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Abstract 
 An early Model-based fault detection was developed and presented in the 

basis of WT’s power curve to detect the degradation (faults) in gear box 

efficiency, resulted from the existing mechanical losses (torque losses) 

through the low-speed shaft(LSS) and the high-speed shaft (HSS), then to 

assist in implementing predictive maintenance. The detection was performed 

on two levels; the first level represents a slight and progressive degradation 

in the gear box efficiency, and the other one represents a radical (abrupt) 

degradation in the efficiency. Artificial SCADA data for different measure-

ments (wind speed and active power) in both, fault free and faulty operating 

modes were generated using FAST-NREL simulator. Two WT power curves’ 

parameters were estimated; the first one through Least Squares algorithm, 

and the second one using non-linear optimization through unconstrained 

function minimization, then power residuals were generated from each power 

point. Finally, on-line CUSUM statistical change detection algorithm was 

used to evaluate and detect small changes in power residuals generated from 

the first model. The presented fault detection system successfully detected 

faults in both detection levels under realistic wind turbulence, and with fault 

magnitude of 2% efficiency degradation for the progressive degradation level.  
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Chapter 1  

Introduction 

1.1 Background 

  Currently, wind energy is one of the main renewable energy sources that 

are used to generate electrical power. This energy source plays a key role of 

reducing the harmful effects of electrical power generation traditional meth-

ods such as, using fossil fuels, coal and natural gas which are the main re-

sponsible of global warming and the radical increase of the atmospheric car-

bon dioxide (CO2) levels [1]. 

Electricity generation from the wind using wind turbines is considered as 

one of the cleanest, environmentally friendly electricity generation methods, 

accepted by the society, and has economical competitive advantages. The 

efficiency of the generated power from wind turbine (WT) could be increased 

through controlling the wind turbine’s operations according to the infor-

mation related to wind state changes and the turbine location [2].  

1.2 Wind Turbines (Wind Energy Conversion Systems) 

Since the wind energy is considered as the most preferred renewable and 

clean energy source, this encourages and boosts the growth of wind farms 

especially for electricity generation [3]. The wind energy conversion system 

is known as Wind Turbine. A wind turbine can be defined as “a rotating 
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mechanical device that converts wind kinetic energy to practical mechanical 

energy, resulting in electricity production” [4]. 

Wind turbine has two common types; horizontal axis wind turbines 

(HAWT) and vertical axis wind turbines (VAWT) [5,6]. 

 

Figure 1:  HAWT & VAWT [6] 

Nowadays, the most common used design is HAWT for which the axis of 

rotation is parallel to ground surface. As shown in figure above, the main 

components of the wind turbine consist of rotor, drive train, nacelle, blades, 

yaw actuator, shafts, generator, tower, gearbox and control system. Main 

components and their functions are defined briefly below [7,8,9].  

• Rotor  

The rotor includes the hub and blades of WT. Following aerody-

namic principles; the blades coverts the kinetic energy of the wind 

into mechanical rotational energy. 
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• Drive Train  

The drive train consists of all rotating parts of the WT behind the 

rotor, such as, low speed shaft, gearbox and high speed shaft. Also, 

it has other components such as, the support bearings, braking sys-

tem and other rotating parts in the generator. 

• Gearbox 

Located in the drive train and used to transform the low speed-

high torque rotational energy from the hub into high speed – low 

torque to the generator.  

• Generator  

The generator of the WT is situated after the gearbox; it transforms 

high speed rotational energy coming from the high-speed shaft of 

the gearbox into electrical energy to be used then directly or dis-

patched to the central grid. Different types of generators are used 

in WTs; the common used types are synchronous generators and 

single or double fed asynchronous generators.  

• Nacelle 

The WT’s nacelle is the cover (main frame) which houses all com-

ponents in a wind turbine, including the generator, drive train, 

gearbox and the brakes. 

• Yaw system  

Also, called yaw orientation system; used to keep rotor shaft 

properly aligned with the variable direction of winds. 
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• Tower and foundation  

The common used types of WT’s tower design are “the free-stand-

ing types using steel tubes, lattice towers, and concrete towers”. 

The most important system dynamics factor which needs to be 

considered in the tower design is stiffness of the tower due to the 

possibility of occurring coupled vibrations between the tower body 

and the WT’s rotor.  

• Control system  

The main function of the WT’s control system is to supervise and 

support the control of WT in all operating modes. For instance, it 

controls the pitch system to maximize the generated power and 

many other control processes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.HAWT Main Components [8]. 
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To sum up the wind energy conversion process, it could be illustrated as 

the following; wind energy transformed into mechanical energy through WT 

rotor, then, the mechanical energy will be transmitted to the generator 

through the drive train (shafts, gearbox ...) to be transformed into electrical 

energy [10]. 

1.3 Condition Monitoring of WTs 

The possible failures which could happen to wind turbines, depend on 

either momentary events or the age of wind turbine components and their 

related failures. These failures lead to system interruption and huge econom-

ical losses as a result [7]. 

The rapid growth of wind energy market in the last few years has drawn 

attention of researchers to focus on operations and maintenance (O&M) 

costs of wind turbine, especially off-shore wind turbines, which account for 

approximately 25-30% of the overall cost of energy generations [11]. 

Condition monitoring systems or “health monitoring systems” play a key 

role in condition-based maintenance (CBM), also called predictive mainte-

nance, which leads to reduce the costs of faults correction and increase the 

work performance of any device [10]. 

Fault Detection and Isolation (FDI) is an important topic in industrial 

processes because of the high competitiveness between the industrial com-

panies and the increased demand of reliable and safe products along with 

high quality characteristics [12]. FDI systems provides early warnings when 

the small faults occur to prevent each single fault to make a failure on the 

entire system level. Moreover, the coherent system of fault diagnosis must 
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include not only the detection of faults, but also isolate and identify the type 

of these faults and its severity levels on the whole system [10]. 

1.4 Condition Monitoring of WTs using SCADA data 

The supervisory control and data acquisition (SCADA) system, is an im-

portant part of wind turbines process condition monitoring systems, which 

can provide a wide scale of measurements such as, temperatures, wind speed, 

wind directions (as wind parameters), rotor speed, pitch angle and output 

power These parameters are widely used to monitor the health conditions of 

wind turbine farms. SCADA data is very preferable to be used in many 

researches to forecast the wind speed and wind power due to its high avail-

ability. Furthermore, the SCADA system records have comprehensive pro-

cess condition parameters of wind turbines which could be considered as 

fault informative parameters. Thus, fault detection in wind turbines using 

SCADA data is a cost-effective approach which leads to improve the relia-

bility of wind turbines and assisting in reducing the maintenance cost of 

wind turbine farms [11]. 

1.5 Motivation 

Today WTs are being used widely in on-shore and off-shore areas where 

the wind sources are available. There are too many challenges facing the 

access of WTs site, especially in offshore areas due to the lack of transpor-

tations and installation vehicles needed for the operation and maintenance 

processes of these giant WTs at these areas.  
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Most of the maintenance operations implemented on offshore wind tur-

bines are unplanned; mostly corrective maintenance operations. The costs of 

this type of maintenance are typically high. 

Due to these high unplanned maintenance costs, CBM or predictive 

maintenance, is needed to be implemented to reduce all associated costs of 

any failure occurs, in addition to reduce the large down times associated 

with the unplanned maintenance operations compared with predictive 

maintenance operations. This could help in lowering the costs of wind en-

ergy, which is the main challenge of this industry. 

One of the best solutions to enable predictive maintenance system in wind 

turbines is through an early FDI system using Supervisory Control and Data 

Acquisition (SCADA). Due to the high availability of these data, based fault 

detection processes would be applicable to be implemented on a large num-

ber of wind turbines. 

1.6 Key Objectives 

The main goal of this thesis is to develop an early model-based fault de-

tection and to monitor the performance degradation of WT (faults through 

the Gear Box) in the basis of the WT’s power curve, using artificial (simu-

lated) SCADA data (typically sampled at low frequency: from 30 s to 10 

minutes).This performance degradation (power loss) is typically due to the 

degradation in Gear Box Efficiency (GBoxEff) resulted from the existing 

mechanical losses (torque losses) through the low speed shaft(LSS) and the 

high speed shaft (HSS). 
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It’s worth mentioning that, the power loss or performance degradation 

could be affected by other factors rather than the GBoxEff, but in this re-

search we focused on study the effect of degradation in the GBoxEff on the 

performance of the WT, in addition to the ease of simulating the degradation 

in GBoxEff. 

The specific objectives of the research work are described as : 

• To generate realistic “artificial SCADA Data” for measurements (i.e. 

wind speed and active power) in both fault free (GBoxEff=100%) and 

faulty (GBoxEff=99,98,97 & 90%) operating modes using the wind 

turbine simulator based on Aerodyn-FAST software from NREL, 

• To estimate system’s model and parameters using systematic mathe-

matical and statistical procedures. 

• To apply an on-line CUSUM statistical change detection algorithm 

to detect and localize small changes (degradation) in performance on 

two levels; the first level represents a slight and progressive degrada-

tion in the gear box efficiency (100-99-98-97%), and the other one 

represents a radical (abrupt) degradation in the efficiency (100-90%). 
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Chapter 2  

Simulation of Wind Turbines  

2.1  Introduction 

Constructing condition monitoring system based on WT’s power curve 

requires SCADA data measurements supported with well-documented 

maintenance information for both fault free and faulty operational condi-

tions. 

Real SCADA data measurements is not easy to be obtained; the wind 

turbine simulator based on Aerodyn-FAST software from NREL was used 

to generate artificial SCADA data for different measurements (i.e. wind 

speed and active power). The inputs of the wind simulator “TurbSim” are 

the wind environment, which is used as inputs for Aerodyn-FAST, and the 

final outputs are the “Artificial SCADA data” (wind speed and active power) 

in both fault free and faulty operating modes, which will be used later to 

construct the wind turbine power curve model and to generate power resid-

uals to detects small changes (faults / performance degradation) using an 

appropriate algorithm. 

It’s worth mentioning that, some adjustments on TurbSim and Aerodyn-

FAST MATLAB codes were applied in order to simulate and generate more 

than one single SCADA data point (i.e. 1000 point per single GBoxEff per-

centage). 
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2.2 Wind Turbine Aerodynamic (Wind Environment) 

2.2.1    Energy in Wind 

Understanding the wind environment is a very important factor to analyze 

WTs, since the wind is considered the main energy source for the WTs [13]. 

This could be explained by the relationship derived from the kinetic energy 

between wind speed u and the energy E existing in wind. 

 

 ! = 12 "#$%3 (1) 

Where in our case; A is the perpendicular area to the wind direction, ρ is 

air density (1.225 kg/m3) and t is time interval. Thus, the importance of 

understanding wind characteristics resulted from the cubic relationship be-

tween wind speed u and wind energy E. Such knowledge in those character-

istics are important for many relevant topics such as, WT’s design, WT’s 

performance analysis, the work mechanism and operations of WTs [14].  

2.2.2    Wind Speed Patterns 

Wind speed is typically difficult to be predicted due to the high time and 

space variability of wind, thus wind is analyzed by an appropriate probabil-

istic tool. Wind speed spectrum is the best tool to depict wind speed patterns 

(see figure below). 

The high values of the spectrum (the peaks) represent a significant change 

in wind speed over the corresponding time period. 
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Figure 3: Wind Speed Spectrum [16] 

The spectrum is mainly divided into two peak regions, the first one is the 

low-frequency peak which depicts the variation of the mean wind speed, and 

the second one is the high-frequency peak which depicts the turbulence [15]. 

These patterns (regions) are important for yield estimations, and for fore-

casting of wind power output. 

 

2.2.3     Wind Speed Variations  

2.2.3.1   Long-term wind variations 

Due to the difficulty of predicting the annual wind speed, variations during 

the year can be characterized using probability density function.  According 

to [16], it has been proven that the Weibull Probability Density Function 

(PDF) is effective to represent the mean wind speed for a full year. 

p(U) is the Weibull probability density function with shape factor k and 

scale factor c. This gives the probability of occurrence of wind speed (U). 
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 ( ) = *+ )+ (,−1) /0( − )+ ,
 (2) 

 

The dimensionless shape factor reflects the influence of the topography on 

wind speeds and ranges between 1.2 (mountains) to 4.0 (monsoon regions). 

The scale factor A is roughly 125% of the average annual wind speed [16].  

The Cumulative Distribution Function(CDF) F(U) can be calculated from 

p(U) to define the probability of the wind speed lower than U. 

 

 1 ) = 1 − /0( − )+ ,
 (3) 

According to the International Electrotechnical Commission (IEC) stand-

ards; for normal wind condition and the shape factor of the k=2, Rayleigh 

distribution is to be assumed here which is a particular case of Weibull dis-

tribution, thus, the scale factor c = 2Uavgπ  where Uavg is the expected value of 

the wind speed for the distribution. 

 !"#$ = !& ! '!
(

)
	 (4) 

 

Thus, the PDF p(U) and the CDF F(U) become: 

 

 & ! =
+
2

!
!"#$-

.

	/0& −
+
4

!
!"#$

-

	 (5) 

 

 3 ! = 1 − /0& −
+
4

!
!"#$

-

	 (6) 
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2.2.3.2    Short-term wind variations 

The instantaneous wind speed u(t) is characterized by a short-term mean 

wind speed Ust and its turbulence fluctuation value with a zero mean u(t) 
 

 5 6 = !78 + 5(6)		 (7) 

 

Ust is the mean wind speed averaged over a time period longer than the 

characteristic time of the turbulence, the time period T is usually chosen to 

be 10 minutes [14]. 

 

 !78 =
1
<
	 5 6 '6

=

)

	 (8) 

 

Turbulence could be defined as a fluctuation in the wind speed within a 

very short time scale and caused from the friction with the earth’s surface 

and the thermal effects acting on the air. Turbulence cannot be represented 

in terms of deterministic equations. Thus, it could be measured by turbu-

lence intensity ‘‘I’’, which expressed in percent, (I) could be defined directly 

using standard IEC categories of turbulence characteristics. It’s also possible 

to specify the turbulence intensity in percent instead of choosing the turbu-

lence categories.  
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2.2.4    Normal Wind Profile Model 

Variation of wind speed u is depicted through the wind profile U (z) as a 

function of height z. Following the IEC standard for WT design; the varia-

tion of wind speed u with the height z assumed to follow a power law model 

as the following: 

 

 ) 8 = ) 8ℎ:; 8)(8ℎ:<) =
 (9) 

 

Where α= Power Law Exp (PLExp) is assumed to be 0.3 according to 

IEC standard and z is the height above ground level (reference height) [17].  

 

2.2.5   IEC Wind Turbine Classes 

WT’s site location plays a major role in the design process. WT needs to 

be designed for optimal performance and reliability through different 

weather conditions. 

Four different classes of wind turbines are defined in IEC (61400-1: 2005) 

standard to suit different weather conditions including, high, medium, low 

and very low wind according to the reference wind speed Uref. Also, wind 

turbulence is another parameter used to define wind classes. The combina-

tion of the two aforementioned parameters defines the class of the WT [17]. 

These input parameters are used only if the spectral model is IECKAI 

(Kaimal) or IECVKM (Von Karmal). 
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Table 1: IEC Wind Classes and turbulence intensity parameters [17] 

Wind 

Speed 

Classes 

I           

(High Wind) 

II              

(Medium Wind) 

III          

(Low Wind) 

IV                

(Very Low Wind) 

Uref (m/s) 50 42.5 37.5 30 

Uavg (m/s) 10 8.5 7.5 6 

Iref 

A 0.16 

B 0.14 

C 0.12 

 

Where: 

Rayleigh distribution is assumed, i.e. k = 2.  

Uavg is the annual mean wind speed at hub height; Uref is the 50-year ex-

treme wind speed over 10 minutes; V50, Iref is the mean turbulence intensity 

at 15 m/s.  

A, B and C are the categories of higher, medium and lower Turbulence 

Intensity (I) characteristics respectively. 

To sum up, the pre-illustrated wind environment theories represent the 

basis of the WT simulation process, since the wind environment is the main 

input parameters of the wind simulator “TurbSim” to generate the hub 

height files to be used then to conduct the mechanical behavior simulation 

of the WT using AeroDyn and FAST software as discussed below. 
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2.3 The Wind Turbine Simulator 

The wind turbine simulator used in this research consisted of a set of codes 

which were developed by NREL. For example, the AeroDyn code conducts 

aerodynamic calculations while FAST code conducting the aeroelastic simu-

lation. Both together simulate the wind turbine’s mechanical behavior. 

The control scheme of all operations of wind turbine has been added to 

the aforementioned two codes through SIMULINK in MATLAB (see appen-

dix I). 

The needed wind input files to AeroDyn and FAST codes were modeled 

and generated through TurbSim software depending on the required input 

parameters such as, mean wind speed ad turbulence intensity. 

All the above-mentioned codes are illustrated below briefly. 

 

2.3.1    NREL Design Codes 

2.3.1.1   TurbSim 

TurbSim is a” stochastic, full-field, turbulent-wind simulator”. TurbSim 

simulates numerically time series of 3D wind velocity vectors through differ-

ent points located in a vertical rectangular grid. The resulted files with an 

extension of “.hh” (see appendix II) can be used then as input files for other 

codes such as FAST – AeroDyn simulator to model the behavior of the wind 

turbine for turbulent winds [18] . 

 
2.3.1.2   AeroDyn 

AeroDyn is “a time-domain wind turbine aerodynamics module that has 

been coupled into the FAST to enable aero-elastic simulation of horizontal 
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axis wind turbines” [19]. It can compute the forces acting on the different 

elements of the WT’s blades for each step time after defining these elements 

along with their geometries. 

2.3.1.3   FAST 

Fatigue, Aerodynamics, Structures, and Turbulence (FAST) is “An aero-

elastic computer-aided engineering tool (CAE) for horizontal axis wind tur-

bines” [20]. FAST was developed by the researchers of the National Renew-

able Energy Lab (NREL) at the USA, and it’s considered as the primary 

CAE tools in the lab, which used for simulating the coupled dynamic re-

sponse of WTs. Using FAST, we can conduct analysis for wide range of 

WTs’ configurations such as, 3 blades HAWT, pitch or stall regulation, up-

wind or downwind rotor, and lattice or tubular tower. Also, we can model 

on-shore or off-shore WTs. It’s worth mentioning that FAST relies on ad-

vanced engineering models; these models were derived from fundamental 

laws, but with appropriate simplifications and assumptions [20]. 

Refer to appendices III and IV to see samples from FAST input files. 

 

Detailed information about TurbSim, FAST and Aerodyn is available on: 

http://www.nrel.gov  

2.4 Simulation Basic Characteristics 

In order to perform the simulation process, meteorological and control 

characteristics were set as illustrated in sections 2.4.1 and 2.4.2 below. 
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2.4.1   Simulation Meteorological Conditions 

 
Table below shows the used simulation meteorological conditions. 

Table 2: Simulation Meteorological Conditions 

Meteorological Conditions 

Turbulence Model IECVKM=Kaimal 

IEC standard 1-ED2 

Turbulence intensity percent 10-20 % 

Wind profile type Normal 

Height of reference wind speed 84.672 m 

Mean of the wind speed at the ref-

erence height 
2-18 m/s 

Power law exponent 0.3 

 
 
2.4.2    Simulation Control Characteristics  

Table below shows the main simulation control characteristics used in this 

research. 

Table 3: Simulation Control Main Characteristics 

 
 
 
 
 
 
 
 
 
 

Simulation Control 

Total Run time 12 minutes 

Module step time 0.005 s 

Sampling Frequency 200 Hz 
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Chapter 3  

Artificial SCADA Data Generation 

3.1 Introduction 

In this chapter, the characteristics of the simulated DeWindD6 WT will 

be presented, and the process of generating SCADA data (measurements) 

required to construct the WT’s power curve in fault free and faulty operating 

modes will be presented as well. WT’s fault free (healthy) operating mode 

in this research means that the WT is assumed to be operated with no me-

chanical losses (torque losses) being transmitted through the gearbox, thus 

the GBoxEff (gearbox efficiency) was set to 100%, and to simulate losses 

(the faulty operating mode) the WT assumed to be operated with mechani-

cal losses (torque losses) being transmitted through the gearbox if the GBox-

Eff is less than 100%, thus the GBoxEff was set to 99,98,97 & 90% in order 

to detect slight and progressive degradation in efficiency (100-99-98-97% re-

spectively) and radical degradation in efficiency (100-90% at once).  

When generating power, FAST will multiply the LSS torque by the effi-

ciency and divide by the gearbox ratio to determine HSS torque. When mo-

toring, FAST will multiply the HSS torque by the efficiency and gearbox 

ratio to compute the torque on the LSS [20]. 
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3.2 Wind Turbine Characteristics 

3.2.1   DeWindD6 Technical Characteristics 

The simulated wind turbine in this research is from the type of 

“DeWindD6” with 1250 kW rated electrical power. Table below shows the 

main characteristics of this WT [21].  

Table 4: Main Characteristics of DeWindD6 WT [21] 

DeWindD6 Wind Turbine Model Specifications 

Hub Height 84.672 m (Typically 68-91.5 m) 

Rotor Diameter 64 m 

Grid height 80 m 

Grid width 80 m 

Total height 123.5 m 

No. Of blades 3 blades 

Blade length 31 m 

Swept area 3217 m2 

Cut-in wind speed 2.8 m/s 

Nominal wind speed 12.5 m/s 

Cut-out wind speed 23 m/s 

Nominal rotational speed ~ 21.1 rpm 

Rotational speed range ~ 13.2 – 24.5 m/s 

Generator Induction, doubly fed 

Grid frequencies 50 Hz 

Rated voltage 690 V 

Nominal Current 1046 A 
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Full technical characteristics of DeWindD6 wind turbine available at: 

http://www.mywindpowersystem.com/usedwindturbines/wp-content/up-

loads/2015/06/DeWind_D6_Brochure.pdf  

 

3.2.2   DeWindD6 Power Curve Characteristics 

Power output of the WT can be depicted through the power curve as a 

function of wind speed.  

 

 

Figure 4: Nominal Power Curve of DeWindD6 WT [21] 

The power curve of DeWindD6 WT is illustrated in the figure above which 

depicts the power curve of DeWindD6 WT which feature three key wind 

speeds [21]: 
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1. Cut-in wind speed: The wind speed at which the WT starts generat-

ing power. 

2. Nominal wind speed: The wind speed at which the WT reaches the 

nominal power output, knowing that it is possible to generate higher 

power output above the nominal wind speed, but a control system is 

exist to maintain a constant power in order to limit loads and stresses 

on WT’s blades. 

3. Cut-out wind speed: The highest wind speed which the WT can op-

erate at. The WT will stop if the wind speed exceeds the cut-out 

wind speed to prevent damage to WT’s blades. 

 

The different operating regions are, the maximum power point tracking 

(MPPT) region (A), transition region (B), power limitation or constant 

power region (C) and the soft storm transition region (D). 

When the WT operates under variable speed, a control unit will control 

the rotor speed in order to maximize the output power and minimize the 

torque of loads. To reach the maximum level of electrical power production, 

the best way is to change the turbine speed with respect to wind speed to 

produce a maintained speed ratio to keep power at maximum. When the 

wind speed is in regions (A & B), to reach the maximum power, the rotor 

speed should be adjusted and maintained by the control unit. While when 

the wind speed is in region (C), the power output is maintained constant by 

controlling the bitch angle of the WT’s blades [22].    
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3.3 Electrical Power Generation from WTs 

The power generated from WTs is often represented by the WT’s power 

curve. The relationship between the wind speed and the generated power is 

given by [23]. 

 

 ? = 12 "$@A B3 (10) 

 

where p is the power, ρ is the air density in kg/m3, A is the rotor area	 

in m2, w is the wind speed and Cp is the power coefficient. The maximum 

value of power coefficient is known as Betz limit = 0.593, but in real WTs 

this value is not achievable and the maximum value is normally around 0.5. 

Moreover, the power coefficient can be obtained from the WT’s manufac-

turer data. 

 
 The power curve of WT could be presented as the following: 

 

 ? B = 0, B < BC((B), BC ≤ B ≤ BE?E, BE < B ≤ B10, B > B1  (11) 

 

where w0 is the cut-in wind speed =2.8 m/s and w1 is the cut-out wind 

speed=23 m/s, respectively. Also, wr is the nominal wind speed=12.5 

m/s, Pr is the rated power, and ((B) is the non-linear relationship between 

power and wind speed, see figure 4 above. 



 24 

The shape of the non-linear region is related to the control strategy of 

extracting as much as possible power from the subjected wind. 

Equation (11) was presented using two different estimated models as il-

lustrated in sections 4.3.5 and 4.3.6 below.  

3.4 Power Curve Construction 

For each simulated measurement; the scalar average wind speed (w) and 

the output power (p) were calculated according to equation (14) below.  

 

 >? =
1
@

>A

B

ACD

 (12) 

 
  Where (wF) is the wind speed generated by the simulator with step time 

0.005 seconds. Same procedures were used to calculate the corresponding 

output power (p). 
The resulted mean wind speed (>?) is a 10 minutes’ average wind speed 

out of 12 minutes’ total run time, where the first two minutes were assumed 

representing the transient time of the generated measurements; correspond-

ing (suspicious) data were eliminated.  

The power curve consists of primarily two input variables: wind speed and 

power output. Using FAST-AeroDyn simulator from NREL, and following 

the simulation characteristics of DeWindD6 WT presented in section 2.4, 

raw artificial SCADA data measurements (active power), typically sampled 

at low frequency: from 30 s to 10 minutes were generated along with wind 

speed required to construct the power curve. 
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According to IEC 61400-12-1 standard, the wind speed of the power curve 

is “the undisturbed free-stream wind speed at hub height, normalized for a 

certain air density” [17]. Once the simulation process was complete, 10 

minutes’ averages of wind speed and active power were generated for, j: 

number of measured artificial SCADA data =1000 points per measurment 

for each single GBoxEff percentage. 

Figure 5 below depicts a sample scatter plot of wind speed characterized 

by mean wind speed and turbulence intensity against active power output 

(i.e., the power curve) for both fault free (GBoxEff=100%) and faulty oper-

ating modes (i.e., GBoxEff=90%). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Sample of Power Curve’s scatter plot from raw SCADA data for 

fault free and faulty operating modes 
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Chapter 4  

Fault Detection in WTs: Model and Analysis  

4.1 Introduction 

Most of research papers focused on Condition Monitoring Systems (CMS) 

tools to diagnose faults and monitor the health of wind turbines, which in-

cludes a “sensors, signal acquisition and processing software, cabling and 

installations that gives continuous information about the monitored compo-

nent condition” [4]. CMS is used in off-shore wind turbines especially, to 

monitor the components which are the most critical in the WT system such 

as, gear box, generator, rotor blades, yaw actuator …etc. [4]. One of the most 

commonly used CM techniques is Operations and Maintenance (O&M) tech-

niques for the turbine [24]. 

To determine the portion of each WT’s components out of the total num-

ber of failures occurred; Hahn et al. [25],reported a survey of 1500 WTs over 

a period of 15 years indicated that five component groups, “i.e., electrical 

system, control system, hydraulic system, sensors, and rotor blades” are re-

sponsible for 67.0 % of failures occur in wind turbines; figure below depicts 

the share of main components of the total number of failures. 
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Figure 6:Portion of WT main components out of the total number of fail-

ures [25] 

In order to illustrate the main CMS techniques of WTs existing in the 

literature, the main approaches of maintenance of WTs should be illustrated 

first. Hence, Tchakoua et al. [24]  illustrated that maintenance approaches 

in the WT industry can be mainly classified into three groups: 

• Reactive or corrective maintenance (run to failure);  

• Preventive maintenance (time-based);  

• Predictive maintenance (condition-based). 

The costs associated with each type of traditional maintenance are pre-

sented in Figure 8. 
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Figure 7:Maintenance Strategies’ Costs [24] 

In preventive maintenance, the prevention cost is high, while the repair 

cost is low due to the limited number of failures occurred. In reactive (cor-

rective) maintenance, a larger number of faults will occur; this leads to a 

high cost of repair and low cost of prevention. 

Predictive maintenance is a combination of preventive and reactive (cor-

rective) maintenance which also called (intelligent maintenance) can im-

prove the reliability, availability, and maintainability of wind turbines and 

reduce the maintenance costs as a result. 

Also through Tchakoua et al. [24],  a description of and models for CMSs 

which address maintenance techniques and methods was developed depend-

ing on other research works. Figure 3 below illustrates this description which 

indicated that, condition monitoring is performed through 3 steps:  

1- Data acquisition using sensors.  

2- Signal processing using various data processing techniques. 

3- Feature extraction via the retrieval of parameters. 
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Figure 8:CM and Maintenance in WTs [24] 

 

As shown in Figure 3above, CM was applied through 3 steps; using both: 

(i) current available information sources; and (ii) historical data obtained 

from a data base, these data indicate the failures occurred or predicted over 

a specific period of time. After the diagnostic process of the faults corrective 

maintenance is applied. 

If a fault is predicted, preventive maintenance is applied before the occur-

rence of the fault. In this case, four approaches can be used: time-based or 

scheduled maintenance, current-state based or conditional maintenance, pa-

rameter-projection-based or forecasting maintenance, and status-based or 

proactive (Predictive) maintenance. 
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4.2 Fault Detection in Wind Turbines Using 

SCADA data – Literature Review 

Many research works related to WTs’ Condition Monitoring (CM) systems 

and Fault Detection and Isolation (FDI) can be found in the literature using 

many data analysis and data mining techniques (models) such as, Fuzzy 

logic, Artificial Neural Network and many other techniques, some of these 

research works will be discussed below. 

In order to develop a WT’s CMS we need data to validate the model; in 

modern WTs, SCADA data systems are commonly used. SCADA systems 

for data analysis of WTs CM are cost-effective, reliable and practical [26]. 

The principle of SCADA system is based on collecting extensive information 

from key WT subassemblies using sensors installed on the WT [24].The op-

erational data of WT usually indicate either the WT status or measurements 

of signals, such as wind speed, temperature, power and current which reflect 

real time condition of the components of WT. By analyzing the SCADA 

data these signals and the different relationships between them can be ob-

served and the condition (health) of the WT can be concluded [27].  

In Schlechtingen et al. [28][, [29], WTCM system based on SCADA data, 

using normal behavior models and adaptive neuro-fuzzy inference systems 

(ANFIS) was presented. The developed CMS was designed to detect patterns 

in SCADA data, in addition to detect the potential failures, this system 

showed good performances at a variety of different SCADA signals (set of 

45 signals). 
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It’s worth mentioning that, it is difficult to detect a fault from raw 

SCADA data without using an appropriate data analysis tool [29]. 

Another research work by Yang et al. [30] focused on developing a cost-

effective and reliable CM (technique) for WT blades and drivers through 

interpretation of SCADA data collecting from a farm of WTs. Instead of 

using Instantaneous responses; a mathematical model was developed based 

on collecting responses through reviewing the general performance of the 

WT working in a range of operating conditions. The results indicated that 

the developed technique has powerful capabilities to detect the initial faults 

in WT blades and drivers, in addition to its ability in tracing the other 

deteriorations occur in WT blades and drivers. 

In Zaher et al. [31] and Zhang et al. [32], techniques for anomaly detection 

in WTs based on exiting SCADA data using an artificial neural network 

(ANN)were used. Different parts of the WT were considered for the modeling 

and the analysis of potential failures; such as, cooling system and the bearing 

systems’ parts of WT. The results indicated that the proposed techniques 

for SCADA data interpretation can identify the early faults and give a WT 

performance assessment in order give system’s operator a sufficient time to 

make the needed decisions concerning machine maintenance process.  

Similarly, In Godwin et al. [33], a data driven system was proposed to 

classify the faults associated to WT pitch through SCADA data. Data were 

collected from 8 WTs every 10 minutes consequently over a period of 28 

months. The results culminated in developing a set of instructions/ rules 

which are easy to be read by the system operator; these rules can help the 

operator for better maintenance decisions and diagnosis for WT pitch faults. 
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The proposed pitch fault diagnostic system was highly accurate (87.05%) 

with (42.12%) reduction in WT pitch alarms. 

Another research work of Kusiak et al. [34], used many data mining algo-

rithms to develop FDI system including many WT’s components; fault data 

were obtained by SCADA data system and fault prediction was applied 

through 3 levels, which include fault-no fault prediction, fault classification 

into categories and prediction of specific types of faults. Faults were pre-

dicted 60 minutes before their occurrence. Fault prediction model was de-

veloped using different types of data mining algorithms including, the Neural 

Network (NN), the Standard Classification and Regression Tree (CART), 

the Boosting Tree Algorithm(BTA), and the Support Vector Machine 

(SVM).  The resulted prediction accuracy from this model was somewhat 

acceptable. The major constraint during the development process was with 

the low frequency data and the detailed description of each fault was not 

obvious. 

Finally, in a recent research work; Borchersen and Kinnaert [35], an early 

model-based fault detection for the cooling system of WT’s generator was 

proposed and tested. Model parameters were estimated on-line by Extended 

Kalman Filter then residuals were evaluated by CUSUM statistical change 

detection algorithm in order to detect the faults. The model was tested using 

real historical data from 43 WTs collected over a period of 3 years. The fault 

detection results during the test were as the following: one false alarm, 16 

detections, and two missed alarms, the test results showed improvements 

compared to the current system but in some circumstances, the model based 

fault detection warns of the presence of a fault much earlier than the current 
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alarm system. Furthermore, proposed model can be used to validate if the 

alarms issued from the system are false alarms or correct alarms. 

In the above-mentioned literatures; different fault detection models asso-

ciated with residuals extracted from SCADA data systems for different parts 

(components) of the WTs were proposed, then they were tested / validated 

to illustrate their efficiency in detecting corresponding faults. 

4.3 System Identification 

In order to study any system’s behavior, we need to generate system’s 

residuals. In the literature, there are many methods for generating residuals 

from the system being studied such as;  

• Parity relations. 

• State observers. 

• System Identification. 

In this research, system identification method along with Least Squares 

(LS) algorithm were used to estimate the model that describes the system 

(wind turbine power curve) and to generate system’s residual in addition to 

study the behavior of the system according to the obtained artificial SCADA 

data from FAST-AeroDyn Simulator (experimental data). 

Then, according to the experimental data, a model which describes the 

system behavior was formulated to explain the experimental data and al-

lowed to make predictions of the future responses of the system (WT power 

curve). 
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Then, systematic procedures were applied to generate the system’s resid-

uals preparing for fault detection test. Figure below depicts the overall pro-

cess for system identification [36], each step is illustrated in detail below. 

 
 

Figure 9: Schematic flowchart of system identification method, adopted 

from [36] 
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4.3.1   WT’s Power Curve Model Formulation 

A parametric model of WT’s power curve was chosen to describe the sys-

tem. Parametric models assume some finite set of parameters (θ), given the 

parameters, future predictions (p) which are independent of the experi-

mental data(p). These parameters are usually collected together to form a 

single parameter vector I = ID	I-	. . . IB  [37].  

 

4.3.2   WT Power Curve Model Structure and Parameters Estimation 

A Polynomial model was used to describe the WT’s power curve as a 

simple empirical model, where WT’s power curve modeling using polynomial 

expressions of different orders (degrees) is widely used in many literatures 

[38]. 

Given the power curve of m data pairs of power (p1, p2, ….., pm) versus 

wind speed (w1,w2,…..,wm) , an nth order polynomial fitting by: 

 

 & > = JD>B + J->BKD + ⋯+ JB> + JBMD	 (13) 

 

It’s worth mentioning that the fitted model is linear in its parameters. 

The main objective is to minimize the least square error between the fitted 

value and the actual value as: 

 

 JA = argmin &? − & >?
-
,

U

?CD

	 (14) 

 

 

 where JA  is the set of polynomial coefficients, i Î [1; n+1] . 
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4.3.3   Modeling assumptions and parameter estimation 

To fulfill the abovementioned objective, the least squares algorithm (LS) 

was used to fit the power curve data and then to generate residual from the 

fitted polynomial model (residual generator). 

Least squares algorithm estimates the coefficients of the model (parame-

ters) by minimizing the summation of squares of the residuals. 

 

Problem Statement: 

• Regression model (linear in the parameters) 

 	&(V) 	= 	φ1(V)ID 	+ 	φ2(V)I-	+	. . . +	φ@(V)IB (15) 

       Where: 

ID	I-	. . . IB: unknown parameters (model coefficients JD, J- … . JB) 

φ1		φ2	. . . φ@: known functions of known variables (w1, w2...wn) 

&: observed (or measured) power. 

• Vector form: 

 &(V) 	= 	φ=(V)I (16) 

Where: 

φ= V = φ1(V)	φ2(V)	. . . φ@(V)  
I= = ID	I-	. . . IB  

 

• Power measured from 

 &(V) 	= 	φ=(V)I) 	+ 	Y(V) (17) 

Where: 

I):” true” value of the parameter vector 
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{ξ(k)}: white noise sequence with zero mean and variance σ2 

 

We have a set of actual (experimental) data. 

{(ZU(k),ϕ(k)), k = 1 . . . ,N} 
 

In order to determine the parameters’, set ID	I-	. . . IB, in a way that model 

outputs have the best fit to the measurement data {ZU(k)} in the least 

squares sense. 

 I = min θ (&U [ − φ(i)=I)-,

\

ACD

 (18) 

• Measurements vector 

 ZU ] = ZU 1 	ZU 2 …ZU ]
= (19) 

• Error vector 

 ^ ] = Y 1 	Y 2 … Y(]) = (20) 

Where:	

 

 

Y [ = &U [ − &	 [ = &U [ − φ(i)=I 

 

(21) 

• In a matrix notation 

 Φ ] =
`=(1)
⋮

`=(])
; Z ] = (Φ=(])Φ(N))KD = φ(i)φ(i)=

\

ACD

KD

 (22) 



 38 

• From equations (18) and (21); cost function d\ I  is calculated as 

the following: 

 d\ I = Y [ - = (&U [ − φ i =I)- = ^= ] ^(])

\

ACD

\

ACD

 (23) 

Where: 

 
^ ] = ZU ] −Φ(N)I 

 
(24) 

Thus, value of θ	which achieves the minimum cost function, is denoted by 

θ(N), fulfils the so called “normal equation” as the following: 

 

 Φ= ] Φ N I ] = Φ=(])ZU ]  (25) 

 

If Φe N Φ	is non-singular, then the only value for the minimum is: 

 

 I ] = (Φ= ] Φ N )KDΦ=(])ZU ]  (26) 

Accordingly;  

 I = I = (Φ=Φ)KDΦ=ZU (27) 

 
4.3.4   Power Residual Generation - Model no.1 

Residuals can be calculated as the following:  

 

Where r is the power residual, & is the actual power (experimental) and & 

is the estimated power based on the power curve model. 

 fA = &A − &A (28) 
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Figure below depicts a sample of power residuals generated from the esti-

mated model no.1 for fault free mode (i.e. before k=1000 where wind speed 

order is from 2-18 m/s and after that it’s reversed from 18-2 m/s; to avoid 

the abrupt degradation in wind speed) and faulty operating mode with 

GBoxEff=90% (i.e. after k=1000 where wind speed order is from 18-2 m/s). 

 

 

 

 

 

 

 

 

 

Figure 10:Sample from the Generated Residuals - Model no.1 - Fault Free 

and 90% GBoxEff Faulty Modes 

For k below 1000; its noted that the variance of abut the first 400 points 

is smaller than the rest; referring to figure 13 below, this set of points located 

within low wind speed area in which the residuals has a small magnitude 

(superimposed). Reversely for k above 1000.  

Table below summarizes the calculated means and standard deviations of 

power residuals generated from different GBoxEff percentages from model 

no.1.  
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Table 5: Means and standard deviations of power residuals generated from 
different GBoxEff percentages - Model no.1 

GBoxEff % Mean Standard Deviation 

100% (fault free) 0.0043 25.5353 

99% -3.1109 25.5462 

98% -6.2845 25.8824 

97% -9.5213 26.5451 

90% -34.1460 28.8795 

 

From the above-mentioned data, it’s noticed that the shifted mean of the 

residuals to the negative side is increased (in value) progressively (slightly) 

for the GBoxEff from 100-97%, and radically for the GBoxEff from 100-90% 

at once. 

4.3.5   Model no.1 Validation 

The proposed model no.1 was validated (limited validation within the 

same set of data) through analyzing the goodness of fit of the regression by 

calculating the mean squared error (MSE) between the actual (experimental) 

data and the fitted model (measured). 

The MSE is a measure of the quality of an estimator, it is always positive 

and the less value is better. 

 gh^ =
1
@

(&A − &A)-
B

ACD

	 (29) 

Where, n is number of data points of power,	pF is the actual power (exper-

imental) and  pF is the estimated (measured) power.  
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 The MSE of the fitted polynomial models with order (degree) 3 up to 

order 6 are illustrated in table 6 below, the minimum MSE between the 

experimental data and the fitting was selected. Hence 6th degree polynomial 

was selected.  

Table 6: Best fit - polynomial degree - model no.1 

 Polynomial degree  

Fault free operating mode  

GBoxEff 100% 
3rd 4th 5th 6th 

MSE 1657.3 1339.5 765.1 651.7 

Thus, 6th degree polynomial model is the best fit to the experimental data 

and could be considered as an accepted as model no.1. 

To check the normality of model no.1 residuals; the histogram below shows 

the distribution of the power residuals of the fitted model no.1 combined 

with the normal distribution overlay, and figure 12 below shows the normal 

probability plot of the residuals of the fitted model no.1. 

 

 

 

 

 

 

 

 
Figure 11: Residuals Normal Distribution - Model no.1 
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Figure 12: Normal Probability Plot - Model no.1 

 
 From the histogram and figure 12 above, most of power residuals are 

concentrated (superimposed) on or close to the straight line and the devia-

tions here are mostly at the “tails” the top and bottom (highest and lowest) 

points and such small deviations are expected in data-based residuals. 

Power residuals are assumed “approximately” to be normally distributed, 

with mean, µ = 0.0043 and standard deviation, σ = 25.5353. 

 

4.3.6   Mathematical Model no.1 of the identified system 

Referring to equation (13), the 6th degree polynomial model that fit the 

experimental data of the fault free operational mode of the WT is considered 

as the first developed model (Model 1) in this research, and described below 

as a function of wind speed:  
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&(>A) 	= 	0.0012>An 	− 	0.0523>Ao 	+ 	0.7154>Aq 	− 	3. 0313>A

r 	+ 	5.3390>A
- 	

+ 	3.2694>A 	+ 	1.2002 
(30) 

Where: 

p(wF) is the estimated (measured) power, and wF is the wind speed. 

Figure below shows the estimated 6th degree polynomial model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Power Curve Estimated Model no.1:                                     

Fault free mode-GBoxEff=100% 

4.3.7 Model no.2 - A tuned model toward the nominal power curve 

 
Referring to the manufacturer nominal power curve (figure 4) of DeWind 

D6 WT, the rated power at the nominal wind speed (12.5 m/s) should be a 

constant to satisfy equation (11). 

Thus, a new (tuned) power curve model was estimated to be more con-

sistent with the manufacturer nominal power curve at power limitation or 

constant power region (C).  
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The actual (experimental) data for fault free mode were separated into 

two sets; the first set contains the active power measurements below the 

nominal wind speed 12.5 m/s, which includes number of power measure-

ments i=608 data points, and the other one contains the active power meas-

urements above the nominal wind speed and includes number of power meas-

urements i=392 data points.  

A zero-degree polynomial was fitted to power data points above nominal 

wind speed; these data points were averaged to get an estimation of the 

nominal power (rated power) as; 

 
 Zu = 1136.8	w> (31) 

 
 

For power data below the nominal wind speed, the model was estimated 

as the best polynomial fit with nominal wind speed as discussed below.  

 

To achieve this, a non-linear optimization fit was performed through con-

strained function minimization;  

 

 JA = min &A − & >A
-

n)x

ACD

 (32) 

Subjected to 

& 12.5 = Zu 

  

where JA  is the set of polynomial coefficients.  
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The optimization problem in (32) was simplified using penalty function to 

convert the constrained problem into an un-constrained problem. The gen-

eral technique is to add a term to the objective function that produces a 

high cost for violation of constraints (i.e.	y Zu − & 12.5 ) as in (33); 

 

JA = min &A − & >A
-

n)x

ACD

+ y Zu − & 12.5 	 (33) 

 

 where JA  is the set of polynomial coefficients, y is the penalty coeffi-

cient which must be much larger than the first part of the function (i.e. y 

=10000). 

The un-constrained problem was solved using ‘fminsearch’ solver in 

MATLAB, assuming a 6th degree polynomial model fit the power data; this 

assumption was based on the estimated model no.1 in (30). Moreover, the 

estimated coefficients of model no.1 were used to initialize the minimization 

of (33). 

 
The new estimated model is a 6’th degree polynomial for data points below 

the nominal wind speed, and a zero-degree polynomial for data points above 

the nominal wind speed as illustrated below in (34) and depicted in figure14. 
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 & >A =
0.0015>An − 0.0561>Ao 	+ 	0.6970>Aq	

−	2.8663>Ar 	+ 	6.0594>A- − 0.0682>A 	+ 	0.9346, 0 ≤ [ ≤ 608
1136.8, 608 < [ ≤ 1000

 (34) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Power Curve Estimated Model.2:                                     

Fault free mode-GBoxEff=100% 

 
4.3.8 Power Residual Generation - Model no.2 

 
Power residuals from model no.2 were calculated according to equation 

(28). Figure below depicts a sample of power residuals generated from the 

estimated model no.2 for fault free mode (i.e. before k=1000) and faulty 

operating mode with GBoxEff=90% (i.e. after k=1000). 
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Figure 15:Sample from the Generated Residuals - Model no.2 - Fault Free 

and 90% GBoxEff Faulty Modes 

Table below summarizes the calculated means and standard deviations of 

power residuals generated from different GBoxEff percentages from model 

no.2.  

Table 7: Means and standard deviations of power residuals generated from 
different GBoxEff percentages - Model no.2 

GBoxEff % Mean Standard Deviation 

100% (fault free) -1.9877  29.9365  

99%  -5.1028  30.6752 

98%  -8.2765  31.7026 

97%  -11.5132  33.0044 

90%  -36.1279  48.2066 
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From the above-mentioned data, it’s noticed that the shifted mean of the 

residuals to the negative side is increased (in value) progressively for the 

GBoxEff from 100-97%, and radically for the GBoxEff from 100-90% at once. 

 

4.3.9   Model no.2 Validation 

The polynomial model for data below nominal wind speed was validated 

(limited validation within the same set of data) by using the MSE. The MSE 

of the fitted polynomial models with order (degree) 4 up to order 6 were 

calculated according to equation (29) and are illustrated in table below, the 

minimum MSE between the experimental data and the fitting was selected. 

Hence 6th degree polynomial was selected and met our assumption. 

Table 8: Best fit (data point below nominal wind speed) - polynomial de-

gree - model no.2 

 Polynomial degree  

Fault free operating mode  

GBoxEff 100% 
4th 5th 6th 

                      MSE  1542.04 540.2 531.1 
  

Thus, 6th degree polynomial for data below nominal wind speed and zero-

degree for data above the nominal wind speed model is the best fit to the 

experimental data and could be considered as an accepted as model no.2. 

MSE of model no.2 for the whole set of data (below and above nominal 

wind speed) is equal to 899.25. 
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To check the normality of model no.1 residuals; the histogram below shows 

the distribution of the power residuals of the fitted model no.2 combined 

with the normal distribution overlay, and figure 17 below shows the normal 

probability plot of the residuals of the whole fitted model no.1. 

 

 

 

 

 

 

 

 

 

Figure 16: Residuals Normal Distribution - Model no.2 

 
 
 
 
 
 
 

 

 

 
 
 
 
 

Figure 17: Normal Probability Plot - Model no.2 
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From the histogram and figure 17 above, power residuals (for the whole 

data below and above nominal wind speed) could not be assumed as nor-

mally distributed, with mean, µ = −1.9877 and standard deviation, σ =

29.9365; there are too many extreme positive and negative residuals (heavy-

tailed).	

4.4 Fault Detection 

In this section, the generated residuals from model no.1 will be evaluated 

using an on-line CUSUM statistical change detection algorithm to perform 

the fault detection (performance degradation). 

4.4.1 Residual Evaluation using CUSUM Statistical Change Detection Al-

gorithm 

The general purpose of CUSUM test is to test two hypothe-

ses ℋ) and ℋD against each other to determine which of them describes 

the data, where ℋ) and ℋD represent the fault free and faulty operating 

modes, respectively. 

In order to detect small changes in the power residuals, the Cumulative 

Summation (CUSUM) statistical change detection algorithm was used, 

where the detection was for each single power residual point. 

The power residuals vector was not evaluated at once due to the changes 

off-diagonal values of the residual covariance matrix which are changing sig-

nificantly over time, thus, the matrix should be updated continuously. To 

avoid this; a positive change detection in the residuals mean was applied 

using CUSUM algorithm for each power residual component [35]. 
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We have a scalar set of power residuals {r(1),...., r(k)}: 

Assuming that the power residuals approximately followed a Gaussian 

(normal) distribution and the PFD is: 

 &} ~ =
1

� 2+	
/0&K

(uK})Ä

-ÅÄ  (35) 

The hypotheses are as the following: 

 ℋ):	f([)~	Ñ Ö), �- 	Üáf	[ = (1,… , V)  
ℋD:	f [ ~	Ñ Ö), �- 	Üáf	[ = 1,… , V) 	, f [ ~	Ñ ÖD, �- 	Üáf	[ = V), … , V  

Where: 

V) is the unknown change time. 

where Ö)  and ÖD  are, the residual means before and after the possible 

change. 

The CUSUM decision function are as the following: 

 à V = 	h V − 	â(V) (36) 

Where: 

 h V = ä([)

ã

ACD

 (37) 

 

 ä [ = å@
&}ç(f [ )

&}é(f [ )
 (38) 

 

 â V = â[@
Dè?èã

h(ê) (39) 

 

From equations (38) and (41); the corresponding log-likelihood ratio 

ä [ 		for detecting a change in the residual mean from Ö) and ÖD can be cal-

culated as the following; 
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 ä [ =
		ÖD − Ö)
�-

f [ −
		ÖD + Ö)

2
 (40) 

 

 ä [ =
ë
�
f [ − Ö) −

í
2

 (41) 

Where: 

Thus;	β = 	µD − µ) is the change in the mean and b = 		ïçKïé
ñ

 is the signal 

to noise ratio.  

Figure below depicts (radical degradation at gearbox efficiency from model 

1) the corresponding log-likelihood ratio ä [ 		for the residuals with Ö) =

0.0043  before k=1000, ÖD=-34.146 after k=1000, 	σ = 25.5353  calculated 

from equation (40). 

Noted that, the typical behavior of the log-likelihood ratio ä [ 		 shows a 

negative drift before change (before k=1000), and a positive drift after 

change (after k=1000) as depicted in figure below. 

 

 

 

 

 

 

 

 

 

Figure 18:Log-Likelihood ratio of the Residuals (Residuals Realization), 
Model no.1/radical GBoxEff degradation, time on the x-axis is expressed 

as the number of samples 
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The recursive form of CUSUM algorithm is an efficient and practical way 

to implement the CUSUM algorithm. Depending on the fact that, the thresh-

old ‘h’ is always positive; only the contributions to the cumulative sum that 

add up to a positive number must be considered to determine the decision 

function [39]. 

The recursive calculation of the decision function is as the following: 

 

 à(V) 	= 	âJ0	(0; 	à(V − 	1) 	+ 	ä(V)) (42) 

 

And the alarm function is: 

 

 ' V =
1, [Ü	à(V) > ℎ
0,																							/åä/

 (43) 

 

The recursive CUSUM test was implemented on the residuals’ sets gener-

ated from model no.1 only and on two levels; level one represents the pro-

gressive (slight) degradation in gear box efficiency (GBoxEff: 100-99-98-97% 

respectively) and the other level represents the radical degradation in gear 

box efficiency (GBoxEff: 100-90% at once). 

To set the user-defined threshold in a way to avoid or reduce the false 

alarm and missed detection due to the parameters variations the user-defined 

threshold needs to consider the maximum magnitudes of residuals under the 

fault-free test, let the threshold; 

 ℎ = 1.5	 ∗ (âJ0	à(V)	ë/Üáf/	V = 1000) (44) 
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Figure below depicts the evolution of the recursive CUSUM decision func-

tion and the user-defined threshold ‘h’ for the residuals of radical degrada-

tion case with Ö) before k=1000, and with ÖD after k=1000, calculated from 

(43). 

 

 

 

 

 

 

 

 

 

 

Figure 19: Evolution of the recursive CUSUM decision functions (Radical 
degradation, GBoxEff=100-90%), Model no.1 with μ0=0.0043, μ1=-34.146, 

σ=25.5353 and h=40.92 

  
 

For the residuals of the progressive degradation; figure below depicts the 

evolution of the recursive CUSUM decision function and the user-defined 

threshold ‘h’ with µ) before k=1000, and with µD  for k=1001 to 4000. 
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Figure 20:Evolution of the recursive CUSUM decision functions (Progres-
sive degradation, GBoxEff=100-99-98-97%), Model no.1 with              
öõ = õ. õõúù, öû = −ü. ùõ†ü, ° = ¢†. †ù†ù	£§•	¶ = ù¢. ûß¢ 

 

• Where µD is the average of the means for faulty modes (99,98 and 

97%).  

 The stopping time (also called alarm time) k©, is the time instant at 

which g(k) crosses the user-defined positive threshold h; 

 

 k© = min V: à(V) ≥ ℎ  (45) 

 

The fault occurrence time V), can be estimated as the time instant k)	at 

which S(k) has changed from negative to positive slope. It is formally ex-

pressed by; 
 

 V) = V" − ](V") (46) 
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Where N(k) is the number of successive observations for which the deci-

sion function remains strictly positive.  

 

 ] V = ](V − 1)1{¨(≠KD)Æ)} + 	1 (47) 

 

where 1{x} is the indicator of event x, namely, 1{x} = 1 when x is true, 

and 1{x} = 0 otherwise.  

 

 From (43); if g(k) > h, an alarm will be issued, an estimate of the change 

occurrence time V) will be provided by (46) and the decision function will 

be re-initialized to 0.  

The re-initialization after an alarm allowed us to check whether the change 

in the mean persists as time elapses or not. The result is a sequence of alarm 

time instants V" and estimated change occurrence times V) for increasing 

time horizon k. 

Figures below depict the evolution of the recursive CUSUM decision func-

tion with re-initialization when an alarm has been issued for the radical and 

progressive degradation with Ö) before k=1000, and with ÖD after k=1000. 
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Figure 21: Evolution of the recursive CUSUM decision functions with re-
initialization (Radical degradation, GBoxEff=100-90%), Model no.1 with 

öõ = õ. õõúù, öû = −ùú. ûúü, ° = ¢†. †ù†ù	and	h = 40.92  
 

 

For the case of radical gearbox efficiency degradation; from equation (45), 

the stop alarm k© = 1009, while from equations (46) and (47) the fault oc-

currence time estimate k) = 	986. 

From figure 21 above, it’s noticed that there is a regular cross of the 

threshold started from k=1235 due to the relative large signal to noise ratio; 

this indicates that there is a permanent failure occurred. 
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Figure 22: Evolution of the recursive CUSUM decision functions with re-
initialization (Progressive degradation, GBoxEff=100-99-98-97%), Model 
no.1 with öõ = õ. õõúù, öû = −ü. ùõ†ü, ° = ¢†. †ù†ù	£§•	¶ = ù¢. ûß¢  
 

The threshold values ‘h’ were calculated for each case according to equa-

tion (44). 

Similarly, for the level of progressive gearbox efficiency degradation; the 

stop alarm k© = 2397, while the fault occurrence time estimate V) = 	1524, 

there is no regular cross of the threshold because the signal to noise ratio is 

small, accordingly the algorithm need more time for detection. 

As shown in figures 19 and 20, the CUSUM of the log likelihood ratio will 

be increasing during the fault occurrence. The more increment (higher slope), 

indicates the larger fault magnitude presence (larger percent of degradation 

in GBoxEff). In reference to the time at which the GBoxEff changed from 

fault free mode to faulty mode, i.e. k=1000; there is a detection time delay 
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which illustrated in table below, this delay may be occurred due to the value 

of threshold h; 

Table 9: Detection Time Delay of CUSUM - Model no.1 

Detection time delay (time is expressed as the number of sample) 

Radical GBoxEff Degradation Progressive GBoxEff Degradation 

9 1397 

 

This could be interpreted by the little high value of threshold h, in the 

same time if we set the threshold to a lower value there may be issues of 

false alarms. This tells us that there is a trade-off between the false alarms 

and detection time. From figure 21, 22 and table 9 above; It can be concluded 

that the larger the fault (larger percent of degradation in GBoxEff), the 

shorter the detection time.  

The pattern of the CUSUM of the log likelihood ratio in figure 20 can be 

interpreted as the following;  

 

 

 

 

 

  

 

  

 
Figure 23: Log likelihood ratio -progressive GBoxEff degradation with 

öõ = õ. õõúù, öû = −ù. ûûõ≤	£§•	°ö¢ = −ü. ùõ†ü	 
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The log likelihood ratio s i = ¥µç(∂ F )

¥µé(∂ F )
 ; for residual point (ri) at which the 

CUSUM of the log likelihood ratio S(k) is increasing, the log likelihood ratio 

has a value s i 	≥ 1, and when S(k) is decreasing the log likelihood ratio 

has a value 1 > s i 	> 0, since the log has a negative value for i ∈ 0,1  and 

a positive value for i	 ≥ 1. 

A simple example depicted in figure above, for s fD =
¥µç
¥µé

=
∏D

πD
> 1, log 

sign is positive (increasing), and for s f- =
¥µç
¥µé

=
π-

∏-
< 1, log sign is nega-

tive (decreasing). 
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Chapter 5  

Conclusion 

Through this research work, the methodologies which were used to esti-

mate two related models (power curves) using Artificial (simulated) SCADA 

data in both, fault free and faulty operating modes and to perform a model-

based fault detection were presented. The main method used to estimate the 

first model’s parameters is system identification method; polynomial model 

as a model structure and least squares algorithm for polynomial’s parameters 

estimation. For the second model which is more consistent with the nominal 

power curve of the simulated wind turbine, non-linear optimization through 

unconstrained function minimization combined with penalty function is used 

to estimate the model’s parameter, and to generate power residuals then. 

Model-based fault detection was performed for the power residual gener-

ated from model no.1 and using residuals’ evaluation modules based on 

CUSUM statistical change detection algorithm and for two different levels 

of gearbox efficiency degradation; the first level was for a progressive (slight) 

degradation in GBoxEff and the other level represented a radical or abrupt 

degradation in the efficiency. 

The power residuals of model no.1 were assumed to be normally distrib-

uted; the small deviations residuals (see figure 12) should not affect the de-

tection; as found in the literature, CUSUM algorithm has a high robustness 

to non-normality and it’s effective in detect changes in all sizes, even in 

highly skewed and heavy-tailed process distributions. 
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The results of power residuals’ evaluation using CUSUM algorithm have 

been observed for the estimated model no.1 and for all degradation levels; 

for progressive GBoxEff degradation level, the developed fault detection sys-

tem was able to detect a fault magnitude of 2% under realistic wind turbu-

lence. For the radical degradation level, the fault detection time was shorter 

than the progressive degradation; the larger the fault, the shortest detection 

time. Model no.1 was chosen to perform the detection due to the less MSE 

compared with model no.2; hence it showed the best fit of the simulated 

data. 

Thus, it can be concluded that the artificial “simulated by FAST_NREL” 

SCADA data could be used as an efficient source of measurements with the 

absence of well-documented real SCADA data to study the behavior of a 

specific component of WT and perform a model-based fault detection then 

to help understanding the fault effects. This allows a better planning for 

maintenance activities in addition to give a better opportunity to implement 

predictive maintenance, which resulting in reduce all associated maintenance 

cost and increase the reliability of the WT. 

As mentioned before, this work was validated for one type of fault and 

analyzed one fault indicator in the gearbox based on the power curve, this 

can be used as a framework for future to develop a model-based fault detec-

tion in WT’s gearbox and to include another fault indicators which could 

affect the WT’s performance. Further work can be done by considering full 

fault diagnosis study includes fault detection, isolation and estimation in 

addition to validate and test the efficiency of the proposed model on real 

SCADA data. 
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Appendix I 

DeWind D6 WT’s FAST-Control Scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 68 

 

Appendix II 

Sample of TurbSim Hub-Height File (.hh)  

!	This	hub-height	wind-speed	file	was	generated	by	TurbSim	(v1.50,	25-Sep-2009)	on	20-Mar-

2017	at	10:02:41.	

!	

!	The	requested	statistics	for	this	data	were:	

!				Mean	Total	Wind	Speed	=			14.170	m/s	

!	

!			Time		HorSpd		WndDir		VerSpd		HorShr		VerShr		LnVShr		GstSpd	

!		(sec)			(m/s)			(deg)			(m/s)					(-)					(-)					(-)			(m/s)	

			0.000			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.050			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.100			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.150			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.200			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.250			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.300			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.350			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.400			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.450			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.500			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.550			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.600			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.650			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.700			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.750			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.800			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.850			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.900			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

			0.950			14.17				0.00				0.00			0.000			0.300			0.000				0.00	

…….						…….								……..				……..					……..					……..			………					……		
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Appendix III 

Sample of FAST-NREL main input file 

 
-------------------------	FAST	v8.12.*	INPUT	FILE	--------------------------------	

FAST	for	Dewind	D6	1.250	MW		Model	properties	

----------------------	SIMULATION	CONTROL	------------------------------------	

	

False									Echo												-	Echo	input	data	to	<RootName>.ech	(flag)	

"FATAL"	 	 	 	 	 	 	AbortLevel	 	 	 	 	 	 -	 Error	 level	when	simulation	should	abort	 (string)	 {"WARNING",	

"SEVERE",	"FATAL"}	

							120			TMax												-	Total	run	time	(s)	

						0.005			DT												-	Recommended	module	time	step	(s)	

										2			InterpOrder					-	Interpolation	order	for	input/output	time	history	(-)	{1=linear,	2=quad-

ratic}	

										0			NumCrctn								-	Number	of	correction	iterations	(-)	{0=explicit	calculation,	i.e.,	no	cor-

rections}	

						99999			DT_UJac									-	Time	between	calls	to	get	Jacobians	(s)	

						1E+06			UJacSclFact					-	Scaling	factor	used	in	Jacobians	(-)	

														----------------------	FEATURE	SWITCHES	AND	FLAGS	---------------------	

										1	 	 	CompElast	 	 	 	 	 	 	 -	Compute	structural	dynamics	 (switch)	 {1=ElastoDyn;	2=ElastoDyn	+	

BeamDyn	for	blades}	

										1	 	 	CompInflow	 	 	 	 	 	 -	Compute	 inflow	wind	velocities	 (switch)	 {0=still	air;	1=InflowWind;	

2=external	from	OpenFOAM}	

										1			CompAero								-	Compute	aerodynamic	loads	(switch)	{0=None;	1=AeroDyn	v14;	2=Aer-

oDyn	v15}	

										1			CompServo							-	Compute	control	and	electrical-drive	dynamics	(switch)	{0=None;	1=Ser-

voDyn}	

										0			CompHydro							-	Compute	hydrodynamic	loads	(switch)	{0=None;	1=HydroDyn}	

										0			CompSub									-	Compute	sub-structural	dynamics	(switch)	{0=None;	1=SubDyn}	

										0			CompMooring					-	Compute	mooring	system	(switch)	{0=None;	1=MAP++;	2=FEAMoor-

ing;	3=MoorDyn;	4=OrcaFlex}	

										0			CompIce									-	Compute	ice	loads	(switch)	{0=None;	1=IceFloe;	2=IceDyn}	
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																		--------------------------------	INPUT	FILES	-------------------------------------------	

"D6_ElastoDyn.dat"				EDFile										-	Name	of	file	containing	ElastoDyn	input	parameters	(quoted	

string)	

"unused"	 	 	 	 	 	BDBldFile(1)	 	 	 	 -	Name	of	 file	containing	BeamDyn	 input	parameters	 for	blade	1	

(quoted	string)	

"unused"	 	 	 	 	 	BDBldFile(2)	 	 	 	 -	Name	of	 file	containing	BeamDyn	 input	parameters	 for	blade	2	

(quoted	string)	

"unused"	 	 	 	 	 	BDBldFile(3)	 	 	 	 -	Name	of	 file	containing	BeamDyn	 input	parameters	 for	blade	3	

(quoted	string)	

"Aerodyn\AD_D6_InflowWind2.ipt"				InflowFile						-	Name	of	file	containing	inflow	wind	input	

parameters	(quoted	string)	

"Aerodyn\AD_D6.ipt"				AeroFile							 	-	Name	of	file	containing	aerodynamic	input	parameters	

(quoted	string)	

"D6_ServoDyn.dat"			 	ServoFile			 	 	 	 	-	Name	of	file	containing	control	and	electrical-drive	input	

parameters	(quoted	string)	

"unused"			 	 	 	HydroFile		 	 	 	 	 	-	Name	of	file	containing	hydrodynamic	input	parameters	(quoted	

string)	

"unused"						SubFile									-	Name	of	file	containing	sub-structural	input	parameters	(quoted	string)	

"unused"						MooringFile					-	Name	of	file	containing	mooring	system	input	parameters	(quoted	

string)	

"unused"						IceFile									-	Name	of	file	containing	ice	input	parameters	(quoted	string)	

																			------------------------------------	OUTPUT	-------------------------------------------	

True										SumPrint								-	Print	summary	data	to	"<RootName>.sum"	(flag)	

										1			SttsTime								-	Amount	of	time	between	screen	status	messages	(s)	

						99999			ChkptTime							-	Amount	of	time	between	creating	checkpoint	files	for	potential	restart	

(s)	

		"default"			DT_Out										-	Time	step	for	tabular	output	(s)	(or	"default")	

										0			TStart										-	Time	to	begin	tabular	output	(s)	

										1	 	 	OutFileFmt	 	 	 	 	 	 -	 Format	 for	 tabular	 (time-marching)	output	 file	 (switch)	 {1:	 text	 file	

[<RootName>.out],	2:	binary	file	[<RootName>.outb],	3:	both}	

True										TabDelim								-	Use	tab	delimiters	in	text	tabular	output	file?	(flag)	{uses	spaces	if	false}	

"ES10.3E2"				OutFmt										-	Format	used	for	text	tabular	output,	excluding	the	time	channel.		

Resulting	field	should	be	10	characters.	(quoted	string)	
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Appendix IV 

Sample of FAST-NREL main Inflow Wind input file 

																							-----------------------	InflowWind	v3.01.*	INPUT	FILE	---------------------------	

																																																									Sample	InflowWind	input	file.	

False									Echo											-	Echo	input	data	to	<RootName>.ech	(flag)	

										2		 	WindType			 	 	 	 	-	switch	for	wind	file	type	(1=steady;	2=uniform;	3=binary	TurbSim	FF;	

4=binary	Bladed-style	FF;	5=HAWC	format;	6=User	defined)	

										0	 	 	PropogationDir	-	Direction	of	wind	propogation	(meteoroligical	rotation	from	aligned	

with	X	(positive	rotates	towards	-Y)	--	degrees)	

										1			NWindVel							-	Number	of	points	to	output	the	wind	velocity	(0	to	9)	

										0			WindVxiList				-	List	of	coordinates	in	the	inertial	X	direction	(m)	

										0			WindVyiList				-	List	of	coordinates	in	the	inertial	Y	direction	(m)	

									91			WindVziList				-	List	of	coordinates	in	the	inertial	Z	direction	(m)	

====	Parameters	for	Steady	Wind	Conditions	[used	only	for	WindType	=	1]	=======	

										0			HWindSpeed					-	Horizontal	windspeed	

									91			RefHt										-	Reference	height	for	horizontal	wind	speed	

								0.3			PLexp										-	Power	law	exponent	

======	Parameters	for	Uniform	wind	file			[used	only	for	WindType	=	2]	========	

"Wind\myTurbSimNew1.hh"				Filename							-	Filename	of	time	series	data	for	uniform	wind	field.	

									91			RefHt										-	Reference	height	for	horizontal	wind	speed	

									64			RefLength						-	Reference	length	for	linear	horizontal	and	vertical	sheer	

==	Parameters	for	Binary	TurbSim	Full-Field	files			[used	only	for	WindType	=	3]	====	

"Wind\myTurbSimNew1.hh"				Filename							-	Name	of	the	Full	field	wind	file	to	use	(.bts)	

		=	Parameters	for	Binary	Bladed-style	Full-Field	files			[used	only	for	WindType	=	4]	=	

"Wind\myTurbSimNew1.hh"				FilenameRoot			-	Rootname	of	the	full-field	wind	file	to	use	(.wnd,	

.sum)	

False									TowerFile						-	Have	tower	file	(.twr)	[flag]	

===	Parameters	for	HAWC-format	binary	files		[Only	used	with	WindType	=	5]	===	

"wasp\Output\basic_5u.bin"		 	 	FileName_u		 	 	 	 	-	name	of	the	file	containing	the	u-component	

fluctuating	wind	

"wasp\Output\basic_5v.bin"	 	 	 	FileName_v	 	 	 	 	 	 -	name	of	the	file	containing	the	v-component	

fluctuating	wind	
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"wasp\Output\basic_5w.bin"				FileName_w						-	name	of	the	file	containing	the	w-component	

fluctuating	wind	

	64																		nx													-	number	of	grids	in	the	x	direction	(in	the	3	files	above)	

	32																		ny													-	number	of	grids	in	the	y	direction	(in	the	3	files	above)	

	32																		nz													-	number	of	grids	in	the	z	direction	(in	the	3	files	above)	

	16																		dx													-	distance	(in	meters)	between	points	in	the	x	direction	

		3																		dy													-	distance	(in	meters)	between	points	in	the	y	direction	

		3																		dz													-	distance	(in	meters)	between	points	in	the	z	direction	

									91			RefHt													-	reference	height;	the	height	(in	meters)	of	the	vertical	center	of	the	grid	

										-----------------------	Scaling	parameters	for	turbulence			--------------------------------------	

				1																ScaleMethod				-	Turbulence	scaling	method			[0	=	none,	1	=	direct	scaling,	2	=	calculate	

scaling	factor	based	on	a	desired	standard	deviation]	

				1.0														SFx												-	Turbulence	scaling	factor	for	the	x	direction	(-)			[ScaleMethod=1]	

				1.0														SFy												-	Turbulence	scaling	factor	for	the	y	direction	(-)			[ScaleMethod=1]	

				1.0														SFz												-	Turbulence	scaling	factor	for	the	z	direction	(-)			[ScaleMethod=1]	

			12.0														SigmaFx								-	Turbulence	standard	deviation	to	calculate	scaling	from	in	x	direction	

(m/s)				[ScaleMethod=2]	

				8.0														SigmaFy								-	Turbulence	standard	deviation	to	calculate	scaling	from	in	y	direction	

(m/s)				[ScaleMethod=2]	

				2.0														SigmaFz								-	Turbulence	standard	deviation	to	calculate	scaling	from	in	z	direction	

(m/s)				[ScaleMethod=2]	

		-------------			Mean	wind	profile	parameters	(added	to	HAWC-format	files)			-----------------	

		5.0																URef											-	Mean	u-component	wind	speed	at	the	reference	height	[m/s]	

		2																		WindProfile				-	Wind	profile	type	(0=constant;1=logarithmic,2=power	law)	

								0.2			PLExp										-	Power	law	exponent	[-]	(used	only	when	WindProfile=2)	

		0.03															Z0													-	Surface	roughness	length	[m]	(used	only	when	WindProfile=1)	

																		================OUTPUT		================	

True									SumPrint					-	Print	summary	data	to	<RootName>.IfW.sum	(flag)	

														OutList		 	 	 	 	-	The	next	line(s)	contains	a	list	of	output	parameters.		See	OutListParame-

ters.xlsx	for	a	listing	of	available	output	channels,	(-)	

"Wind1VelX"																	X-direction	wind	velocity	at	point	WindList(1)	

"Wind1VelY"																	Y-direction	wind	velocity	at	point	WindList(1)	

"Wind1VelZ"																	Z-direction	wind	velocity	at	point	WindList(1)	

END	of	input	file	(the	word	"END"	must	appear	in	the	first	3	columns	of	this	last	OutList	line	

																					---------------------------------------------------------------------------------------	


