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ABSTRACT Fault detection at the early stage is very important in modern industrial processes to avoid
failure with life-threatening results and to reduce the cost of maintenance and machine downtime. In this
paper, we present a workflow for building a fault diagnosis system based on acoustic emission (AE) using
machine learning (ML) techniques. Our fault diagnosis approach is implemented on an embedded device
with the internet of things (IoT) connectivity for real-time faults detection and classification in rotating
machines. The achieved accuracy for our approach with a fine decision tree ML model is 96.1%.

INDEX TERMS Fault diagnosis, condition monitoring, acoustic emission, time-domain analysis, frequency
domain analysis.

I. INTRODUCTION
Machines have become an integral part of all industries and
applications. They are also becoming increasingly essen-
tial due to continuous technological advancements, which
improve their efficiency and reliability. However, themachine
will eventually fail to do its functionality for several reasons
beyond one’s control, such as mechanical wear and tear
issues, including but not limited to bearing failure, metal
fatigue, and corrosion.

Previously, sound monitoring was used by an experienced
person for fault diagnosis in running machines; however, this
approach depends on the experience of the operator and is
not efficient [1]. Advancements in technology and signal
processing algorithms tend to automate this process andmake
it more accurate. As a result, many condition monitoring
(CM) systems for fault diagnosis have been introduced.

Fault diagnosis using artificial intelligence and machine
learning techniques grasped the great attention of researchers
and many research papers published in this field [2], [3], [4],
[5], [6], [7], [8], [9], [10]. For instance, Tran and Lundgren [9]
introduced a fault detection technique using a short-time
Fourier transform (STFT) scheme. Gundewar and Kane [10]
discussed the importance of sound signal-based fault classi-
fication and detection in bearings.
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In this paper, we propose an accurate machine learning
algorithm in a rotating machine, such as a drill with different
configuration parameters for bearing fault, gear fault, and fan
fault. Fault diagnosis based on the sound signal that can be
run on industrial or consumer products using edge machine
learning. We achieve accurate and reliable real-time fault
detection for the intended machine. Edge machine learning
(edge ML) is defined as the capability of running ML models
locally to edge devices, far from the cloud or a big data
center. Edge ML is mainly used when raw data is captured
from a source far from the cloud or data center, which meets
some requirements, such as real-time low-latency predic-
tions, weak connectivity to the cloud, sending large data,
and legal restrictions/privacy of sending data to any external
cloud.

To diagnose and identify machine faults, we capture the
acoustic signal of a machine using a micro-electromechanical
systems (MEMS) microphone and then, analyze it in the
time domain and frequency domain to extract the required
features. The importance of features is ranked based on
a one-way analysis of variance (ANOVA). The selected
features are then used to train different machine learn-
ing techniques, such as fine decision tree, k-nearest neigh-
bor (KNN), support vector machine (SVM), bagged trees
ensemble, and naïve Bayes classifiers. The machine learning
model is then deployed on an edge ML device for fault
detection.
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TABLE 1. Related work summary.

II. RELATED WORK
Many methods have been proposed to automate machinery
fault detection. Table 1 summarizes the closely related work.

Altaf et al. [5] presented a method for fault classification
using different approaches of machine learning techniques,
such as KNN, SVM, and kernel linear discriminant analysis
(KLDA) for bearing fault detection and classification based
on a sound signal. The importance of the research comes from
applying non-traditional techniques for fault classification
and detection to achieve easy and fast maintenance.While the
major contribution other than applying non-traditional tech-
niques is using sound signal instead of vibration for remote
diagnosis since a vibration transducer cannot be mounted on
the machine. However, the authors only targeted bearing fault
in their test machine.

Kiran et al. [11] presented an engine gearbox fault diagno-
sis using an artificial neural network (ANN) technique for two
engine part bearing and gears based on vibration signal. The
achieved accuracy is 85.5% in their model. Also, a decision
tree is used for feature selection. Knowing the problem in
an engine gearbox, which is considered a complex machine
with many moving parts inside it, makes maintenance faster
and easier. The major contribution of this research is taking a
completely complex machine for diagnosis, not just a simple
laboratory test on a signal part. However, the combustion
vibrations are not considered since the gearbox is rotated
using a direct current motor, not as normally a large vibra-
tion amplitude presented when the combustion engine is on.
In addition, a small bandwidth is captured just between 1 to
5kHz.

Liu et al. [12] presented an approach for fault diagnosis of
bearing faults based on a sound signal with non-traditional
feature extraction methods with a deep learning approach.
They replaced time-consuming feature selection and complex
feature extraction methods with an automatic deep learning
approach for fault diagnosis. Therefore, solve the main chal-
lenge of fault diagnosis, which is observing the distinguish-
able fault features, which can then be forwarded for training
themachine learningmodel. However, the proposed approach
is not sufficiently satisfactory in real-time, since short-time
Fourier transform (STFT) and spectrogram consume a large
amount of memory footprint when doing matrix operations.

FIGURE 1. Fault detection workflow.

Also, accuracy and efficiency can be influenced by changes
in working conditions.

Gundewar and Kane [10] investigated experimental bear-
ing faults under four conditions: healthy, ball defect, outer
race defect, and cage. Three different vibration signal con-
ditions are collected as follows: filtered vibration signal, raw
vibration signal, andwavelet-based denoised vibration signal.
Using a neural network and discriminate classifier, Gunde-
war and Kane achieved very high accuracy, up to 99.58%.
Although the accuracy is almost 100%, the main problem is
the computational time (1.6 sec performed using MATLAB
software with system configuration of intel(R) Core(TM) i7-
10700CPU @2.9 GHz, 16 GB RAM), which is way more
powerful than any low-cost and low-power edge device, such
in our case (i.e., STM32F407 with 1-Mbyte Flash memory
and 192-Kbyte RAM running @100 MHz). The high-end
hardware used in Gundewar and Kane’s work shows why it’s
cannot meet the requirement of real-time edge fault diagnosis
systems.

III. METHODOLOGY
Our research is done through two phases, the first phase
is the development phase, where machine sound signal is
acquired using a smartphone and the reaming steps are done
on a non-embedded device using MATLAB. In the second
phase, the selected model is deployed and integrated into
the embedded device as a sensor node. The workflow of our
work is demonstrated through the following steps: Machine
Sound Signal Acquisition, Preprocessing Data, Identifying
Condition Indicators, Training the Model, and Deploying &
integrating the model, as depicted in Figure 1.

A. MACHINE SOUND SIGNAL ACQUISITION
Sound is recorded at different conditions of the drill machine.
We classified the drill sound signals into the following four
classes: healthy, bearing fault, gears fault, and fan fault. Our
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FIGURE 2. Data acquisition setup.

generated dataset of the recorded sound signals is shared at
GitHub [13]. A smartphone is used as a data acquisition card
to record sound signals of the drill machine at a sampling
frequency of 48 kHz, according to the Nyquist-Shannon the-
orem, to cover all audible ranges and with oversampling by
4 kHz. The phone is placed about 10 cm away from the sound
source as shown in Figure 2. For the experiment on the edge
device and better accuracy of machine learning algorithms,
a smart sensor node is used to acquire sound and store it on a
secure digital (SD) card for ML algorithms training.

B. DATA PREPROCESSING
Data preprocessing is the most important step in fault diag-
nosis using sound signals since at this stage raw data must be
noise-free as much as possible to go for further analysis. First,
by applying the Hanning window, since it is the best window
for unknown signals to obtain more realistic results when
performing fast Fourier transform (FFT) [14]. It is essential
to use the appropriate size of the window because it will
affect directly the accuracy of classification [15]. We Select
2048 points as a trade-off window size to improve the accu-
racy of the classification and memory limitation in embedded
device with 75% overlapping. Then we use a digital bandpass
filter to remove the DC offset from the signal at 20 Hz and
20 kHz cut-off frequencies as an anti-aliasing filter.

C. CONDITION INDICATORS IDENTIFICATION
We analyze the drill sound signals in both time and frequency
domains. For each data window, in total, 16 features are
extracted to provide insight into system faults, where 6 fea-
tures are extracted from the frequency domain and 10 features
are extracted from the analysis of the signal in the time
domain. The time domain features are listed as follows:

1) Root mean square (RMS) is defined as the square root
of the arithmetic mean of the squares of the continuous
signal values. See Equation 1 for the formal definition
of the RMS measure [16]

2) Mean value (µ) is defined as the average of the con-
tinuous signal values. See Equation 2 for the formal
definition of the Mean measure

3) Shape factor is defined as the ratio of RMS value to the
mean of the absolute value of the signal

4) Kurtosis measures how outlier-prone a distribution. It is
defined as in Equation 3when faults are developing, the
number of outliers increases

5) Skewness measures the asymmetry of data around the
sample mean, it is defined as in Equation 4, since fault

can impact distribution symmetry, the level of skewness
will increase

6) The impulse factor (IF) is used to compare the height of
the signal peak to the mean level of the signal, defined
as in Equation 5

7) The crest factor (CF) is defined as the peak value
divided by the RMS value, since faults can be observed
by changes in the peakiness of the signal before they
become observable in the energy representation by
RMS. CF is used for early warning of faults when they
developed

8) The margin factor (MF) represents the ratio of the
signal peak difference to the root amplitude

9) Variance gives a measure of the deviation of the signal
from its mean value

10) The median measure is robust to outliers/noise in the
signal and indicates the middlemost value of the given
data, which separates the higher half of the data from
the lower half

For the frequency domain sound signal features, 6 mea-
sures are extracted, which represent the values and locations
of local maxima in a signal as listed below:

1) Peak1: is the largest amplitude of the extracted frequen-
cies in the signal

2) Peak2: is the second largest amplitude of the extracted
frequencies in the signal

3) Peak3: is the third largest amplitude of the extracted
frequencies in the signal

4) PeakLocs1: is the frequency value of the largest ampli-
tude

5) PeakLocs2: is the frequency value of the second largest
amplitude

6) PeakLocs3: is the frequency value of the third largest
amplitude

The range of frequencies contained by the preprocessed
sound signal is calculated using the fast Fourier transform
(FFT). After all features are extracted, a feature selection
based on ANOVA is used to rank the 16 features by their
importance. Peak1 is the most important feature, then vari-
ance, RMS, Peak3, Peak2, kurtosis, shape factor, and so on
as shown in Figure 3.

RMS =

√√√√ 1
N

N∑
i=1

x2i (1)

µ =
1
N

N∑
i=1

xi (2)

Xkurt =

1
N

∑N
i=1(xi − µ)4

[ 1N
∑N

i=1(xi − µ)2]2
(3)

Xskew =
E(x − µ)3

σ 3 (4)

IF =
Xp

1
N

∑N
i=1 |xi|

(5)
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FIGURE 3. Features ranking using one-way ANOVA.

where,
x: is the vector of sound signal values in the selected

window size.
N : is a number of samples within window of size 2048, i.e.,

N = |x|.
σ : is the standard deviation of signal values of the vector

x.
Xp: is the peak value.
Figure 4 shows a histogram for variance, RMS, andmedian

for all the fault classes. Each fault is represented by different
color as depicted in the legend of Figure 4a. Where, Fault ID
1 is off condition with white, pink, and brown noise added
to the environment; Fault ID 2 is a healthy condition; Fault
ID 3 is bearing fault as depicted in Figure 5a; Fault ID 4 is
fan fault as depicted in Figure 5b; and Fault ID 5 is gear fault
as depicted in Figure 5c. To ensure that ranking is correct,
a histogram plot is used. If the features are not overlapped
as in variance and RMS, this means it is a good feature that
can help the model to classify the faults. For insignificant
features, such as the median, the faults are overlapped in the
histogram.

D. TRAIN MODEL
Selected features after the ranking step are ready to be for-
warded to machine learningmodels. DifferentML techniques
are used with different configurations and a different number
of features. Since the dataset is not large, we choose a trade-of
value of cross-validation with k = 5. The best accuracy
achieved is 97.4% bagged trees ensemble classifier, followed
by quadratic SVMwith 97.2%, fine decision tree with 96.8%,
naïve Bayes with 94%, and KNN with 93.5%. A 2D scatter
plot is used to observe the relationships between a pair of
features, the two axes are two different features, and each
observation is plotted based on these two-feature values as
depicted in Figure 6.
A confusion matrix is used to evaluate the performance of

the classification models, as shown in Figure 7, where the

FIGURE 4. Top ranked feature distributions.

raw represents the true class (numbered as the Fault ID),
and the column represents the predicted class; as a result,
the diagonal observations are correctly classified samples and
off-diagonal are the misclassified ones. It is noticed that when
removing mean, skewness, and median features, the accuracy
of the fine decision tree model does not increase. Also, most
misclassification happens during the bearing fault.

IV. EXPERIMENT AND RESULTS
We select the CROWN power tool (CT10128 drill) to study
the fault diagnosis of the mechanical components used in a
commercial mechanical product. The details about the exper-
imental test setup and procedure are demonstrated in the
following subsections.

A. EXPERIMENT SETUP
Figure 8 shows the actual photograph of the experiment setup.
The experiments were conducted on a power drill (CT10128)
with extra faulty parts for fault injection into the machine.

6668 VOLUME 11, 2023



R. R. Shubita et al.: Fault Detection in Rotating Machinery Based on Sound Signal Using Edge ML

FIGURE 5. Fault cases.

A smart sensor node is built to acquire a sound signal
using a MEMS microphone (MP45DT02) connected to an
ARM®Cortex®-M4 microcontroller with DSP capability
(STM32F407VG). Data preprocessing and feature extraction
for the selected features are performed for each data buffer
(window size) having a real-time fault diagnosis node. Then,
the prediction model results are then shown on the dashboard.

Using MATLAB for feature extraction, then implementing
the trained model on the edge device decreases the accuracy
because feature extraction performance on MATLAB is dif-
ferent from the edge device. Therefore, we store the extracted
features using the edge device (which does not use MATLAB
functions) on an SD card, then train the ML model on these
features and deploy the trained ML model back to the edge
device.

FIGURE 6. Scatter plots.

FIGURE 7. Confusion matrix for the ensemble of bagged trees classifier.

For better optimization of the hardware resources, we use
a common microcontroller software interface standard to
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FIGURE 8. Drill machine fault diagnosis setup.

FIGURE 9. DSP functions for features extraction in time domain.

develop a real-time digital signal processing (CMSIS-DSP)1

used mainly for data preprocessing and feature extraction as
shown in Figure 9. MATLAB Coder is used to generate a C
function for features extraction in the frequency domain for
a given FFT spectrum with pre-defined prominence value for
peak extraction and a C function for the selected machine
learning algorithm. Morover, for extra optimization in mem-
ory footprint for frequency domain feature extraction inMAT-
LAB function, it is noticed that most peak values located
(highest three) in a range 20 to 3K Hz using probability
distribution methods, such as probability density function
(PDF) and normal distribution fit as shown in Figure 10.

B. EXPERIMENT PROCEDURE
In this experiment, We injected artificial faults into the Drill
(CT10128) components. In the case of the bearing fault,
a small particle is injected inside the bearing to get almost
a real fault. In the case of the fan fault, two blades are broken.
While in the case of gears fault, two teeth destructive pitting
failures are introduced.

1https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

FIGURE 10. Distribution of data in FFT spectrum for all peaks.

The smart node has twomodes, the ‘runmode’ and ‘record-
ing mode’. Five states are recorded in recording mode and
their associated features are logged to an SD card, then the
node switch to the run mode for testing. The algorithm and
testing results are discussed in the next subsection IV-C.

C. FAULT DETECTION ALGORITHM
Figure 11 shows the complete workflow in the implementa-
tion phase. First, the record mode is selected to collect and
log features to an SD card, each record is one minute long
and each record represents a fault state. As a result, more
than three faults can be added, such as a combined fault that
may appear in the normal lifecycle of the machine. After that,
use MATLAB to train the model on these collected features.
The selected model is the fine decision tree model. Even the
accuracy is not the best as shown in the results from the
development phase, but compared to other ML techniques it
runs faster and has a small memory footprint. Then update the
model on the microcontroller and restart the device to select
the run mode. In the run mode, the same preprocessing and
feature extraction algorithms in record mode are used. Ping-
pong buffering techniques are used as shown in Figure 12,
to process and acquire data in parallel to achieve real-time
prediction without any data loss.

The extracted features are fed to the machine learning fine
decision tree model to make a prediction. To compensate for
the reduced accuracy in the fine decision tree model, a simple
empirical cumulative distribution function is used on a block
of prediction results and gets the most repetitive prediction
as a final prediction result. Then the final prediction is sent to
ESP32 to send it to a dashboard on the internet.

D. EXPERIMENT RESULTS
A total of 99610 feature values are taken as input to fine deci-
sion tree ML model (996110 = 7115 observation ×14 fea-
tures for each observation, where unimportant features, such
as median and mean as shown in Figure 3 removed to reduce
the dimensions of features). It is noticed that the model
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FIGURE 11. Flowchart for the implementation workflow.

FIGURE 12. Ping-Pong Algorithm.

accuracy drops slightly from 96.8% in the development phase
to 96.1% in the implementation phase as Figure 13 illustrates
the confusion matrix of the fine decision tree model where
most of the misclassifications happened with bearing fault.
0.7% drop in accuracy as a result of changing hardware used
in both development and implementation phases and perfor-
mance difference during feature extraction in hardware and
MATLAB environment. However, reducing feature dimen-
sions do not affect the accuracy significantly of the model,

FIGURE 13. Confusion matrix for a fine decision tree model.

but improves the performance in terms of classification speed.
Also, the empirical cumulative distribution function improves
the stability (precision) of the model.

V. DISCUSSION
Our proposed method and analysis achieve a high accuracy
of 96.1%, the same as in Altaf et al. work [5], but for the
different types of faults, not only for bearing fault. In Kiran
et al. [11], the model ran on a gearbox as a complete machine
and achieved 85.5% accuracy for gear and bearing faults
without edge ML consideration and neglecting the vibration
from the combustion engine. Compared to Gundewar and
Kane’s research [10], from the Table 1, they achieved the
highest accuracy among other bearing fault diagnosis meth-
ods. Still, the main drawback of using a neural network with
a discriminate classifier, is the high computational time, even
running on a powerful computing device compared to an
embedded device with limited resources.

As in Liu et al. research [12], deep learning can eliminate
the feature selection process and achieve reasonable accuracy.
But as the authors state, it consumes a large memory footprint
and unstable accuracy when working conditions changes.
In contrast, we use an efficient feature selection method
using one-way ANOVA to enhance the ability to improve
and optimize the model. We use the minimum amount of
data and extract the relevant features from the row data to
achieve stable accuracy and real-time performance with a
simple model for edge ML.

Even though the empirical cumulative distribution func-
tion is used to improve the stability of the model, it still
can be operated in real engineering applications and meet
industrial requirements. A more powerful controller can meet
this requirement by running the bagged trees ensemble model
with 97.4% accuracy. Furthermore, before feature extraction
at the preprocessing stage, many new methods, such as in
Zijian et al. research [17], can enhance useful data embedded
in the noise signal to improve the model’s overall accuracy.
This can be done in future research.
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VI. CONCLUSION
In this paper, we conducted a case study for fault diagnosis
of three rotating elements of commercial drill tool CT10128
(bearing, fan, and gear). Starting from the concept to the
development phase where different ML approaches are used
with different configurations to select the best classifier to the
implementation phase using a tree classifier on an embedded
device (STM32F407), where all diagnosis steps, including
data acquisition, pre-processing, features extraction, and fault
classification is done at edge device without the use of the
cloud to enhance the security, performance of the diagnosis
system, and minimize network bandwidth for a cost-effective
solution [18].

For a successful edge ML fault diagnosis system, the fol-
lowing considerations need to be met: (i) a good amount
of observation for each condition, (ii) good preprocessing
algorithms, such as a window with overlapping and digi-
tal low/high pass filters, (iii) appropriate features extraction
algorithm and implementation to achieve high accuracy diag-
nosis system. Therefore, according to our experiment result,
edge machine learning can be used for diagnosing faults on
a machine that has a rotating component based on a sound
signal using appropriate development and implementation
techniques. Furthermore, based on the accuracy and stability
of the proposed method, it can be recommended for practical
applications for online machine condition monitoring.
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