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ARTICLE

Multiple-sensor fault detection and isolation using video processing in
production lines
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aElectrical and Computer Engineering Department, Faculty of Engineering and Technology, Birzeit University, Ramallah, Palestine; bIndustrial
Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia; cAdvanced Manufacturing Institute, King Saud
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ABSTRACT
Production-line sensors are essential for synchronisation and execution of the correct
workflow in a manufacturing process. Usually, sensor faults lead to serious delays, or
even the complete termination of the manufacturing process, to carry out maintenance.
Thus, sensor faults compromise the reliability of the manufacturing system and disturb the
production schedule. This study proposes a multiple-sensor fault detection and isolation
scheme for manufacturing series production lines. The proposed scheme adopts a global-
redundancy method, using a digital camera and an ad-hoc video processing algorithm to
detect and isolate faulty sensors. The main objective of this research is to preserve
continuity of the production workflow and solve the problem of production delays and
interruptions. Moreover, the scheme provides the possibility of online and post-process
system maintenance. Further, the collected information on sensor false alarm rates can be
used for a reliability analysis of the production line. The proposed scheme was tested using
a laboratory production line model. The results show that the proposed scheme achieves
the established objectives and improves the reliability of the manufacturing process.
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1. Introduction

The fusion of different technologies across all
human disciplines is a futuristic trend that char-
acterises the fourth industrial revolution (Schwab
2017). An example of this revolution is the mer-
ging of image processing and video-based mon-
itoring techniques in various fields, such as
industrial and medical applications (Aiteanu,
Ristic, and Graser 2005; Abdo et al. 2015;
Shleymovich, Medvedev, and Lyasheva 2016;
Jacobsen and Ott 2017; Lee and Yang 2017).

An analysis of the literature reveals an increased use
of data models and visual data in system modelling
and analysis, and special attention is now being given
to video and image processing techniques and their
applications in automatic control. Previously, video and
image processing of visual data was mainly used for
system monitoring. Recent studies have fostered the
importance of visual information in process control. For
example, cameras are now used to provide visual and
non-contact measurements of various control schemes
(Liu et al. 2006; Tombari et al. 2008; Wang, Liao, andMei

2008; Wang et al. 2010; Janabi-Sharifi and Marey 2010;
Grigorescu and Moldoveanu 2011; Wang, Gao, and Qiu
2016). In addition, visual information analysis techni-
ques have been used in various applications, such as
stability and control design (Grigorescu and
Moldoveanu 2011; Wang, Liao, and Mei 2008; Murao,
Kawal, and Fujita 2009).

Image and video processing techniques can
also play an important role in fault detection
and fault-tolerant system design. Fault diagnosis
(FD) and fault-tolerant control (FTC) are two pro-
cesses that aim to improve the reliability, avail-
ability, dependability, and safety of systems.
Several research studies have implemented FD
and FTC for this purpose (Chen and Patton 1999;
Mahmoud, Jiang, and Zhang 2003; Isermann 2006;
Gao and Ding 2007; Blanke et al. 2008; Noura
et al. 2009; Abdo et al. 2012a, 2012b; Ding 2014;
Abdo, Siam, and Al-Rimawi 2017; Prieto, Duran,
and Barrero 2017).

Fault diagnosis is a general concept and
includes three essential tasks: (1) detection, which
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detects the occurrence of a system fault, (2) fault
isolation, which classifies the faults into predefined
categories, and (3) fault identification, which deter-
mines the fault parameters, such as magnitude,
type, and source. Fault diagnosis can be achieved
using different techniques, such as hardware
redundancy, plausibility testing, signal processing,
and model-based fault detection (software redun-
dancy) (Ding 2013; Zhang and Jiang 2008; Chen
and Patton 1999; Isermann 2006).

Several methods have been employed to solve
fault detection and isolation problems. Demetgul
implemented two artificial neural networks for fault
detection in a didactic modular production system
produced by Festo Company (Demetgul, Tansel,
and Taskin 2009). Qiao proposed a novel method
for the diagnosis of rotating machinery based on
an improved wavelet package transform (Qiao
et al. 2007). Zhang used genetic programming to
detect faults in rotating machinery (Zhang, Jack,
and Nandi 2005). Widodo proposed a machine-
learning algorithm based on principle
a component analysis and support vector machine
for induction motor diagnosis (Widodo, Yang, and
Han 2007). Szkilnyk proposed a machine vision
system that detects and isolates faults based on
the spatiotemporal distribution of events during
normal and abnormal operation (Szkilnyk et al.
2012). Chauhan developed a machine vision sys-
tem using three different detection methods:
Gaussian Mixture Model, optical flow, and running
average (Chauhan and Surgenor 2015).

The global performance of a system is improved
through the integration of FTC in plant systems
and system controllers, such as electrical drives,
vehicles, and wind turbines (Liu, Saif, and Fan
2016; Yu, Li, and Zhang 2018; Li et al. 2018). FTC
can be accomplished using passive and active
schemes. Passive FTC systems operate under
a control law that is designed to be robust against
fault occurrence. On the other hand, active FTC
systems require reconfiguration of the control law
after a fault occurrence.

Although important research has been con-
ducted pertaining to FTC, the use of visual infor-
mation and FTC in industrial production lines and
manufacturing processes warrants further

investigation. A literature review revealed that
some studies have introduced the use of digital
cameras and FTC schemes in industrial processes.
Wang, Gao, and Qiu (2016) discussed the use of
FTC in an industrial process based on predictive
control. Van et al. (2016) developed an FD system
for a robot using image processing. Lee and Yang
(2017) used a smart industrial camera to perform
object recognition and counting. Recently, Abdo,
Siam, and Al-Rimawi (2017) proposed the integra-
tion of camera-based visual monitoring in an FTC
scheme. Despite the aforementioned research, the
use of digital cameras and video processing in FTC
has not been comprehensively investigated. This
study proposes the integration of a digital camera
and an ad-hoc video processing algorithm with
a production line manufacturing process to
achieve a multiple-sensor FTC scheme. The use of
the digital camera aims to provide a global redun-
dancy to the multiple sensors in the production
line. The video processing algorithm is employed
to detect and isolate the faulty sensors. The main
objective of FTC is to ensure the continuity of the
production line workflow and the correctness of
the manufacturing action synchronisation in the
presence of object-detection sensor faults. Other
issues, such as those related to actuator faults and
processed-object characteristics or quality, are not
included in this study. The proposed FTC scheme
is tested using a laboratory-scale production line
model. The results showed that the proposed
scheme achieved its objectives and improved the
reliability of the manufacturing process. It is
believed that the modularity of the FTC structure
and its relative processing algorithm ensure that
the proposed scheme can be transferred to real
industrial production lines. Thus, the next phase of
this study is the application of the proposed FTC
to a real industrial production line. Additional
future work, such as the use of digital cameras,
video processing, and computer vision, is required
to consider product-quality sensor faults and
actuators faults.

To the best of the authors’ knowledge, a similar
FTC scheme has not been previously proposed in the
literature. The major contributions of this study are
as follows:

532 A. ABDO ET AL.



● Introduction of a sensor global-redundancy
scheme.

● Development of a simple and efficient techni-
que for multiple-sensor fault detection and iso-
lation based on video and image processing.

● Improvement of the production line monitoring
system and manufacturing process workflow by
providing alternative signals to isolate the
faulty-sensor measurements.

● Prevention of any production line and manufac-
turing process interruptions.

● Allowance of online and post-process mainte-
nance of the production line sensors.

● Evaluation of the reliability of the production
line sensors.

● Improvement of the global safety and reliability of
the production line (i.e. the avoidance of human
injury, machine damage, and production
deterioration).

The remainder of the paper is organised as fol-
lows: Section 2 presents the basic idea and devel-
opment of the problem formulation for the
proposed scheme using a real case study of an

automatic production line. The image-processing
algorithm and its outcomes are presented in
Section 3. FTC is defined in Section 4. Section 5
presents the experimental results of different sce-
narios using a laboratory-scale production line.
Finally, Section 6 illustrates the concluding remarks
of this study.

2. Problem formulation

2.1. Basic idea

To illustrate the problem of sensor faults, this
study uses a non-buffered series production line
(as shown in Figure 1), where several objects are
processed in parallel; when the action at one
operation site terminates, the object is passed to
the next site. Therefore, object placement at the
various operation sites must be synchronised with
the processing actions. This synchronisation is gen-
erally achieved using object-detection sensors. The
proposed production line consists of a conveyor
belt, a direct current (DC) motor, a DC motor elec-
tronic-drive circuit, a set of object-detection

Figure 1. The production line configuration used to illustrate the proposed FTC. The configuration includes several operation sites
with object-detection sensors and a series operation scheme.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 533



sensors, a set of functional units, and an electronic
digital controller. The DC drive, functional-unit
inputs, and sensor outputs are assumed to be
digital (on/off). In the absence of sensor faults,
the workflow assumes that the object positioning,
transport, and action of the functional units are
controlled by the sensor feedback measurements.
Thus, the objects under process (OUPs) are injected
onto the conveyor belt and are transported until
they are detected by the sensors at the operation
site. Consequently, the conveyor belt is stopped for
a fixed, predefined period (action expected time),
during which the OUPs are processed by the func-
tional unit. The control unit then generates the
control signals that drive the motor and transport
the OUPs to the next position.

A simple investigation of the production line
workflow reveals that the synchronisation of the
manufacturing process is strictly related to the func-
tionality of the object-detection sensors. Thus, any
sensor fault will result in a production line synchro-
nisation failure and manufacturing workflow disrup-
tion. For example, consider the case in which one or
more sensors fail to detect the OUP. The input of the
control unit relative to these sensors will remain
deactivated, and the conveyor belt will continue
moving. Consequently, the OUP is not processed at
that operation site, resulting in a manufacturing
error. Additionally, another failure scenario can
occur if a sensor fault activates the input of the
control unit when an OUP is not present at the
operation site. In this case, the functional-unit action
is executed in the absence of an OUP.

To avoid these and other similar manufacturing
failures, object-detection sensor faults must be
detected and isolated in real time to avoid downtime
of the production line for maintenance. In summary,
object-detection sensor faults have serious critical
consequences on the manufacturing process, such
as the production of defective components, delays
in the production schedule, and increases in produc-
tion cost. Therefore, it is essential to compensate the
effects of the faulty sensors and avoid downtime of
the production line for maintenance in order to
enhance the tolerance, reliability, and performance
of the manufacturing process.

Sensor redundancy is a plausible solution that
may avoid the adverse effects of sensor faults.

The use of two or more sensors to detect the
presence of objects at operation sites is termed
hardware redundancy. Herein, the inclusion of
redundant sensors to measure a specific variable
is referred to as local redundancy. However, the
implementation of local redundancy schemes in
manufacturing processes is expensive due to the
large number of sensors required. Therefore,
a global-redundancy scheme can be more practi-
cal. Global redundancy uses a single detector to
provide information pertaining to a set of vari-
ables. This study employs a global-redundancy
scheme by using a digital video camera, as indi-
cated in Figure 1, and a video processing algo-
rithm to provide information about the presence/
absence of the OUPs at the operation sites. The
digital camera captures a sequence of frames.
These frames include information about the
motion of the OUPs and their relative distances
with respect to the operation sites. The video
processing algorithm extracts the OUP informa-
tion, detects the presence/absence of the OUPs
at the operation sites, and generates detection
signals and fault identification codes. The control
unit uses this information and the FTC rules to
compensate the effects of the faulty sensors.
Thus, the proposed FTC system ensures the con-
tinuity of the manufacturing process sequences
and prevents production line downtime.

2.2. Problem statement

To accomplish the proposed multiple-sensor FTC
scheme, the following tasks are required:

● Acquisition of video frames.
● Application of video and image processing tech-
niques to detect the OUP positions.

● Construction of the FTC rules that consider the
sensors and camera-based signals.

● Application of the FTC rules, which will compen-
sate the effects of the sensor faults in real time
to avoid workflow interruption and production
errors.

● Identification of the faulty sensors and gen-
eration of alarm signals for the purposes of
online or post-process maintenance.
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3. Proposed architecture

The camera is assumed to be fixed and is posi-
tioned to provide a visual that covers all locations
that require monitoring to control the manufactur-
ing process. The aim is to associate a region-spe-
cific image to the operation site of each functional
unit. The camera is connected to a data acquisition
and processing unit. This unit implements the
video/image processing algorithm and generates
the redundant sensing signals. The visual data is
managed in four phases: video acquisition, video
handling, image processing, and fault evaluation.
The video frame rate is set to the minimum rate,
FRmin, which suits the dynamic of the manufactur-
ing process. The minimum frame rate is deter-
mined by Equation (1), where vconv is the
conveyor belt speed in m/s, and Dmin is the OUP
desired position resolution.

FRmin ¼ vconv
Dmin

(1)

The video frames are acquired as a sequence of
images with a defined time tag. Hence, the amount
of time an object is present in a given region of can

be computed using the frame tags and the total
number of frames that are acquired during the pre-
sence of the object in the region. This presence time
is then used to detect the occurrence of sensor faults
by comparing the computed presence time and the
expected presence detection time. The expected pre-
sence detection time is assumed to be known from
the normal operation timing of the production line.
Consequently, the processing algorithm identifies
the faulty sensors and isolates them by generating
a set of redundant signals to replace the faulty-sen-
sor measurements. These signals are then transferred
to a control unit, such as a programmable logic
controller (PLC), to maintain the correct workflow of
the production line.

4. Fault-tolerant control

The proposed FTC is shown in Figure 2 and is composed
of the production line, digital camera, and processing
and control units. It should be noted that the proposed
FTC does not introduce any changes to the original
system settings; the proposed FTC adds a set of redun-
dant monitoring signals that must be executed by the

Figure 2. Proposed FTC scheme.
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control algorithm. Moreover, the FTC scheme does not
impose any additional conditions on the manufacturing
process workflow. The processing algorithm augments
the original system with new features, such as reliability
analysis and online maintenance, without additional
requirements to the original system parameters. The
FTC scheme assumes that the digital camera is fault
free, since it generates the reference signal.

4.1. Operation modes

A finite state machine is a logical way to represent
a set of rules and conditions and to handle various
inputs. Industrial processes are commonly repre-
sented by finite state machines. Therefore, to illus-
trate and validate the proposed FTC scheme, the
FD-FTC system is modelled as a finite state
machine, as illustrated in Figure 3. The various
operation modes and the state-flow transitions
were simulated and tested using MATLAB/
Simulink. These modes are described as follows:

Operation mode 1: normal operation
In this case, the production line sensors correctly

detect the presence of the OUPs in their relative opera-
tion sites. The control unit sets the normal operation
flag (NOF) and operates using the sensors signals.

Operation mode 2: OUP missed detection
In this case, one or more sensors fail to detect

the presence of the OUPs. However, the object
presence is detected by Algorithm 2, which gen-
erates the object presence signal (OPS) and the
faulty-sensor identification codes. The signals and
codes are then transferred to the control unit
(Algorithm 1), which isolates the faulty sensors

and generates a missed detection flag (MDF).
The OPS signals are used to maintain the work-
flow of the manufacturing process.

Operation mode 3: OUP false alarm
In this case, the sensors erroneously indicate the

presence of one or more OUPs. That is, the sensors
detect the presence of the OUPs that are absent.
The image processing algorithm detects the
absence of the OUPs and generates the required
OPS values and fault identification codes. The
information is sent to Algorithm 1, which isolates
the faulty sensors and generates a false alarm
flag (FAF).

Operation mode 4: OUP premature motion
In this case, the object-detection sensor indicates

the absence of the OUP before the termination of
the expected period of action. Thus, the object is
moved from the operation site prior to completion
of the processing action, which is known as prema-
ture object motion (POM). Algorithm 2 detects this
anomaly and generates a POM signal and the faulty-
sensor identification code. This information is then
sent to Algorithm 1, which isolates the faulty sensor
and generates a premature motion flag (PMF).

Operation mode 5: OUP long presence
In this case, the sensor fault indicates that the OUP

is present after the expected period of action is
terminated (i.e. the object has not moved from the
operation site at the designated time). This condition
is detected by Algorithm 2, which generates a long
presence signal (LPS) and the fault identification
code. Algorithm 1 isolates the faulty sensor and gen-
erates a long presence flag (LPF).

Figure 3. Finite state machine for the normal, missed-detection, and false alarm modes.
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4.2. Additional features

4.2.1. Sensor reliability analysis
The FTC system ensures the continuity of the manufac-
turing process, regardless of sensor faults. It detects the
existence of faulty sensors that contain persistent or
intermittent faults. For persistent faults, the identified
faulty sensors require immediate maintenance.
However, in the case of intermittent faults, there may
be difficulties in locating and identifying the faulty sen-
sors because the operation of the production line is
restoredwhen the sensor fault vanishes. In the proposed
FTC scheme, the number and frequency of sensor faults
are generated by the image-processing algorithm. The
data collected during one or multiple manufacturing
cycles can be used to analyse the reliability of the sen-
sors. Moreover, since the sensor reliability affects the
production line operations, a sensor reliability analysis
can be used to improve the reliability of the whole
production line. In fact, decisions regarding sensormain-
tenance or replacement can be made based on the
sensor reliability reports.

4.2.2. Online maintenance
In the case of persistent sensor faults, the FTC
ensures the continuity of the production line opera-
tion by the OPSs. The FTC flags (MDFs and FAFs)
identify the faulty sensors and designate
a maintenance-request flag. Thus, the maintenance
team can apply ad-hoc online maintenance proce-
dures to restore the sensing functions or schedule
a post-operation offline maintenance procedure.

4.3. Algorithms

This subsection introduces the process control algo-
rithm, which implements the proposed FTC scheme, as
well as the fault-detection video and image algorithm.

4.3.1. Process control algorithm
The basic steps of the process control algorithm
(Algorithm 1) that apply the FTC scheme on a total
number (total_objects) of OUPs (Object_Under_
Process) are as follows:

● If the number of objects is less than the total num-
ber of objects, a new OUP is injected onto the
conveyor belt (conveyor_belt), which enables the
movement of the OUP to the operating site.

● If the object is not detected by the sensor,
Algorithm 1 receives OPS from the video

processing algorithm (Algorithm 2).
Conveyor_belt is then stopped with the OUP at
the operation site, and the functional unit is
activated. In this case an MDF is issued by the
control unit. If fault_counter is larger than
a given threshold (fault_maintenance_thres-
hold), a maintenance flag (MNTF) is also issued.

● If Algorithm1 receives a POMsignal fromAlgorithm
2, this indicates that the OUP began movement
before the termination of the designated action
expected period (action_expected_period). Then,
Algorithm 1 forces conveyor_belt to cease keeping
the OUP at the operation site. In this case, a PMF is
issued. In addition, if fault_counter is higher than
the designated threshold, an MNTF is issued by
Algorithm 1.

● If Algorithm 1 receives an LPS from Algorithm 2,
this indicates that the OUP was not released from
the operation site after the termination of actio-
n_expected_period. Then, conveyor_belt is forced
tomove the object to the following operation site.
In this case, Long_Presence_Flag (LPF) is issued,
and if fault_counter is higher than the designated
threshold, an MNTF is issued by Algorithm 1.

● If the sensor signal (sensor_signal) indicates the
presence of an object, Algorithm 1 receives an
OPS value from Algorithm 2, indicating the
absence of an object at the operation site.
Algorithm 1 forces conveyor_belt to move until
an OPS is received from Algorithm 2, which indi-
cates the arrival of the signal to the operation site.
Consequently, Algorithm 1 positions the OUP at
the operating site, and the operation continues as
expected under control of the proposed FTC
scheme. In this case, an FAF is issued. In addition,
if fault_counter is higher than the designated
threshold, an MNTF is issued by Algorithm 1.

● If sensor_signal detects the presence of the OUP
and Algorithm 1 receives an OPS that indicates the
same condition, then the action follows normal
operation mode, and the operation continues as
expectedwith the control of the sensor. In this case,
Normal_Operation_Flag is issued by Algorithm 1.
However, if Algorithm 1 receives a POM or an LPS
from Algorithm 2, the abovementioned relative
procedures are applied, and the process continues
as expected.

● The procedure is repeated until all OUPs are
processed, as designated by total_objects.
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Table 1. List of symbols used in Algorithm 1.

symbol meaning symbol meaning

OPS Object_Presence_signal NOF Normal_Operation_Flag

POM Premature_Object_Movement MDF Miss-Detection_Flag
LPS Long_Presence_signal FAF False_Alarm_Flag

OUP Object_Under_Process PMF Premature_Motion_Flag
LPF Long_Presence_Flag MNTF Maintenance_Flag

Algorithm 1: Process Control Algorithm

Algorithm 1:
Input: OPS, POM, LPS, OUP, sensor_identification_code, sensor_signal
Output: NOF, MDF, FAF, PMF, LPF, MNTF
Parameters: total_objects, fault_maintenance_threshold
1: begin
2: object_count = 0
3: fault_counter = 0
4: if (object_count > total_objects) then
4.1: goto 5.6.1
5: else
5.1: inject OUP
5.2: increment object_count
5.3: move conveyor_belt
5.4: read input
5.5: if (sensor_signal = = 0) then
5.5.1: if (OPS = = 0) then
5.5.1.1 deactivate functional_unit
5.5.1.2 goto 5.4
5.5.1.3: else if (OPS = = 1) then
5.5.1.3.1: stop conveyor_belt
5.5.1.3.2: activate functional-unit
5.5.1.3.3: out MDF
5.5.1.3.4: out sensor_identification _code
5.5.1.3.5: increment fault_counter
5.5.1.3.6: if (fault_counter > fault_maintenance_threshold) then
5.5.1.3.6.1: out MNTF
5.5.1.3.7: end
5.5.1.3.8: read input
5.5.1.3.9: if (OPS = = 1 && POM = = 1) then
5.5.1.3.9.1: activate functional unit
5.5.1.3.9.2: stop conveyor_belt
5.5.1.3.9.3: out PMF
5.5.1.3.9.4: out sensor_identification _code
5.5.1.3.9.5: increment fault_counter
5.5.1.3.9.6: if (fault_counter > fault_maintenance_threshold)
5.5.1.3.9.6.1: out MNTF
5.5.1.3.9.7: end
5.5.1.3.9.8: else if (OPS = = 0 && LPS = = 1) then
5.5.1.3.9.8.1: deactivate functional unit
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5.5.1.3.9.8.2: move conveyor_belt
5.5.1.3.9.8.3: out LPF
5.5.1.3.9.8.4: out sensor_identification _code
5.5.1.3.9.8.5: increment fault_counter
5.5.1.3.9.8.6: if (fault_counter > fault_maintenance_threshold)
5.5.1.3.9.8.6.1: out MNTF
5.5.1.3.9.8.7: end
5.5.1.3.9.8.8: else if (OPS = = 1 && POM = = 0 && LPS = 0) then
5.5.1.3.9.8.8.1: goto 5.5.1.3.8
5.5.1.3.9.8.9: end
5.5.1.3.9.8.10: else if (OPS = = 0 && POM = = 0 && LPS = = 0) then
5.5.1.3.9.8.10.1: goto 4
5.5.1.3.9.8.11: end
5.5.1.3.9.9: end
5.5.1.3.10: end
5.5.1.4: end
5.5.2: end
5.5.3 else if (sensor = = 1) then
5.5.3.1 if (OPS = = 0) then
5.5.3.1.1 deactivate functional-unit
5.5.3.1.2 out FAF
5.5.3.1.3 increment fault_counter
5.5.3.1.4 if (fault_counter > fault_maintenance_threshold) then
5.5.3.1.4.1 out MNTF
5.5.3.1.5 end
5.5.3.1.6 else if (OPS = = 1) then
5.5.3.1.6.1 stop conveyor_belt
5.5.3.1.6.2 activate functional_unit
5.5.3.1.6.3 out NOF
5.5.3.1.6.4 goto 5.5.1.3.8
5.5.3.1.7 end
5.5.3.2: end
5.5.4: end
5.6: end
5.6.1: move conveyor_belt
5.6.2: eject last_object
5.6.3: stop conveyor_belt
5.6.4: out ‘total_objects finished’
5.6.5: store fault_counter
6: end

Table 2. List of symbols used in Algorithm 2.

symbol meaning symbol meaning

OPS Object_Presence_signal ROI Region_Of_Interest
POM Premature_Object_Movement LPS Long_Presence_signal
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Algorithm 2: Fault-Detection Video and Image Processing Algorithm

Algorithm-2
Input: video_frame, frame_rate
Output: OPS, POM, LPS, fault_identification_code
Parameters: presence_detection_threshold, action_expected_period
1: Begin
2: read video_frame
3: extract ROI
4: set ROI_temp = ROI
5: read video_frame
6: extract ROI
7: compute background_reference = ROI-ROI_temp
8: compute BW_reference = convert (background_reference to blank and white)
9: compute BW_ref_average = average (BW_reference)
10: set frame_count = 0
11: read video_frame
12: extract ROI
13: compute background_difference = ROI-background_reference
14: compute BW_difference = convert (background_difference to blank and white)
15: compute BW_average = average (BW_difference)
16: if (BW_average>BW_ref_average) then
16.1: increment frame_count
16.2: goto 11
16.3: else if (frame_count = = 0) then
16.3.1: goto 11
16.3.2: else
16.3.2.1: compute presence_time = frame_count/frame_rate
16.3.2.2: if (presence_time ≥ presence_detection_threshold) then
16:3.2.2.1: set OPS = 1
16:3.2.2.2: out OPS
16:3.2.2.3: read video_frame
16:3.2.2.4: extract ROI
16:3.2.2.5: compute background_difference = ROI-background_reference
16:3.2.2.6: compute BW_difference = convert (background_difference to blank and white)
16:3.2.2.7: compute BW_average = average (BW_difference)
16:3.2.2.8: if (BW_average>BW_ref_average) then
16:3.2.2.8.1: increment frame_count
16:3.2.2.8.2: goto 16:3.2.2.3
16:3.2.2.8.3: else
16:3.2.2.8.4: compute presence_time = frame_count/frame_rate
16:3.2.2.8.5: if (presence_time = action_expected_period) then
16:3.2.2.8.5.1: set OPS = 0
16:3.2.2.8.5.2: out OPS
16:3.2.2.8.5.3: else if (presence_time < action_expected_period) then
16:3.2.2.8.5.3.1: set POM = 1
16:3.2.2.8.5.3.2: out POM
16:3.2.2.8.5.3.3: set OPS = 1
16:3.2.2.8.5.3.4: out OPS
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16:3.2.2.8.5.3.5: generate fault_identification_code
16:3.2.2.8.5.3.6: out fault_identification_code
16:3.2.2.8.5.3.5: else if (presence_time > action_expected_period) then
16:3.2.2.8.5.3.5.1: set OPS = 0
16:3.2.2.8.5.3.5.2: out OPS
16:3.2.2.8.5.3.5.3: set LPS = 1
16:3.2.2.8.5.3.5.4: out OPS
16:3.2.2.8.5.3.5.5: generate fault_identification_code
16:3.2.2.8.5.3.5.6: out fault_identification_code
16:3.2.2.8.5.3.6: end
16:3.2.2.8.5.4: end
16:3.2.2.8.6: end
16:3.2.2.9: end
16:3.2.3: end
16:3.3 end
16:4 end
16:5 goto 10
17: end

4.3.2. Fault-detection video and image processing
algorithm
Algorithm 2 describes the image-processing algo-
rithm. This algorithm uses the digital camera and
Algorithm 1 to achieve the global redundancy and
implement the FTC scheme. Algorithm 2 detects
the sequence of OUP presence/absence at the
operation sites in accordance with the planned
manufacturing workflow and timing. The algo-
rithm generates OPS, POM, and LPS signals and
fault_identification_codes. These are sent to
Algorithm 1 to control the processing sequences.
The basic steps of the algorithm are as follows:

● The algorithm starts by acquiring a sequence of
video frames in the absence of OUPs. The algo-
rithm then extracts a small region of interest
(ROI). The ROI is used to detect the presence/
absence of an OUP at the operation site.

● To generate reference_background images, two
video frames are acquired and subtracted.
Reference_background is then converted to
a black and white format (BW_reference), and
its average value (BW_ref_average) is computed
and used as a threshold to determine the pre-
sence/absence of the OUP.

● Video frames are continuously acquired during
the production line manufacturing process. The
ROI of each frame is extracted. The average value
of the difference between the ROI and

reference_background in the black and white
form is computed (BW_average). The presence
of an object is detected if BW_average is larger
than BW_ref_average. Additionally, presence_-
time is computed from the consecutive
sequence of the ROI that satisfies the presence
condition.

● If the computed presence time is larger than
a previously determined threshold (presence_-
detection_threshold), which is dependent upon
the speed of conveyor_belt and the minimum
processing time, then the OUP is considered
correctly positioned at the operation site.
Consequently, the OPS is set to 1 and sent to
Algorithm 1.

● After determining the correct positioning con-
dition, Algorithm 2 continues to read new
video frames. Two anomalies may occur due
to sensor faults. In the first anomaly, the OUP
may leave the operation site before actio-
n_expected_period, which is previously deter-
mined and depends on the operation
executed by the functional unit. Algorithm 2
sets POM to 1 and OPS to 1 and sends them
to Algorithm 1. In the second anomaly, the
OUP may remain at the operation site for
a time longer than action_expected_period.
Algorithm 2 sets OPS to 0 and LPS to 1 and
sends them to Algorithm 1. In both cases,
Algorithm 2 generates and sends the fault

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 541



identification code, which indicates the
operation site of the faulty sensor that
requires isolation.

● Algorithm 2 operates indefinitely and can be
stopped when all total_objects are processed.

4.3.3. Image processing algorithm: basic
mathematical operations
This section provides an overview of the image pro-
cessing operations used in Algorithm 2.

4.3.3.1. Video-frame representation. The kth
frame image of a video stream is a matrix of
size M × N and is defined by Equation (2):

Xk ¼ fk xi; yið Þ (2)

with i ¼ 1; 2; :::;M and j ¼ 1; 2; :::;N:
ROI extraction. The rth ROI of frame k is a matrix of

size mr � irð Þ � nr � jrð Þ and is defined by Equation (3):

Wkr ¼ Xk xi; yið Þ (3)

with 1 � i ¼ ir; ir þ 1; :::;mr � M; and 1 � j ¼ jr; jr þ
1; :::; nr � N:

RGB colour image to grey image conversion.
Assume that S ¼ f Ri;j;Gi;j; Bi;j

� �
is an RGB colour

image. The associated grey image is obtained by
Equation (4):

grayi;j ¼ 0:2989 � Ri;j þ 0:5870 � Gi;j þ 0:1140 � Bi;j
� �

(4)

Grey image to black and white image conversion. The
grey image is represented by Equation (5):

X ¼ f xi; yið Þ (5)

where, i ¼ 1; 2; :::;M and j ¼ 1; 2; :::;N is a given grey
image. The corresponding black and white image is
defined by Equation (6):

�i; j ¼ 0 f ðxi; yiÞ � Th
1 fðxi; yiÞ> Th

�
(6)

Difference image computation. Assume that f xi; yið Þis
a reference image, and g xi; yið Þ is an image of the
same type and size as f . The difference image,
D xi; yið Þ, is equal to Equation (7).

f xi; yið Þ ¼ g xi; yið Þ � f xi; yið Þ (7)

Average value of a black and white image computa-
tion. Assume a black and white image is represented
by Equation (8).

X ¼ f xi; yið Þ (8)

where, i ¼ 1; 2; :::;M and j ¼ 1; 2; :::;N is a given
black and white image. The average value of the
image is defined by Equation (9).

Xaverage ¼ 1
M� N

XN
j¼1

XM
i¼1

f xi; yið Þ (9)

5. Experimental results

The proposed FTC system was tested in a laboratory
using a real production line model, as shown in
Figure 4. Tests were performed to examine and vali-
date the applicability of the proposed scheme in real
working scenarios. Several experiments were devel-
oped to test the responses to different sensor-fault
conditions. The following subsections explain the
different experimental setups and fault scenarios.

5.1. Experimental equipment and setup

The original system was represented by the production
line model shown in Figure 4. The model consisted of
a conveyor belt, a DC motor, three proximity inductive
sensors, and a PLC. To focus on the experimental objec-
tive of sensor faults, thepossibility of actuator faultsmust
be excluded. Thus, each functional unit was represented
by a light-emitting diode (LED). The LEDs were switched
on and off according to the operating conditions
throughout the predefined operation period (action
expected period). The OUPs were small soft drink cans.

To implement the proposed FTC scheme, a digital
video camera (FLIR BFS-U3-51S5C-C) was added to the
system. The video was acquired at a rate of 30 fps. The
ROI was defined as a rectangular area, which represents
the back edge of an appropriately-positioned can during
normal operating conditions. This was done to allow the
control unit a sufficient amount of time to position the
can at the operation site in case of a sensor fault. Each of
the following experimentswas repeated several times to
ensure consistent outcomes.

5.2. Experiment 1: normal operation

In Experiment 1, a single OUP was injected onto the
conveyor belt and was passed in front of the sen-
sors. All of the sensors detected the presence of the
OUP when it arrived at each respective operation
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site. The ROI images that show the presence/
absence of an OUP in the detection region
(Algorithm 2) are shown in Figure 5. The ROI
image sequences during the OUP movement into
and out of the detection region are shown in
Figures 6 and 7, respectively. The three functional-
unit LEDs switched on and off, and the process
operated as expected (Algorithm 1). Figure 7
shows that, under normal operation, the controller
stopped the belt for the expected time period. The
object then started to move out of the ROI after 150
frames (approximately 5 s) and left the ROI comple-
tely after 200 frames (approximately 6.7 s).

5.3. Experiment 2: single-sensor missed-detection
fault

In Experiment 2, a single OUP was injected onto the
conveyor belt and passed in front of the sensors, while

excluding the proposed FTC scheme. To emulate
a missed-detection condition, the second sensor signal
was masked by the PLC program. The object passed in
front of the masked sensor, and the conveyor belt con-
tinued to move without positioning the object at the
operation site. The corresponding functional-unit LED
was not switched on by the PLC control program, indi-
cating a manufacturing failure. The results of the image-
processing algorithm are shown in Figure 8. This figure
shows that the OUP started to move out of the ROI 30
frames following its entry (approximately 1 s), and the
OUP left the ROI completely after 30 frames (approxi-
mately 1 s) without stopping at the operation site.

The experiment was repeated while including the
proposed FTC. When comparing the computed and
expected presence times of the OUPs, Algorithm 2 clas-
sified the sequence of images in Figure 7 as a sensor 2
missed-detection fault. Accordingly, anOPS and a sensor
2 fault identification code were generated. The OPS was

Figure 4. Laboratory test-bed settings with a real production line model.

Figure 5. ROI images (a) in the absence of an OUP and (b) in the presence of an OUP.
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Figure 7. The frames tags and the sequence of images of the ROI during the object motion in normal operating mode.

Figure 6. The sequence of extracted ROI images during the motion of the can into and out of the detection region (from left to right).
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read successfully by the PLC, the conveyor belt was
stopped with the can at the operation site, and the
functional-unit LED switched on. Following the comple-
tion of the action expected period, the LED switched off,
and the conveyor beltmovementwas initiated. TheOUP
was detected at the next operation site, and the process
operated as expected. The experiment was repeated for
the first and third sensors, and similar results were
obtained.

5.4. Experiment 3: multiple-sensor
missed-detection fault

In Experiment 3, several OUPs were injected onto
the conveyor belt, while excluding the proposed
FTC scheme. Because the assumed operation is in
series, the success of the manufacturing process

requires the correct detection and placement of
the cans at their respective operation sites.
Therefore, the PLC was programmed to keep the
conveyor belt moving when one or more sensors
miss the OUP detection. The signals of the first and
third sensors were masked by the control-unit pro-
gram. The cans passed in front of the sensors, and
the conveyor belt continued to move without posi-
tioning them at any operation site. An object was
detected by the second sensor, and the second
functional-unit LED switched on, indicating that it
was operating, even though none of the cans were
positioned at the second operation site. The first
and third functional-unit LEDs were in the off
state, indicating that none of the cans were
detected at these sites.

Figure 8. The frame tags and sequence of the ROI images in the missed-detection mode without intervention of the proposed FTC.
The object continued to move and was not positioned at the operation site.
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The experiment was repeated with the inter-
vention of the proposed FTC scheme. The image
processing results at the three operation sites
were similar to those of Figure 7. Algorithm 2
detected the fault conditions and generated OPS
signals for the first and third operation sites. The
sensor 1 and sensor 3 identification faults were
also generated and sent to the control unit. The
control-unit program stopped the conveyor belt
with the cans correctly positioned and generated
the MDFs. The functional-unit LEDs operated as
expected.

The same experiment was repeated by masking
sensors in various patterns: sensors 1 and 2, sensors
2 and 3, and sensors 1, 2, and 3. Similar results were
obtained in all cases.

5.5. Experiment 4: false-alarm sensor fault

In the first portion of Experiment 4, a single can was
injected onto the belt, while excluding the proposed
FTC scheme. The signals of the second and third
sensors were forced to permanently indicate the pre-
sence of cans. When the can arrived at the first opera-
tion site, the conveyor stopped, and the three
functional-units LEDs switched on, indicating the pre-
sence of cans at the three operation sites. Thus, the
processes at operation sites 2 and 3 were executed in
the absence of cans, indicating a manufacturing
failure.

The experiment was repeated with the inclusion
of the proposed FTC scheme. The results showed
that Algorithm 2 detected the presence of the can
at the first operation site and the absence of the
cans at the other sites. Consequently, the OPSs were
deactivated, and the fault identification codes from
sensors 2 and 3 were sent to the control unit. The
control unit switched off the second and third func-
tional-unit LEDs, whereas the LED of the first func-
tional unit switched on, indicating the progress of
the action at this site. The object was then moved
to the following operation sites, was detected by
Algorithm 2 and the forced sensor values, and gen-
erated the faulty-sensor codes. The control unit
operated the production line correctly and issued
the FAFs for operation sites 2 and 3.

The experiment was repeated for various faulty-
sensor sites, and similar results were obtained.

5.6. Experiment 5: premature object movement

In this experiment, the cans were injected onto the
conveyor belt without the new FTC scheme. The cans
were correctly detected and positioned at the opera-
tion sites. Additionally, the LEDs switched on, indicat-
ing the progress of the action at their respective
sites. Then, sensor 1 and sensor 2 were forced to
indicate the absence of cans at these sites prior to
the termination of the action expected period. The
belt moved, removing the cans from of their opera-
tion sites, leading to a manufacturing failure.

The same sequence was repeated using the pro-
posed FTC scheme. In this case, the premature motion
of the cans was detected by Algorithm 2, and the POM
signals were sent to the control unit. The control unit
stopped the conveyor belt movement, and the opera-
tion sequence continued, as expected.

5.7. Experiment 6: long presence

In Experiment 6, the cans were injected onto the
conveyor belt without the new FTC scheme. The
cans were correctly detected and positioned at the
operation sites; the LEDs switched on, indicating the
progress of the action at their site. Then, all of the
sensors were forced to indicate the presence of cans
at their respective sites. At the termination of the
action expected period, the LEDs switched off, indi-
cating the termination of the functional-unit action.
However, because the cans were detected again at
the same operation sites, the belt did not move. The
LEDs switched on, indicating the execution of the
same actions on the same cans, leading to
a manufacturing process failure.

The same sequence was repeated using the pro-
posed FTC scheme. In this case, Algorithm 2 did not
detect the release condition of the expected OUPs at
the end of the action expected period. Accordingly,
LPS signals and fault identification codes were gen-
erated and sent to the control unit. The control unit
forced a motor switch on and restored the correct
operation sequence of the production line.

6. Discussion

This study introduced a production line FTC system
with a global-redundancy scheme to tolerate the
misplacement of objects at the production line
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operation sites caused by object-detection sensor
faults. The principle objectives were to ensure the
synchronisation of processing actions and maintain
the continuity of the manufacturing process work-
flow. Global redundancy was achieved using a video
camera and a video processing algorithm. A series-
type production line was assumed, and object-
detection sensors were used to synchronise the
OUP placement and functional-unit action at each
operation site. The production line was assumed to
operate without the use of buffers between the con-
secutive processing stages. Moreover, a fixed and
equal action period was assumed for all the opera-
tion sites. The proposed FTC scheme was tested
using a laboratory-scale small production line
model. Finally, the objectives of the FTC scheme
did not include sensors that monitor the quality of
the products or possible actuator faults.

Despite these assumptions, the proposed FTC
scheme has possible applications in real industrial
production lines. In fact, several well-known produc-
tion lines follow series manufacturing schemes.
Some examples include automated food processing,
metal processing, packing and filling systems.
Although several series production lines are similar
to the one proposed by the study, many others have
buffering between the different processing stages.
This buffering allows the different stages to operate
asynchronously with the same operation time
(balanced mode) or with different operation times
(unbalanced mode). However, all cases require the
OUP to be positioned at the operation site prior to
executing the processing action. Thus, object-
positioning errors caused by object-detection sensor
faults can lead to manufacturing process failures in
buffered and non-buffered production lines. This fail-
ure is instantaneous and holistic in non-buffered
production lines; however, the failure is partial at
the faulty site in buffered production lines. The per-
sistence of a sensor fault at the faulty-sensor site
leads to a delayed and complete manufacturing pro-
cess failure of the entire buffered production line.

The proposed FTC was tested using a laboratory-
scale production line, while controlling the fault con-
ditions and scenarios. Moreover, the proposed
object-detection algorithm was based on basic
video and image processing operations. These
operations included ROI extraction, image subtrac-
tion, thresholding, and a binary decision technique.

However, the testing approach herein should not
diminish the validity of the proposed scheme or its
applicability in real industrial settings. In fact, similar
testing methods were implemented in various litera-
ture studies (Demetgul, Tansel, and Taskin 2009;
Sekar, Hsieh, and Wu 2011; Chauhan and Surgenor
2015).

In general, the most efficient and lowest cost
solution is often the most successful, and the adop-
tion of complex solution methods should be
avoided. The object-detection algorithm proposed
in this study achieved its objectives. A unique
requirement of this study was the existence of
a valid background reference. This requirement did
not generate complications because the operation
sites were assumed to be in fixed positions, which
is also the case of various series production lines.
Thus, the adoption of higher cost, more articulated,
and more robust detection algorithms may be unsui-
table and irrelevant when attempting to solve the
proposed series production line problem. For exam-
ple, Chauhan and Surgenor (2015) applied and com-
pared three different machine vision methods to
detect faults in an automated assembly machine.
These methods included the Gaussian Mixture
Model, optical flow, and a running-average approach
using basic image processing operations. Their con-
clusion was that the simplicity of the running-
average approach led to the best solution (Chauhan
and Surgenor 2015).

It is worth noting that different settings must be
implemented depending on the specific application
of the series production line. In fact, the digital
video camera and video processing microcomputer
should be selected based on the specific timing and
operating speeds of the production line. However,
due to recent advances in digital cameras technol-
ogy and processing systems, this should not be an
obstacle to implementing the production line stu-
died herein. Moreover, the timing of the entire
production process and the local timing at each
operation site in buffered mode should be taken
into consideration. Due to the modular structure
of the proposed FTC, this should not be a great
challenge. In fact, several video cameras and proces-
sing units can be used to apply redundancy at
different levels: global redundancy to the entire
production line, sub-global redundancy to subsets
of sensors, or local redundancy at each operation
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site. The generated signals and identification codes
that are produced by the video processing algo-
rithms must be sent to the production line control
unit to perform the FTC actions.

The application and testing of the proposed FTC
scheme in real industrial production line settings
will be the subject of the following study. Other
topics, such as product-quality sensors and actuator
faults, may be studied in future works. The addition
of these types of faults to the problem may require
the employment of articulated algorithms that
involve advanced video processing techniques,
such as object tracking, machine learning, and com-
puter vision.

7. Conclusion

This study proposed a new FTC scheme based on
redundant monitoring through the use of a digital
video camera and video processing. The proposed
FTC aimed to foster the tolerance of the produc-
tion line to multiple-sensor faults. The FTC system
operating modes were simulated and tested using
MATLAB/Simulink. To test the applicability of the
proposed FTC scheme in practical working scenar-
ios, several experiments were conducted using
a laboratory production line model. The simulation
and experimental results showed that the pro-
posed FTC scheme achieved the desired objec-
tives. The proposed scheme improved the
tolerance and reliability of the production line to
multiple-sensor faults. Moreover, the proposed
FTC introduced other important features to the
production line, such as the possibility of devel-
oping sensor and production line reliability ana-
lyses, and the application of online maintenance
procedures.
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