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ABSTRACT
Two empirical Markovian-based models are presented in this paper to predict the transition probabilities 
associated with rehabilitated pavement. The first model predicts the staged-homogenous transition 
probabilities as required by the staged-homogenous Markov model. The second model predicts the non-
homogenous transition probabilities as applicable to the non-homogenous Markov model. In both the 
models, the deterioration transition probabilities are predicted as a function of the corresponding values 
associated with original pavement and two adjustment factors reflecting the impacts of increased traffic 
load applications and decreased pavement strength. The predicted transition probabilities are used to 
estimate the future distress ratings required for developing the corresponding life cycle performance 
curve. The life cycle performance/cost ratio is used to evaluate the cost-effectiveness of potential long-
term M&R plans. The life cycle performance is defined as the area falling under the life cycle curve. The life 
cycle cost is estimated to include initial construction cost, routine maintenance cost, major rehabilitation 
cost, and added user cost due to work zone. Two proposed cost models are used in the case study for 
estimating routine maintenance and added user costs. The case study indicates that the proposed 
empirical Markovian-based models have provided reasonable estimates of the transition probabilities as 
reflected by the corresponding life cycle performance curves.
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1.  Introduction

Pavement management remains to be a focal point for many 
researchers seeking to find improved solutions to problems 
related to pavement maintenance and rehabilitation (M&R). 
Several models have recently been developed which typically 
deal with the pavement management problem at the network 
level using optimisation techniques to yield the best M&R 
plan (Bryce, Katicha, Flintsch, Sivaneswaran, & Santos, 2014; 
Cirilovic, Mladenovic, & Queiroz, 2015; Jorge & Ferreira, 2012; 
Mathew & Isaac, 2014; Saliminejad & Perrone, 2015). An effec-
tive pavement management model is required to incorporate 
a reliable performance model that can provide good estimates 
of the future pavement conditions, which is a key requirement 
for yielding a reliable long-term optimum M&R plan (Bektas, 
Smadi, & Al-Zoubi, 2014; Hong & Prozzi, 2015; Kargah-Ostadi 
& Stoffels, 2015). The optimum M&R plan at the network level 
generally results in identifying a number of projects to be 
implemented during a specified period of time. However, the 
detailed rehabilitation strategies and their optimal timings are 
typically dealt with at the project level using a different perspec-
tive, namely the life cycle analysis approach. Life cycle analysis 
is also part of pavement design analysis since the initial cost of 
pavement construction is a significant part of the life cycle cost. 

Nevertheless, pavement performance prediction remains vital 
for yielding reliable pavement management solutions at both 
the project and network levels.

Pavement performance is essentially concerned with pre-
dicting the future pavement conditions using an appropri-
ate condition indicator typically related to pavement service 
time. Several performance prediction models have been used 
in pavement management but the most commonly used ones 
are the stochastic-based models deploying different forms of 
the Markov model (Hong & Wang, 2003; Mandiartha, Duffield, 
Thompson, & Wigan, 2012; Meidani & Ghanem, 2015). This is 
because pavement performance has long been recognised to be 
probabilistic in nature implying that pavement future conditions 
cannot be determined with certainty. Recent applications of the 
Markov model have focused on estimating the pavement tran-
sition probabilities (i.e. deterioration rates) which are crucial for 
providing reliable estimates of the future pavement conditions 
(Abaza, 2016b; Kobayashi, Do, & Han, 2010; Lethanh & Adey, 
2013; Ortiz-Garcia, Costello, & Snaith, 2006). Abaza (2015) pro-
posed an empirical model to predict the deterioration transition 
probabilities associated with non-homogenous Markov chains 
using the present transition probabilities and two adjustment fac-
tors related to traffic loading and pavement strength. In another 
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transitions (n) used in the analysis period, and transition prob-
ability matrix (P) comprised of the transition probabilities (Pi,j). 
The main objective of applying the discrete-time Markov model 
is to predict the state probabilities after a specified number of 
transitions as indicated by Equation (1). The state probabilities 
represent the pavement proportions that exist in the various 
deployed condition states at a specified future time. The transi-
tion probabilities denote the probabilities of pavements trans-
iting from current state (i) to future state (j) in one transition 
(i.e. time interval). The discrete-time non-homogenous Markov 
model defined in Equation (1) can incorporate a distinct transi-
tion matrix, P(k), for each deployed transition.

The transition matrix is a squared matrix (m × m), where 
entries above main diagonal (Pi,j; i < j) represent pavement dete-
rioration rates, entries below main diagonal (Pi,j; i > j) indicate 
pavement improvement rates, and entries along the main diago-
nal (Pi,j; i = j) denote the probabilities of pavements remaining in 
the same condition state after one transition. Equation (1) yields 
the state probabilities after (n) transitions, S(n), provided that the 
initial state probabilities, S(0), and all transition probability matri-
ces [P(k); k = 1,2, …, n] are available over the analysis period. 
The state probabilities are represented by a row vector of size 
(m) with their sum adding to one. The initial state probabilities 
for new pavement (original or rehabilitated) can be assumed 
to take on the values of (1, 0, 0, …, 0), which is a reasonable 
assumption provided the number of deployed condition states 
is sufficiently small.

 

Equation (2) provides a simplified form of the transition 
probability matrix in the absence of pavement M&R meaning 
that all entries below the main diagonal are assigned zero 
values. In addition, pavement deterioration is assumed to take 
place only in one step implying that pavements can either 
transit from condition state (i) to state (i + 1) or remain in the 
same current state (i) after the elapse of one transition. The 
validity of this assumption depends on the size of the transi-
tion matrix (m) and transition length. The larger the matrix 
size, the more valid becomes the assumption. However, the 
assumption is more valid if the transition length gets smaller. 
Abaza (2015, 2016a) reported that a transition matrix with 10 
condition states and 1-year transition length were adequate 
to be used in predicting the future pavement performance. It 
is to be noted that the entry sum of any row in the transition 
matrix must add up to one:

(1)S(n) = S(0)

(
n∏

k=1

P(k)

)

where S(n) =
(
S(n)
1
, S(n)

2
, S(n)

3
,… , S(n)m

)

S(0) =
(
S(0)
1
, S(0)

2
, S(0)

3
,… , S(0)m

)

m∑
i=1

S(k)
i

= 1.0

study, Abaza (2016a) proposed a simplified linear approach to 
predict the deterioration transition probabilities associated with 
staged-homogenous Markov chains.

However, performance prediction of rehabilitated pavement 
was not adequately addressed in the literature but the focus was 
mainly on the performance prediction of original pavement. The 
performance of rehabilitated pavement is required if a long-term 
life cycle analysis is to be effectively performed for the purpose of 
yielding the best M&R plan. Recently, several life cycle analysis 
models have been developed focusing mainly on the life cycle 
cost analysis but not dealing with the long-term performance 
of rehabilitated pavement (Heravi & Esmaeeli, 2013; Pittenger, 
Gransberg, Zaman, & Riemer, 2012; Santos & Ferreira, 2013; 
Santos, Ferreira, & Flintsch, 2015). Therefore, the main con-
tribution of this paper is the development of two empirical 
Markovian-based models to be used for predicting the deterio-
ration transition probabilities associated with rehabilitated pave-
ment. Another contribution of this paper is related to life cycle 
cost wherein potential cost models are proposed for estimating 
routine maintenance cost and added user cost due to work zone. 
In addition, a cost-effective life cycle analysis approach is pro-
posed that takes into consideration both the pavement long-term 
life cycle performance and life cycle cost.

The predicted deterioration transition probabilities for reha-
bilitated pavement are then used to estimate the future pave-
ment distress ratings required for developing the corresponding 
long-term life cycle performance curve at the project level. The 
area falling under the curve is typically used as a reliable meas-
ure of pavement performance (Abaza & Murad, 2009; Huang, 
2004). Therefore, it is proposed to evaluate the cost-effectiveness 
of potential long-term M&R plans using the performance/cost 
(P/C) ratio with the life cycle performance (P) defined as the 
area falling under the life cycle performance curve. The life cycle 
cost (C) can include cost items such as initial construction cost, 
routine maintenance cost, major rehabilitation cost, and added 
user cost due to work zone. The most cost-effective M&R plan 
is the one associated with the highest (P/C) ratio.

2.  Markovian-based performance prediction models: 
an overview

The discrete-time Markov model has been widely used in pre-
dicting the future performance of pavements. The discrete-time 
is typically represented by the number of transitions (i.e. time 
intervals) wherein each transition has a typical time length of 
1 or 2 years. There are three typical forms of the discrete-time 
Markov model, namely the homogenous, staged-homogenous 
and non-homogenous models. The homogenous model is typ-
ically inaccurate as it assumes constant transition probabilities 
(i.e. pavement deterioration rates) over time. The other two mod-
els have been reported to provide similar results and are reviewed 
in this section (Abaza, 2015, 2016a).

2.1.  Non-homogenous discrete-time Markov model

The main elements of the discrete-time Markov model are 
number of deployed pavement condition states (m), number of 
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The main disadvantage of the non-homogenous Markov 
model is that it requires the estimation of the transition proba-
bilities for every transition in the analysis period. This in turns 
needs the availability of extensive historical records of pavement 
distress collected annually over the entire analysis period. Abaza 
(2015) proposed an empirical approach to predict the future 
non-homogenous transition probabilities for original pave-
ment using mainly the present deterioration transition proba-
bilities (k = 1), traffic load factor and pavement strength factor. 
Estimation of the present deterioration transition probabilities, 
P(1)i,i+1, can be obtained from the state probabilities associated 
with two consecutive cycles of pavement distress assessment. 
Abaza (2016b) derived based on the transition matrix presented 
in Equation (2) the direct equations to back calculate the dete-
rioration transition probabilities using mainly two consecutive 
sets of state probabilities.

2.2.  Staged-homogenous discrete-time Markov model

The staged-homogenous Markov model applies a distinct tran-
sition probability matrix 

(
P
(ne)

j

)
 for each staged-time period 

comprised of (ne) transitions as presented in Equation (3). 
This requires dividing the analysis period (n) into a number of 
staged-time periods (s) each with equal length of (ne) transi-
tions. Therefore, the staged-homogenous Markov model requires 
a much reduced number of transition matrices compared 
to the non-homogenous Markov model. For example, only 4 
staged-homogenous transition matrices are required compared 
to 20 non-homogenous transition matrices considering an anal-
ysis period of 20 transitions and 5-year staged-time period. The 
future deterioration transition probabilities, P(j)i,i+1, can be lin-
early estimated from the present deterioration transition proba-
bilities, P(1)i,i+1, using the calibration constants (Cj) as indicated 
by Equation (3) (Abaza, 2016a). The calibration constants can 
be obtained from minimising the sum of squared errors (SSE) or 
based on experience and engineering judgement. Abaza (2016a) 
reported that five-year staged-time periods would be sufficient to 
provide reliable estimates of the future pavement performance:
 

(2)P(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P(k)1,1 P(k)1,2 0 0 0 … 0

0 P(k)2,2 P(k)2,3 0 0 … 0

0 0 P(k)3,3 P(k)3,4 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 … P(k)m−1,m−1 P(k)m−1,m

0 0 0 0 0 … P(k)m,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P(k)i,i + P(k)i,i+1 = 1.0, P(k)m,m = 1.0

0 ≤ P(k)i,i ≤ 1.0, 0 ≤ P(k)i,i+1 ≤ 1.0

(3)S(n) = S(0)

(
s∏

j=1

P
(ne)

j

)

where n = s × ne

P(j)i,i+1 = CjP(1)i,i+1 ≤ 1.0
(
i = 1, 2,… ,m − 1;j = 2, 3,… , s

)

C1 = 1.0, associated with the first staged-time period.
The future deterioration transition probabilities are expected 

to increase over time due to the increasingly higher traffic loading 
and decreasingly lower pavement structural capacity. Therefore, 
the calibration constants (Cj) are associated with increasingly 
higher values over time to reflect the impact of both increased 
traffic loading and reduced structural capacity. Abaza (2016a) 
provided estimates of the (Cj) constants which will be used in 
the sample presentation provided in this paper.

2.3.  Prediction of pavement performance

The future performance of pavements can be predicted in terms 
of an appropriate pavement condition indicator such as the pave-
ment condition index or pavement distress rating (DR) used in 
Equation (4). The distress rating associated with the kth transi-
tion, DR(k), at the project level can be estimated as the product 
sum of the state mean distress ratings (Bi) and the correspond-
ing state probabilities, Si

(k). The state mean distress ratings are 
defined in Equation (4) using a Markov chain with 10 condition 
states and state DR ranges of 10 points based on a scale of 100 
points. The higher the DR value, the better the pavement condi-
tion. Abaza (2016b) presented simplified models for estimating 
the observed DR(k) from distress assessment, and Equation (4) 
provides the corresponding predicted DR(k). Both observed and 
predicted DR(k) are needed for minimising the SSE as the error 
is defined to be the difference between the two DR(k) types:

 

The future state probabilities, Si
(k), are the main 

parameters needed to predict the project distress ratings, 
DR(k), using Equation (4). The future state probabilities 
can be estimated from either the outlined non-homogenous 
or staged-homogenous Markov model. Both models will 
be used in the sample presentation provided in this paper 
for generating the life cycle performance curves associated 
with rehabilitated pavement.

P(j)i,i = 1 − P(j)i,i+1

C1 ≤ C2 ≤ C3 ≤ … ≤ Cs

(4)DR(k) =

m∑
i=1

BiS
(k)

i
(k = 0, 1, 2,… , n)

where S(k) =

⎧⎪⎪⎨⎪⎪⎩

S(k)
1
, 90 < DR ≤ 100, B1 = 95

S(k)
2
, 80 < DR ≤, 90, B2 = 85

S(k)
3
, 70 < DR ≤ 80, B3 = 75

⋮ ⋮ ⋮

S(k)
10
, 0 ≤ DR ≤ 10, B10 = 5
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NS = number of staged-time periods within each rehabilitation 
cycle; ∆n = service time period of each rehabilitation cycle in 
transitions; ne = time length of each staged-time period in tran-
sitions; nj = rehabilitation time of the jth rehabilitation cycle in 
transitions; N = number of rehabilitation cycles over an anal-
ysis period comprised of (n) transitions; PR(j)i,i+1 = deteriora-
tion transition probabilities associated with the jth staged-time 
period for rehabilitated pavement; P(j)i,i+1 = deterioration tran-
sition probabilities associated with the jth staged-time period for 
original pavement; Sj = structural capacity of original pavement 
at the beginning of the jth staged-time period; SRj = structural 
capacity of rehabilitated pavement at the beginning of the jth 
staged-time period; ∆Wj = 18k (80kN) equivalent single load 
applications expected to take place over the original pavement 
during the jth staged-time period; ∆WRj = 18k (80kN) equiv-
alent single load applications expected to take place over the 
rehabilitated pavement during the jth staged-time period, and 
P(1)i,i+1, ∆W1, S1 = original pavement parameters associated with 
the 1st staged-time period.

Equation (5a) is to be used to predict the staged-homogenous 
deterioration transition probabilities for rehabilitated pavements 
when the number of staged-time periods (Ns) within each reha-
bilitation cycle is greater than one. The main assumption here is 
that the performance of rehabilitated pavement will be similar 
to that of original pavement considering the same staged-time 
period and provided that traffic loading and structural capacity 
are also similar. Equation (5b) is applied when each rehabilita-
tion cycle consists of only one staged-time period (Ns = 1). In 
this special case, the corresponding transition probabilities are 
mainly dependent on the original pavement parameters associ-
ated with the first staged-time period. Figure 1 shows a typical 
pavement life cycle performance curve comprised of (N) rehabil-
itation cycles spanned over an analysis period of (n) transitions 
with (∆n) is the length of each rehabilitation cycle in transitions.

3.2.  Empirical model for non-homogenous transition 
probabilities

The non-homogenous deterioration transition probabilities asso-
ciated with the jth rehabilitation cycle can be estimated from 
the empirical model presented in Equation (6) using similar 
parameters as used in the empirical model defined in Equation 
(5). However, it is assumed that the original and rehabilitated 
pavements will have similar performances when considering the 
transitions (k) and (nj + k), respectively, as shown in Figure 1. 
Therefore, the deterioration transition probabilities associated 
with rehabilitated pavement for the (nj + k)th transition are esti-
mated from the corresponding values associated with original 
pavement for the kth transition. The empirical model presented 
in Equation (6) will predict the non-homogenous transition 
probabilities for each rehabilitation cycle as a function of the 
non-homogenous transition probabilities associated with the 
original pavement in addition to the traffic load and structural 
capacity factors. The main difference compared to the model pre-
sented in Equation (5) is that the deterioration transition prob-
abilities are individually estimated for each transition. The load 
factor is computed from the traffic load applications expected to 
take place during the transition under consideration. The pave-
ment strength factor as represented by the structural capacity, 

3.  Empirical models for rehabilitated pavement 
performance

The transition probabilities needed to predict the performance 
of rehabilitated pavement can be estimated using two distinct 
empirical Markov-based models. The first model predicts 
the staged-homogenous transition probabilities based on the 
corresponding values associated with original pavement. The 
staged-homogenous transition probabilities are assumed to 
remain constant over the corresponding staged-time period as 
indicated earlier. Similarly, the second model predicts the non-
homogenous transition probabilities wherein a distinct set of 
transition probabilities is estimated for each transition. Abaza 
(2015) used a similar empirical approach to predict the non-
homogenous transition probabilities for original pavement relying 
mainly on two major factors affecting pavement deterioration over 
time, namely the progressive increases in traffic load applications 
and progressive weakening of the pavement structure.

3.1.  Empirical model for staged-homogenous transition 
probabilities

An empirical Markov-based model is proposed to predict the 
staged-homogenous deterioration transition probabilities, 
PR(j)i,i+1, as presented in Equations (5a) and (5b). This model 
mainly applies the staged-homogenous deterioration transition 
probabilities of original pavements, P(j)i,i+1, which are adjusted by 
two multiplication factors representing the impacts of increasing 
traffic loading and decreasing pavement structural capacity. The 
traffic factor is estimated as the ratio of the traffic load appli-
cations expected to travel on the rehabilitated pavement dur-
ing the jth staged-time period (∆WRj) over the corresponding 
value of original pavement (∆Wj). The traffic factor will typically 
be greater than one as traffic load applications are expected to 
increase over time, thus, resulting in higher deterioration tran-
sition probabilities. Similarly, the structural capacity factor is 
estimated as the ratio of the structural capacity of original pave-
ment (Sj) at the start of the jth staged-time period over the cor-
responding value of rehabilitated pavement (SRj). The structural 
capacity factor will be smaller than one if the structural capac-
ity of rehabilitated pavement is larger than the corresponding 
value of original pavement, thus, resulting in lower deterioration 
transition probabilities. In essence, if it is required to maintain 
the same deterioration rates for both original and rehabilitated 
pavements, then it is required to provide rehabilitated pavement 
with higher structural capacity:

 

(5a)

PR(j)i,i+1 = P(j)i,i+1

(
ΔWRj

ΔWj

)A(
Sj

SRj

)B

(j = 1, 2,… ,Ns; Ns > 1)

(5b)

PR(j)i,i+1 = P(1)i,i+1

(
ΔWRj

ΔW1

)A
(

S1
SRj

)B

(j = 1, 2,… ,N ; Ns = 1)

where Ns = Δn∕ne

Δn = nj+1 − nj
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this ratio is only dependent on the annual uniform traffic growth 
rate (r) and the rehabilitation time (nj) associated with the jth 
rehabilitation cycle:
 

The model exponents (A & B) deployed in Equation (6) are not 
necessarily associated with the same values as of those exponents 
appearing in the empirical model defined in Equation (5). In both 
the models, reliable estimates of the exponents can be obtained 
from the calibration procedure provided that historical distress 
records are available for rehabilitated pavements. The calibration 
procedure can be performed by minimising the SSE wherein 
the error is defined as the difference between the predicted and 
observed distress ratings (Abaza, 2015). The predicted distress 
ratings are computed using Equation (4) which requires the 
future state probabilities to be estimated from the relevant Markov 
model. The models recommended in this paper for estimating the 
future state probabilities are the non-homogenous and staged-
homogenous Markov models as indicated by Equations (1) 
and (3), respectively. The deterioration transition probabilities 
associated with rehabilitated pavements as required by the staged-
homogenous and non-homogenous Markov models are to be 
predicted using Equations (5) and (6), respectively.

The two exponents (A & B) associated with the empirical 
models for rehabilitated pavement performance need to be 
estimated from calibration. The main calibration requirement 
is the availability of historical distress records for rehabilitated 
pavement. Abaza (2015) calibrated a similar model wherein 
the first-year transition probabilities were used to predict the 
non-homogenous transition probabilities for an original pave-
ment project to be used in the case study presented later. The 
estimated values of the model exponents (A & B) were reported 
to be (1.4 & 1.2) for pavement performance with increasingly 
higher deterioration rates and (.7 & .4) for performance with 
decreasingly lower deterioration rates, respectively. These expo-
nents were mainly developed for an original pavement structure 

(8)
ΔWR(nj + k)

ΔW(k)
=

Wf × GF(nj + k) −Wf × GF(nj + k − 1)

Wf × GF(k) −Wf × GF(k − 1)
= (1 + r)nj

S(k), can be estimated either based on experience and engineer-
ing judgement or from the outcome of non-destructive testing 
of the pavement structure. Abaza (2015) suggested using the 
structural number (SN) as a reliable indicator of the pavement 
structural capacity:
 

where

PR(nj + k),i,i+1 = deterioration transition probabilities associated 
with the jth rehabilitation cycle for the (nj  +  k)th transition; 
P(k),i,i+1 = deterioration transition probabilities associated with 
the original pavement for the kth transition; WR(nj + k) = accu-
mulated 18k (80kN) equivalent single axle load applications at 
the end of the (nj + k)th transition associated with the jth rehabil-
itation cycle; W(k) = accumulated 18k (80kN) equivalent single 
axle load applications at the end of the kth transition associated 
with original pavement; SR(nj + k) = structural capacity at the 
beginning of the (nj  +  k)th transition associated with the jth 
rehabilitation cycle, and S(k) = structural capacity of the original 
pavement at the beginning of the kth transition.

The accumulated traffic load applications, W(k), at the kth 
transition can be estimated from multiplying the first-year load 
applications (Wf) by the traffic growth factor, GF(k), as indicated 
by Equation (7) with (r) being the uniform annual traffic growth 
rate in decimal form. The deployed traffic growth factor is the 
one proposed by the Asphalt Institute (AI, 1999):

 

The ratio associated with the traffic load factor can then be 
derived as presented in Equation (8). It is to be concluded that 

(6)
PR(nj + k)i,i+1 = P(k)i,i+1

(
ΔWR(nj + k)

ΔW(k)

)A(
S(k)

SR(nj + k)

)B

(k = 1, 2,… ,Δn;j = 1, 2,… ,N)

ΔWR(nj + k) = WR(nj + k) −WR(nj + k − 1)

ΔW(k) = W(k) −W(k − 1)

(7)W(k) = Wf × GF(k) = Wf

[
(1 + r)k − 1

r

]

Figure 1. Typical pavement life cycle performance curve with (N) rehabilitation cycles.
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Equation (12) as a future value (FRCj) converted to a present one 
using the rehabilitation time (nj) associated with the jth reha-
bilitation cycle and uniform annual discount rate (i) in decimal 
form. Equation (12) is simply used to convert the future money 
values associated with (N) rehabilitation cycles to a net present 
value. Rehabilitation work strategies typically involve either plain 
overlay, or cold milling and overlay, or removal and replace-
ment of existing asphalt concrete layer. The pavement engineer 
is required to identify the appropriate future rehabilitation plans 
and estimate their corresponding future costs:
 

A simplified model is presented in the sample presentation 
section to assist in estimating the overlay thickness required 
to provide the rehabilitated pavement with structural capacity 
similar to the one associated with original pavement. The 
model can be used in cases of either plain overlay or cold 
milling and overlay.

4.3.  Added vehicle operating cost due to work zone

Vehicular traffic passing through work zone during a rehabilita-
tion cycle typically incurs additional user cost. A main element 
of this added user cost is the additional vehicle operating cost 
which can be estimated using Equation (13). The future value 
of the added vehicle operating cost (FVOC) is estimated in ($/m2) 
of pavement surface as a function of the affected average daily 
traffic (ADTaff) in vehicles, added vehicle operating cost (VOCadd) 
in ($/vehicle/lane closure), total number of lane closures (NC), 
and project surface area (Ap) in m2. The project surface area is 
computed as the product of lane width (WL) in m, number of 
lanes (NL) in both directions and project length (LP) in km. The 
total number of lane closures (NC) is computed from dividing the 
project length in lane-km (NL × LP) by the average rehabilitation 
production rate (LR) in lane-km per lane closure per rehabilita-
tion plan:

(12)PRC =

N∑
j=1

FRCj

(1 + i)nj

(13)FVOC =
ADTaff ∗ VOCadd ∗ NC

Ap

using distress records collected over a period of 17 years. The 
minimisation of SSE as outlined earlier was used to estimate the 
two exponents. This minimisation procedure was applied to cal-
ibrate the predictive empirical model for the original pavement 
project and led to the estimation of the model exponents. The 
calibrated model was then used to predict the distress ratings 
for the same pavement project and provided very close agree-
ment between the observed and predicted distress ratings. The 
estimated two exponents can be used in the proposed empirical 
models to predict the transition probabilities for rehabilitated 
pavements provided they are related to the same pavement pro-
ject and exhibit similar performance trends.

4.  Life cycle cost

The life cycle costs associated with any pavement project typically 
include the initial construction cost (PIC), routine maintenance 
cost (PMC), major rehabilitation cost (PRC), and added vehicle 
operating cost due to work zone (PVOC). Equation (9) indicates 
that the net present value of the life cycle cost (PLC) is the sum of 
all these four costs in their present values. The initial construc-
tion cost is typically estimated based on local market prices for 
similar construction works. However, the other three cost items 
can be estimated as explained in the subsequent subsections:
 

4.1.  Routine maintenance cost

Routine maintenance is frequently applied to pavements to 
maintain safe operating conditions and provide good pavement 
appearance; however it doesn’t add much to the pavement service 
life. It typically consists of crack sealing, pothole patching and 
localised surface treatments. The cost of routine maintenance 
greatly depends on the extent and severity of pavement distresses. 
Figure 2 provides an exponential model that relates annual 
routine maintenance cost to pavement distress rating with the 
corresponding exponential model presented in Equation (10). 
The data points used in developing this model are estimated to 
reflect local market prices. This model can be used to estimate 
the annual routine maintenance cost, AMC(k), as a function of 
the pavement distress rating at the kth transition, DR(k), to be 
obtained from the corresponding life cycle performance curve:
 

According to Equation (10), the routine maintenance cost is 
estimated as an annual amount using the unit of U.S. dollars per 
square metre of pavement surface ($/m2). However, Equation 
(10) has been developed based on current local market prices; 
therefore the net present value of routine maintenance cost, PMC, 
is simply the algebraic sum of all relevant annual routine main-
tenance costs considering an analysis period of (n) transitions 
as indicated by Equation (11):

 

4.2.  Major rehabilitation cost

Major rehabilitation cost is estimated similar to the initial con-
struction cost according to local market prices. It appears in 

(9)PLC = PIC + PMC + PRC + PVOC

(10)AMC(k) = 8.264e−0.034DR(k)

(11)PMC =

n∑
k=1

AMC(k)

Figure 2.  Annual routine maintenance cost as a function of pavement distress 
rating.
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rehabilitation cycle (AUCj) can be determined using the trape-
zoidal method defined in terms of the initial and terminal DR 
values (DRo,j and DRt,j), and remaining DR values:
 

where AUCj =
1

2

�
DRo,j + DRt,j + 2

�∑
Remaining DR values

��

6.  Sample presentation

In this section, a case study is presented to demonstrate the use 
of the proposed two empirical Markovian-based models for 
predicting the future performance of rehabilitated pavement. 
In particular, the life cycle performance curves are developed 
for 3 M&R plans with equal analysis periods comprised of 20 
transitions and 1-year transition length. The presented P/C ratio 
is used to evaluate the effectiveness of the three M&R plans under 
consideration.

6.1.  Basic data and background

The case study to be presented is related to four-lane urban 
arterial located in the city of Nablus, West Bank, Palestine. The 
arterial pavement consists of 13 cm (5 in.) asphalt concrete on top 
of 50 cm (20 in.) aggregate base designed to withstand 5-million 
18k (80kN) ESAL applications. It currently carries about 25,000 
vpd average daily traffic with about 4% average annual traffic 
growth rate. The distress ratings were annually collected for 
this arterial since its reconstruction in 1998. Abaza (2016a) 
applied the collected distress ratings to estimate the staged-
homogenous deterioration transition probabilities, P(k)i,i+1, 
associated with the original pavement structure as provided in 
Tables 1 and 2 deploying five-year equal staged-time periods. 
Abaza (2016a) mainly focused on estimating the initial and 
terminal deterioration transition probabilities, P(k)1,2 & P(k)9,10, 
considering a Markov chain with 10 condition states (m).

In another study, Abaza (2015) used an empirical model and 
the same collected distress ratings to predict the initial and termi-
nal non-homogenous deterioration transition probabilities with 
results provided in Table 3 for the first 10 transitions. Based on 
the estimated transition probabilities from the two studies, two 
distinct types of pavement performance were identified for the 

(16)ALC =

N∑
j=0

AUCjEquation (13) can yield a good estimate of the added vehicle 
operating cost provided that ADTaff and VOCadd are both reason-
ably estimated from conducting relevant field assessments during 
similar performed lane closures. In particular, the observed aver-
age delay time per vehicle during a typical lane closure can be 
converted to an estimated equivalent monetary value. The added 
user cost due to delay time cost can also be added to the pave-
ment life cycle cost. The future values of added vehicle operating 
cost (FVOCj) associated with (N) rehabilitation cycles can then 
be converted to an equivalent present value (PVOC) as follows:

 

5.  Life cycle P/C ratio

The effectiveness of a long-term M&R plan for a particular pave-
ment project can be evaluated using the P/C ratio as presented 
in Equation (15). The long-term performance (P) of a pavement 
project can be defined in terms of the area falling under the life 
cycle performance curve (ALC), which is the area falling under the 
typical curve shown in Figure 1 (Abaza & Murad, 2009; Huang, 
2004). The life cycle cost (C) is the same net present value (PLC) 
defined in Equation (9). The major advantage of using the (P/C) 
ratio is to evaluate potential long-term M&R plans with the most 
effective M&R plan is the one associated with the highest (P/C) 
value. The life cycle cost can be determined in terms of the net 
present value provided that all M&R plans are associated with 
equal analysis periods; otherwise, the equivalent annual payment 
method has to be used:
 

The area falling under the typical life cycle performance curve 
shown in Figure 1 can be calculated as indicated by Equation 
(16) using the curve ordinate values, DR(k). The partial curve 
area under either the original pavement (AUC0) or the jth 

where Ap = 1000 ∗ WL ∗ NL ∗ LP

NC =
NL × LP

LR

(14)PVOC =

N∑
j=1

FVOCj

(1 + i)nj

(15)
Performance

Cost
=

P

C
=

ALC

PLC

Table 1. Sample initial and terminal staged-homogenous transition probabilities for rehabilitated pavement with increasingly higher deterioration rates.

aNot applicable.
bLoad applications associated with rehabilitated pavement, ∆WRj.
cStaged-homogenous transition probabilities, P(j), associated with original pavement as obtained from reference Abaza (2016a).

N J Cj Service time (years) ∆Wj × 10
6 PR(j)1,2 PR(j)9,10

0 1 1.00 0–5 .909 (.182)c (.384)c

2 1.65 5–10 1.106 (.300) (.634)
3 1.95 10–15 1.346 (.355) (.749)
4 2.45 15–20 1.638 (.446) (1.000)

1 (Ns = 2) 1 1.00 0–5 .909 (.182) (.384)
2 1.65 5–10 1.106 (.300) (.634)
1 –a 10–15 (1.346)b .315 .665
2 – 15–20 (1.638) .520 1.000

3 (Ns = 1) 1 1.00 0–5 .909 (.182) (.384)
1 – 5–10 (1.106) .240 .505
2 – 10–15 (1.346) .315 .665

3 – 15–20 (1.638) .415 .876
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the do-nothing alternative (N = 0) with 20-year service time, 
the second one involves one rehabilitation cycle (N = 1) with 
10-year service time, and the third one includes three rehabili-
tation cycles (N = 3) spaced at equal 5-year service times (∆n). 
The service time (∆n), associated with all deployed rehabilitation 
cycles, consists of an integer number of the staged-time periods 
(Ns) each comprised of 5 years.

The traffic load applications (∆Wj) associated with each 
staged-time period as provided in Tables 1 and 2 are mainly 
used in the application of Equation (5) as the structural capac-
ity associated with rehabilitated pavement is assumed to remain 
similar to that of the original pavement. The traffic load appli-
cations (∆Wj) are computed based on 5-million design ESAL, 

sample project under consideration, namely increasingly higher 
deterioration rates as depicted in Figure 3(a), and decreasingly 
lower deterioration rates as shown in Figure 4(a). In both the 
studies, Abaza (2015, 2016a) used a linear approach to estimate 
the remaining deterioration transition probabilities as presented 
in Equations (17) and (18) for performances with increasingly 
higher and decreasingly lower deterioration rates, respectively, 
making use of only the initial and terminal values:

 

where P(k)1,2 < P(k)2,3 < P(k)3,4 < … < P(k)m−1,m 

where P(k)1,2 > P(k)2,3 > P(k)3,4 > … > P(k)m−1,m

6.2.  Sample pavement life cycle performance curves

The initial and terminal deterioration transition probabilities for 
the rehabilitated pavement structure, PR(j)1,2 and PR(j)9,10, have 
been predicted using Equation (5) as applicable to the staged- 
homogenous Markov model. The corresponding results are pro-
vided in Tables 1 and 2 for the cases of increasingly higher and 
decreasingly lower deterioration rates, respectively. Each table 
shows 3 distinct M&R plans with the first one representing 

(17)
P(k)

i,i+1 = P(k)
1,2

+ (i − 1)

(
P(k)

m−1,m − P(k)
1,2

m − 2

)

(i = 2, 3,… ,m − 2)

(18)P(k)
i,i+1 = P(k)

1,2
− (i − 1)

(
P(k)

1,2
− P(k)

m−1,m

m − 2

)

(i = 2, 3,… ,m − 2)

Table 2. Sample initial and terminal staged-homogenous transition probabilities for rehabilitated pavement with decreasingly lower deterioration rates.

aNot applicable.
bLoad applications associated with rehabilitated pavement, ∆WRj.
cStaged-homogenous transition probabilities, P(j), associated with original pavement as obtained from reference Abaza (2016a).

N j Cj Service time (years) ∆Wj × 10
6 PR(j)1,2 PR(j)9,10

0 1 1.00 0–5 .909 (.650)c (.180)c

2 1.25 5–10 1.106 (.812) (.225)
3 1.50 10–15 1.346 (.975) (.270)
4 1.75 15–20 1.638 (1.000) (.315)

1 (Ns = 2) 1 1.00 0–5 .909 (.650) (.180)
2 1.25 5–10 1.106 (.812) (.225)
1 –a 10–15 (1.346)b .856 .237
2 – 15–20 (1.638) 1.000 .296

3 (Ns = 1) 1 1.00 0–5 .909 (.650) (.180)
1 – 5–10 (1.106) .746 .206
2 – 10–15 (1.346) .856 .237

3 – 15–20 (1.638) .982 .272

Table 3. Sample initial and terminal non-homogenous transition probabilities for pavement with one rehabilitation cycle (N = 1, n1 = 10, j = n1 + k).

aNon-homogenous transition probabilities, P(k), associated with original pavement as obtained from reference Abaza (2015).

Transition number (k)

Increasingly higher deterioration rates Decreasingly lower deterioration rates

P(k)1,2 P(k)9,10 PR(j)1,2 PR(j)9,10 P(k)1,2 P(k)9,10 PR(j)1,2 PR(j)9,10

1 .182a .384a .315 .665 .650a .180a .855 .237
2 .197 .416 .341 .720 .674 .187 .887 .246
3 .208 .439 .360 .760 .692 .192 .911 .253
4 .220 .464 .381 .803 .712 .197 .937 .259
5 .233 .491 .403 .850 .732 .203 .963 .267
6 .246 .519 .426 .899 .752 .208 .990 .274
7 .260 .548 .450 .949 .773 .214 1.000 .282
8 .275 .580 .476 1.000 .795 .220 1.000 .290
9 .290 .613 .502 1.000 .817 .226 1.000 .297
10 .307 .648 .532 1.000 .840 .233 1.000 .307

Figure 3a.  Sample life cycle performance curve generated using staged-
homogenous Markov chain for increasingly higher deterioration rates without 
rehabilitation.
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life cycle performance curves presented in Figures (3) and (4) 
for the outlined two performance types and three M&R plans.

The empirical model defined in Equation (6) for predicting 
the non-homogenous transition probabilities has been also used 
to predict the relevant initial and terminal deterioration transi-
tion probabilities deploying one rehabilitation cycle with 10-year 
service time. Table 3 provides the corresponding results for the 
outlined two performance types with the traffic load factor com-
puted using Equation (8) and structural capacity remains similar 
to that of original pavement. The relevant life cycle performance 
curves have been developed as shown in Figure 5 for both types 
of pavement performance applying mainly Equations (1) and 
(4). The model exponent (A) has been assigned the values of 
(1.4 and .7) for the empirical models presented in Equations (5) 
and (6) considering increasingly higher and decreasingly lower 
deterioration rates, respectively. These two values were primar-
ily obtained from the calibration procedure performed for the 
same original pavement structure (Abaza, 2015), but couldn’t be 
estimated for rehabilitated pavement due to the lack of relevant 
historical distress records.

6.3.  Assessment of life cycle M&R plans using P/C ratio

The P/C ratio has been computed for the different M&R plans 
outlined in the previous subsection. The life cycle performance 

20-year analysis period (n) and 4% average annual traffic growth 
rate. The remaining staged-homogenous deterioration transition 
probabilities are linearly estimated as presented in Equations (17) 
and (18) using mainly the predicted initial and terminal values. 
The corresponding state probabilities, Si

(k), are predicted using 
the staged-homogenous Markov model indicated by Equation (3) 
with the corresponding distress ratings, DR(k), estimated using 
Equation (4). The estimated DR(k) are then used to develop the 

Figure 3b.  Sample life cycle performance curve generated using staged-
homogenous Markov chain for increasingly higher deterioration rates with one 
rehabilitation cycle (N = 1, Ns = 2, ∆n = 10 years).

Figure 3c.  Sample life cycle performance curve generated using staged-
homogenous Markov chain for increasingly higher deterioration rates with three 
rehabilitation cycles (N = 3, Ns = 1, ∆n = 5 years).

Figure 4a.  Sample life cycle performance curve generated using staged-
homogenous Markov chain for decreasingly lower deterioration rates without 
rehabilitation.

Figure 4b.  Sample life cycle performance curve generated using staged-
homogenous Markov chain for decreasingly lower deterioration rates with one 
rehabilitation cycle (N = 1, Ns = 2, ∆n = 10 years).

Figure 4c.  Sample life cycle performance curve generated using staged-
homogenous Markov chain for decreasingly lower deterioration rates with three 
rehabilitation cycles (N = 3, Ns = 1, ∆n = 5 years).
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coefficient, (a1), and modified layer coefficient, a1(n), at rehabil-
itation time (n). Equation (19) simply compensates for asphalt 
strength loss by first subtracting the milling thickness from the 
existing asphalt thickness and then multiplying the outcome by 
a strength reduction factor, which is defined as the ratio of the 
modified layer coefficient to the original layer coefficient. The 
modified layer coefficients are typically estimated from destruc-
tive/non-destructive testing of pavement (AASHTO, 1993):

 

 

Because the modified layer coefficients are not available for 
this sample project, it is proposed to use a strength reduction 
factor defined as the ratio of the distress rating, DR(n), at reha-
bilitation time (n) to the maximum distress rating (DRmax = 95). 
Therefore, Equation (20) has been used to estimate the over-
lay thickness associated with the rehabilitation plans shown in 
Figures 3–5. The overlay thicknesses associated with Figures 3(b) 
and 4(b) are estimated to be 7.5 and 10-cm considering 13-cm 
existing asphalt thickness (h1), 5-cm cold milling thickness (hm), 
and 66.94 and 40.18 distress ratings at 10-year rehabilitation 

(19)ho(n) = h1 −
[
h1 − hm(n)

]
×
a1(n)

a1
,

(20)ho(n) = h1 −
[
h1 − hm(n)

]
×
DR(n)

DRmax

(ALC) has been computed using Equation (16) based on the ordi-
nates, DR(k), of the presented life cycle performance curves. 
The life cycle cost (PLC) is computed using only routine main-
tenance cost (PMC), major rehabilitation cost (PRC), and added 
vehicle operating cost (PVOC). The initial construction cost has 
been excluded because it is the same for all investigated M&R 
plans. The routine maintenance cost has been computed using 
Equations (10) and (11) depending mainly on the distress ratings, 
DR(k), associated with the life cycle performance curves shown 
in Figures 3–5. Tables 4 and 5 provide the estimated routine 
maintenance cost, PMC, for the three M&R plans considering the 
case of staged-homogenous Markov model. It is to be reminded 
that routine maintenance is carried out annually but assumed not 
to add much to pavement performance or service life.

The presented life cycle performance curves have been devel-
oped under the assumption that the structural capacity associ-
ated with rehabilitated pavement is equal to the corresponding 
value for original pavement. This can be achieved by compen-
sating the existing asphalt layer for the strength loss it has only 
endured over time; thus, maintaining the same structural capac-
ity. The degradation of the aggregate base layer can be neglected 
as granular materials typically experience minor strength losses. 
Therefore, Equation (19) can be used to estimate the required 
overlay thickness, ho(n), as a function of the existing asphalt 
layer thickness, (h1), cold milling thickness, hm(n), original layer 

Table 4. Sample life cycle performance/cost (P/C) ratios for rehabilitated pavement with increasingly higher deterioration rates for staged-homogenous Markov chain.

Note: P = ALC, and C = PLC.

No. of rehab. 
cycles (N)

Routine maint. 
cost, PMC ($/m2)

Major rehab. 
cost, PRC ($/m2)

Add. veh. opt. 
cost, PVOC ($/m2)

Total cost, C ($/
m2)

Perf. (P) Perf./cost ratio 
(P/C)

Average distress 
rating (DRa)

0 35.01 0 0 35.01 1186 33.88 61.32
1 13.34 25 6.16 44.50 1654 37.17 78.31
3 8.60 33 9.24 50.84 1748 34.38 87.36

Table 5. Sample life cycle performance/cost (P/C) ratios for rehabilitated pavement with decreasingly lower deterioration rates for staged-homogenous Markov chain.

Note: P = ALC, and C = PLC.

No. of rehab. 
cycles (N)

Routine maint. 
cost, PMC ($/m2)

Major rehab. 
cost, PRC ($/m2)

Add. veh. opt. 
cost, PVOC ($/m2)

Total cost, C ($/
m2)

Perf. (P) Perf/cost ratio 
(P/C)

Average distress 
rating (DRa)

0 56.74 0 0 56.74 875 15.42 44.15
1 25.62 30 6.16 61.78 1254 20.30 62.92
3 14.12 45 9.24 68.36 1530 22.38 76.69

Figure 5a. Sample life cycle performance curve generated using non-homogenous 
Markov chain for increasingly higher deterioration rates with one rehabilitation 
cycle (N = 1, ∆n = 10 years).

Figure 5b. Sample life cycle performance curve generated using non-homogenous 
Markov chain for decreasingly higher deterioration rates with one rehabilitation 
cycle (N = 1, ∆n = 10 years).
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the staged-homogenous and non-homogenous 
transition probabilities for rehabilitated pavement 
performance are compatible. The same conclusion 
applies to Figures 5(b) and 4(b).

(5) � �  The terminal distress rating (DRt,j) for the jth reha-
bilitation cycle is lower than the corresponding value 
associated with the preceding cycle. This is true for 
all presented sample life cycle performance curves 
because of increased traffic load applications but 
structural capacity kept similar to that of original 
pavement. Nevertheless, the initial distress ratings 
(DRo,j) remained unchanged compared to the value 
associated with original pavement.

7.  Conclusions and recommendations

The presented case study has provided reasonable estimates 
of the future deterioration transition probabilities associated 
with rehabilitated pavement as applicable to both the staged-
homogenous and non-homogenous Markov models. The 
presented sample life cycle performance curves have reflected 
the expected pavement performance as related to the two 
typical deterioration trends, namely the increasingly higher 
and decreasingly lower deterioration rates. The results have also 
indicated that the proposed two empirical models for predicting 
the deterioration transition probabilities are quite compatible. 
The future deterioration transition probabilities for rehabilitated 
pavement have been estimated based on the corresponding values 
associated with original pavement. The deterioration transition 
probabilities associated with original pavement have been assumed 
to be part of the input data deployed in the presented case study. 
Abaza (2015) can be consulted for details on the non-homogenous 
transition probabilities for original pavement and, similarly, Abaza 
(2016a) for the staged-homogenous transition probabilities.

In this case study, the two exponents (A and B) associated with 
the proposed predictive empirical models have been assumed to 
take on the values as of those estimated for the empirical model 
associated with the same original pavement structure (Abaza, 
2015). This has proven to be a reasonable assumption since the 
predicted performances of rehabilitated pavement have exhibited 
trends similar to the ones associated with original pavement. 
However, the minimisation of SSE as outlined in Abaza (2015) 
can be used to obtain new estimates of the model exponents 
once adequate distress records become available for rehabilitated 
pavement. There are other simpler methods that can be used to 
estimate the model exponents with less distress data require-
ments and they are currently under investigation by the author. 
For example, one method mainly requires two consecutive cycles 
of distress assessment to be used in estimating one set of the 
transition probabilities for rehabilitated pavement. The predictive 
empirical models can then be searched for the best estimates 
of the two exponents provided all other relevant input data are 
available. The search will cover the expected exponent ranges and 
will terminate when both sides of the empirical model equations 
are very close in values. The two exponent ranges are typically 
(1–2) in the case of increasingly higher deterioration rate and 
(0–1) in the case of decreasingly lower deterioration rates. It 
is therefore recommended that the exponents be developed at 

time, respectively. Similarly, the overlay thicknesses for Figures 
3(c) and 4(c) are estimated to be 3.5 and 5.5-cm assuming 2-cm 
cold milling thickness, and 82.18 and 66.10 distress ratings at 
5-year rehabilitation time, respectively. The present values of the 
corresponding rehabilitation costs, PRC, as provided in Tables 4 
and 5 are estimated based on $2/m2 per centimetre of the total 
milling and overlay thickness. For example, $11/m2 is the present 
cost of one cycle of 2-cm cold milling and 3.5-cm overlay with 
a total present cost of $33/m2 for three cycles.

At advanced service times, pavement reconstruction is typ-
ically a potential alternative which mainly includes removal of 
the existing asphalt layer, thickness adjustment of aggregate base, 
and placement of new asphalt layer. In this case, the SN asso-
ciated with the new pavement structure can be estimated from 
summing the products of the new layer thicknesses and their 
corresponding layer coefficients (AASHTO 1993). The new SN 
can then be used in the presented predictive empirical models 
to represent the structural capacity of the rehabilitated pavement 
structure. Similarly, the original SN can denote the structural 
capacity of the original pavement structure.

The future added vehicle operating costs (FVOC) are computed 
using Equation (13) assuming 6 km road length (Lp), 4 lanes in both 
direction (NL), 18,000 veh affected average daily traffic (ADTaff), 
3.5 m lane width (W), $1.2/veh/lane closure added vehicle operating 
cost (VOCadd), and 1 and 2 lane-km rehabilitation production rates 
per lane closure (LR) for M&R plans with 1 and 3 rehabilitation 
cycles, respectively. The corresponding (FVOC) values are computed 
to be 6.16 and $3.08/m2 per cycle with results provided in Tables 4 
and 5. It is assumed that these values represent the present values 
(PVOC) as they are estimated based on current local market prices. 
The $1.2/veh/lane closure (VOCadd) is mainly estimated assuming 
10  min average delay time which is converted to an equivalent 
average fuel consumption cost. Tables 4 and 5 also provide the life 
cycle cost (C), performance (P), (P/C) ratios and average DR values.

Examination of Figures 3–5 reveals the following conclusions:

(1) � �  It is clearly cost-effective to apply M&R works than 
to do nothing as better pavement can be achieved at 
lower overall cost.

(2) � �  The 3 M&R plans associated with increasingly higher 
deterioration rates are clearly more cost-effective 
than the corresponding ones for decreasingly lower 
deterioration rates as they have yielded higher P/C 
ratios and average DR values. This can be attrib-
uted to lower areas under the life cycle performance 
curves and higher M&R costs in the case of decreas-
ingly lower deterioration rates as provided in Tables 
4 and 5.

(3) � �  The M&R plan associated with one rehabilitation 
cycle is the most cost-effective in the case of increas-
ingly higher deterioration rates as indicated by its 
highest P/C ratio shown in Figure 3(b). However, the 
M&R plan associated with three rehabilitation cycles 
is the most cost-effective in the case of decreasingly 
lower deterioration rates as depicted in Figure 4(c).

(4) � �  The M&R plan presented in Figure 5(a) has 
similar P/C ratio and average DR as for the one 
presented in Figure 3(a), which is an indication 
that both empirical models used to estimate 
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the project level but can be used to predict the performance of 
similar pavement projects.

The presented sample results have also indicated the 
effectiveness of the P/C ratio in evaluating different potential 
M&R plans. The sample life cycle performance curves are used 
to provide the life cycle performance as represented by the area 
falling under the curve. The life cycle performance curves can 
also be used to provide the best rehabilitation timings needed 
to schedule future major rehabilitation works. For example, 
rehabilitation schedule timings of 5 and 10  years have been 
mainly used in developing the presented sample life cycle 
performance curves. Therefore, it is recommended that life cycle 
performance curves be developed for different rehabilitation 
schedule timings, generally 5–10  years, and the best timing 
schedule is the one associated with the highest P/C ratio, which 
is also an indication of the best M&R plan. In this regards, it 
is recommended to use the empirical model that predicts the 
non-homogenous transition probabilities as it can easily deal 
with more flexible rehabilitation timing schedules. It is also 
recommended that the structural capacity for rehabilitated 
pavement be greater than the corresponding value associated 
with original pavement, which is needed to counterbalance the 
impact of increased traffic load applications and maintain at 
least similar deterioration rates as those associated with original 
pavement.
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