). The
optimal solution associated with the 2nd rehabilitation cycle (k = 2) is comprised of X3,1 = 0.1423,
X4,1 = 0.0799, andX5,1 = 0.0174. Thismeans all pavements (100%) in condition states (3) & (4) have to
be rehabilitated during the 2nd year using the outlined rehabilitation treatments 1 & 2, respectively. In
addition, (0.0174/0.1602)× 100% = 10.86% of pavements in condition state (5) is to be rehabilitated
using the 3rd rehabilitation treatment (i.e. complete removal and replacement), and to be selected
based on worst-first criterion.

5.3. Sample prediction uncertainty impact

The previously presented sample results have been estimated using the network mean transition
probabilities. Statistically, these sample results are associated with only 50% occurrence chance. The
impact of predictionuncertainty on thederivedoptimal solutions canbe investigatedbyplacing lower
and upper limits on the networkmean transition probabilities. In particular, lower and upper limits can
be established for the network initial and terminal transition probabilities (A1,2 & A4,5) previously esti-
mated as averages of the highway transition probabilities provided in Table 1. Equation (16a) is used to
compute the upper-limit value (UAi,i+ 1), and Equation (16b) calculates the lower-limit value (LAi,i+ 1).
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Table 5. Sample optimal lower, mean and upper-limit performance ratings (RB) with different annual budget (AB) and 95%
confidence level.

$0.5 Million (AB) $0.75 Million (AB) $1.00 Million (AB)

Year (k) RBLa RBMb RBUc RBL RBM RBU RBL RBM RBU

1 57.70 57.17 56.67 61.62 61.35 61.07 65.58 65.52 65.52
2 57.51 56.49 55.43 64.43 63.76 63.05 70.44 69.69 68.91
3 57.10 55.71 54.39 65.47 64.04 62.59 72.21 70.84 69.43
4 56.45 54.92 53.66 65.14 63.16 61.78 73.47 71.48 69.46
5 56.02 54.55 53.28 64.93 63.16 61.90 74.63 72.07 69.53
6 55.88 54.39 53.06 65.07 63.35 62.08 75.20 72.62 69.65
7 55.83 54.31 52.89 65.13 63.37 62.07 75.02 73.09 69.76
Average 56.64 55.36 54.20 64.54 63.17 62.08 72.37 70.76 68.90
% Diff. +2.31 –d −2.10 +2.17 – −1.76 +2.28 – −2.63
aRBL: Lower-limit rehabilitation performance rating.
bRBM: Mean rehabilitation performance rating.
cRBU: Upper-limit rehabilitation performance rating.
dNot-applicable.

The use of Equation (16) requires the sample size (N) to be equal or greater than (30) wherein the stan-
dard normal variable (Z∝/2) is used with (1-α) confidence level. The normal variable (Z∝/2) is equal to
(1.96) for (95%) confidence level with (S) being the sample standard deviation.

UAi,i+ 1 = Ai,i+ 1 + Z∝/2
S√
N

(16a)

LAi,i+ 1 = Ai,i+ 1 − Z∝/2
S√
N

(16b)

In case the sample size is less than (30), then the normal statistic (Z∝/2) is replaced by the t-statistic
(t∝/2), which is the case in thepreviously presented case studywherein (N = 12). The t-statistic is equal
to (2.201) for a sample size with (11) degree of freedom (N-1) and 95% confidence level. Themean and
standarddeviation associatedwith the initial transitionprobabilities provided in Table 1 are computed
to be equal to (A1,2 = 0.386) and (S1,2 = 0.141), respectively. Similarly, the mean and standard devi-
ation for the terminal transition probabilities are calculated to be (A4,5 = 0.549) and (S4,5 = 0.171),
respectively. Equation (16) results in (0.296) and (0.476) as the lower and upper-limit values, respec-
tively, for the mean initial transition probability (A1,2). It also yields (0.439) and (0.659) as the limits for
the mean terminal transition probability (A4,5).

Now, two additional sets of optimal rehabilitation schedules have been generated similar to the
schedules provided in Tables 2–4. One set has applied the estimated lower-limits (0.296 & 0.439) of
mean initial and terminal transition probabilities, respectively, and the other set deployed the upper-
limits (0.476 & 0.659) to be compared with the initial solutions associated with the mean values of
(0.386 & 0.549). Table 5 provides a summary of the corresponding optimal performance ratings, RB(k),
considering the three different probability sets (i.e. lower-limits, mean-values, upper-limits), and the
same three different annual budgets. Also, the results associatedwith the lower and upper-limits have
been displayed in Figures 2–4. It can be concluded from the figures that both lower and upper-limits
have resulted in a fairly symmetrical impact with respect to the mean values. According to Figures
2–4, this impact in terms of�RB is smaller for the first two rehabilitation cycles compared to the other
cycles, and it becomes relatively steady afterward. The lower-limit solutions have provided higher
performance ratings, thus representing the optimistic case. However, the higher-limit solutions have
yielded inferior performance ratings, an indication of the pessimistic case.

It can also be concluded that the three RB averages provided at the bottom of Table 5 are relatively
close in values for the same annual budget, an indication of slight uncertainty impact for 95% con-
fidence level. The percent difference (%Diff) provided in the last row of Table 4 has been calculated
from the RB averages using Equation (17). The percent difference has a maximum absolute value of
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only 2.63%, an indication of mild impact.

%Diff = RBLorRBU − RBM
RBM

× 100% (17)

Statistically, the uncertainty impact can be reduced by increasing the sample size. The uncertainty
impact can also be minimised by applying the proposed network-level rehabilitation model to high-
way systems with similar traffic loadings and pavement characteristics. It can further be reduced by
analyzing two subsystems instead of one when considering the same highway system. The first sub-
system is to be associated with initial transition probability (P1,2) lower than the terminal transition
probability (P4,5), an indication of good pavement performance. The second one is recognised by the
initial transition probability being higher than the terminal one, an indication of poor performance.
According to Table 1, only four highways belong to the second case, namely highway numbers (6, 10-
12). The available annual budget can be divided amongst the various pavement systems/subsystems
in proportion to the vehicle-kilometre travelled (VKT) or design equivalent single axle load (ESAL)
repetitions.

6. Conclusions and recommendations

The previously demonstrated optimum network-level rehabilitation model has the main advantage
of incorporating the performances of both original and rehabilitated pavements through using three
different transition probabilitymatrices. It has also the advantage of considering both pavement long-
term performance and rehabilitation cost in the optimised decision-making policy. The sample results
presented have indicated the efficiency of the proposed network-level rehabilitation model in yield-
ing practical long-term rehabilitation schedules. In particular, the sample results have emphasised the
importance of allocating adequate rehabilitation funding to minimise the overall life-cycle cost. This
requires selecting an optimal long-term rehabilitation schedule that can gradually eliminate the ‘very
poor’ pavements as they impose the greatest negative impact on the life-cycle cost. The sample results
have been obtained using a Markov chain with 5 condition states, thus allowing for the inclusion of
up to 4 major rehabilitation treatments. This is usually adequate considering the number of potential
rehabilitation options available in practice worldwide. However, a higher number of condition states
(m) can easily be deployed to incorporate more treatment choices if so desired. The rehabilitation
variables represent pavement proportions, however the pavement segments to be rehabilitated in
the relevant condition states shall be field identified using ‘worst-first’ selection criterion.

The uncertainty impact on the predicted long-term performance has been investigated using 95%
confidence level. The relevant sample results have indicated relatively low impact considering both
lower and upper-limit values. Because the main source of uncertainty is the transition probabilities, it
is recommended to apply efficient methods for estimating the individual highway transition proba-
bilities as they are crucial parameters for yielding reliable optimal rehabilitation schedules. It is further
recommended to deploy effective procedures in collecting pavement distress data used as the main
input for estimating the transition probabilities. Furthermore, it is recommended to use weighted
statistics (i.e. mean and standard deviation) rather than arithmetic ones to compute the statistics
associated with the highway initial and terminal transition probabilities in case the highways are
associated with substantially different lengths. Arithmetic statistics have been used in the highway
sampleprovided in Table 1becauseof approximately equal highway lengths. Agoodpractice is to esti-
mate the required transition probabilities for a standardised highway length such as (1-2) kilometres.
The remaining input data required for implementing the proposed rehabilitation model are readily
available to highway agencies.

The simplifications made are mainly related to the estimation of the relevant deterioration tran-
sition matrices, namely (A & C), used for sample presentation purposes only. However, matrix (A)
should practically be estimated from performance records associated with original pavement, which
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is only used in solving the first-year rehabilitation cycle. Similarly, matrix (C) should be estimated from
performance records corresponding to rehabilitated pavement, which is then used for solving the
subsequent rehabilitation cycles. It is recommended that matrix (C) be annually updated based on
newly collected condition data. Therefore, matrices (A & C) form the main input for using the pro-
posed optimum rehabilitationmodel, which can both be estimated from the corresponding observed
performances. However, rehabilitation matrix (B) is simply estimated frommatrices (A & C) under the
reasonable assumption that the ratios of (Ai,i+1/Ai,i & Ci,i+1/Ci,i) remain the same as the (Bi,i+ 1/Bi,i) ratio
in the presence of the rehabilitation improvement rates (Qi,1). Also, it is recommended the proposed
approach be used for road network/sub-network with pavement structures having similar perfor-
mance trends, which is usually the case when roads are associated with similar loading conditions
and material characteristics.
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