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Abstract

We consider scalar field inflation in the Palatini formulation of general relativity. The covariant
derivative of the metric is then non-zero. From the effective theory point of view it should couple to
other fields. We write down the most general couplings between it and a scalar field that are quadratic
in derivatives. We consider both the case when the torsion is determined by the field equations and
the case when it is assumed to be zero a priori. We find the metric derivative terms can significantly
modify inflationary predictions. We specialise to Higgs inflation and terms of only up to dimension
4. Transforming to the Einstein frame, we show that by tuning the coefficients of the new terms,
we can generate various effective inflationary potentials, including quadratic, hilltop-type, α-attractor
and inflection point. Some of these can give inflation in agreement with observations, including with
a large tensor-to-scalar ratio, even if the non-minimal coupling is zero.

1. INTRODUCTION

Inflation is the most successful scenario for the primordial universe. It alleviates the homogeneity and isotropy
problem [1–5], explains spatial flatness and has (in its simplest variants) predicted that primordial perturbations
are mostly adiabatic, close to scale-invariant, highly Gaussian, predominantly scalar and statistically homogeneous
and isotropic to a high degree [6–19]. This is in excellent agreement with observations [20]. Higgs inflation [21]
(for reviews, see [22–24]) is an attractive model where inflation is driven by the only fundamental scalar field in the
Standard Model (SM) of particle physics. This is not possible with the SM action alone, as the Higgs potential
is not sufficiently flat [25–27].1 However, including a non-minimal coupling between the Higgs field and gravity
decelerates the field sufficiently. (In the Einstein frame the potential becomes exponentially flat, in the Jordan frame
there is extra friction.) The predictions of the classical action agree well with observations [20]. Loop corrections
complicate the picture [34–64], and can change the qualitative behaviour to produce near-inflection point inflation
[44, 51, 50, 52, 53, 56, 58, 57, 59, 65–68], hilltop inflation [56, 59, 60], hillclimbing inflation [61, 62] and generate higher
order curvature terms in the action that change the evolution [69, 70, 66, 71–83]. The issue of unitarity also remains
unsettled [84, 38, 85, 86, 42, 87, 48, 88–93, 77].

Another complication is the dependence of the predictions on the choice of the gravitational degrees of freedom.
(On different formulations of general relativity and related theories, see [94–111].) In the metric formulation of general
relativity, the only independent gravitational degree of freedom is the metric, and all geometric properties of the
manifold are derived from it. In particular, the connection is the Levi–Civita connection that is uniquely determined
by the metric. However, the metric and the connection describe different aspects of the manifold. The metric defines
distances in spacetime and dot products between vectors in the tangent space, whereas the connection sets straight
lines and gives the derivatives of tensor fields. In the Palatini formulation, the metric and the connection are taken
to be independent degrees of freedom.2 In the metric formulation, the only tensors that can be constructed from
the gravitational degrees of freedom are the metric, the Levi–Civita tensor and the Riemann tensor. In the Palatini
formulation, applying the covariant derivative to the metric gives a new tensor, the non-metricity tensorQγαβ = ∇γgαβ .
If the connection is not symmetric, its antisymmetric part, the torsion, is a third gravitational tensor. A number of
new gravitational terms can thus be added to the action.

In the Palatini case, the equations of motion do not determine the metric and the connection uniquely for all
actions [94, 117, 96–98, 118, 119]. This happens for the Einstein–Hilbert action if the connection is not taken to
be symmetric. Rather than a drawback of the Palatini formulation, this can be seen as a constraint on the action,
showing that extra terms are needed to break the projective invariance that is the reason for the system being
underdetermined. An alternative viewpoint is to use Lagrange multipliers to impose the desired properties of the
connection [120, 96, 98, 118, 119, 121, 106, 109, 107], or simply assume them a priori. However, there are actions,
for example the R2 action, for which the equations of motion do not determine the degrees of freedom even if the
connection is symmetric.

syksy.rasanen@iki.fi
1 False vacuum inflation is a possibility, but requires physics beyond the SM for graceful exit [27–33].
2 The Palatini formulation is somewhat of a misnomer, as it was developed by Einstein [112, 113]. It is also called the first order

formulation, as only first derivatives appear in the gravitational action, unlike in the metric formulation (also referred to as the Hilbert
formulation). Metric-affine is perhaps a more descriptive term, but it is often used to refer to the case when the general connection is used
in both the gravitational and the matter action, with the name Palatini restricted to the case when the general connection is reserved for
the gravitational sector, and the Levi–Civita connection is used in the matter sector [114–116].
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For the Einstein–Hilbert action plus a matter action that is coupled only to the metric, not to the connection,
the equation of motion for a symmetric connection gives the Levi–Civita connection, so the metric and the Palatini
formulation are physically equivalent. When the gravitational action is more complicated [111, 117, 122–125, 114–
116, 126–128, 119, 118, 106, 110, 129–131, 107, 109, 108, 80, 81, 132–136] or the matter action couples to the connection
[137–140, 86, 141, 59, 60, 63, 142–144], this is no longer true. In particular, this is the case when a scalar field is
coupled directly to the Ricci scalar [137–140, 86, 141, 59, 60, 63, 143, 142, 145, 146]. In Higgs inflation, this means
that the same term that enables inflation breaks the equivalence between the metric and the Palatini formulation
[140, 86, 59, 60, 63, 68].

If we combine general relativity and the SM of particle physics, in the metric case the only new dimension 4 term
that could not have been written down with either theory alone is the non-minimal coupling ξ|H|2R, where H is
the Higgs doublet. In the Palatini case, the non-metricity tensor Qαβγ can couple to SM fields, in particular to the
gradient of the Higgs field. Both the non-minimal coupling and the kinetic mixing between the metric and the Higgs
then act as sources for Qαβγ .

Assuming that the connection enters only via the Riemann tensor and the covariant derivative, we write down the
most general classical action built from the metric, the connection and a scalar field that involves only up to two
derivatives and no boundary terms, excepting the Holst term and Riemann tensor squared terms. We will consider
separately the cases when the connection is assumed to be symmetric a priori, and when the antisymmetric part is left
free to be determined by the field equations. In section 2 we present the action, derive the equations of motion and
transform to the Einstein frame. In section 3 we specialise to SM Higgs inflation and terms of only up to dimension
4 and study the effect of the new terms on the effective Higgs potential. In section 4 we discuss our results and open
issues, and in section 5 we summarise our findings.

2. INFLATION WITH KINETIC TERMS FOR THE METRIC

2.1. Action and degrees of freedom

The degrees of freedom.— We will consider three independent degrees of freedom: scalar field h, symmetric metric gαβ
and connection Γγαβ . We will comment on fermions and gauge fields in section 4. We decompose the connection as

Γγαβ = Γ̊γαβ + Lγαβ , (1)

where Γ̊γαβ is the Levi–Civita connection defined by the metric gαβ . As the difference of two connections, Lγαβ is a

tensor, known as the deformation tensor. We can decompose Lγαβ into parts that depend on torsion tensor and on
the non-metricity tensor defined as, respectively,

T γαβ ≡2Γγ[αβ] , Qγαβ ≡ ∇γgαβ . (2)

Note that Qγαβ = Qγ(αβ) and ∇γgαβ = −Q αβ
γ . We also define Qγ ≡ gαβQ

γαβ , Q̂β ≡ gαγQ
αβγ and T β ≡ gαγT

αβγ .

Denoting the covariant derivative defined by the Levi–Civita connection by ∇̊, we have for an arbitrary vector Aα

∇βAα = ∇̊βAα + LαβγA
γ . (3)

As ∇̊γgαβ = 0 by definition, we get

Qγαβ =∇γgαβ = −Lαγβ − Lβγα . (4)

We can write Lαβγ as

Lαβγ =
1

2
(Qαβγ −Qγαβ −Qβαγ) +Kαβγ , (5)

where Kγ β
α = K

[γ β]
α is the contortion tensor, given in terms of the torsion as

Kαβγ =
1

2
(Tαβγ + Tβαγ + Tγαβ) . (6)

We will discuss separately the case when no symmetry assumptions are made about the connection and the case when
the torsion is taken to be zero a priori (i.e. Lγαβ is symmetric).

The action.— We want write a bulk action from which equations of motion can derived without having to add boundary
terms to cancel terms arising in the variation. (In the metric formulation the York–Gibbons–Hawking boundary term
is needed to cancel a boundary term involving the variation of the first derivative of the metric [147, 148].) We will
include Lαβγ only as part of the connection, so it appears only in covariant derivatives and in the Riemann tensor.
We cannot get kinetic terms for Lαβγ from covariant derivatives of the metric, because they would involve the second
derivative of gαβ , leading to terms proportional to the variation of the first derivative on the boundary, which does not
vanish. Without kinetic terms, the connection reduces to an auxiliary variable, so the Palatini formulation does not
introduce new degrees of freedom compared to the metric case, it only changes the relation between existing degrees of
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freedom.3 We will not consider terms non-linear in the Riemann tensor, nor the parity-violating Holst term. We will
be mainly interested in terms quadratic in the derivatives and only up to dimension 4, in which case such Riemann
tensor terms do not couple to the scalar field. Also, unless the coefficients of the second order Riemann terms are
large, they are not important for inflation in the observed range of e-folds, because the curvature is much smaller than
the Planck scale, R/M2

Pl
= 2.7×10−9r/0.07 [20], where r < 0.07 is the tensor-to-scalar ratio. The effect of Ricci scalar

squared terms in non-minimally coupled scalar field inflation in the Palatini formulation has been studied in [80, 81].
The most general action built from scalar field h, metric gαβ and connection Γγαβ containing only up to quadratic

derivative terms is then

S=

∫
d4x
√
−g
[

1

2
F (h)gαβRαβ(Γ, ∂Γ)− 1

2
K(h)gαβ∇αh∇βh− V (h)

+A1(h)∇αh∇βgβα +A2(h)gαβgγδ∇αh∇βgγδ

+B1(h)gαβgγδgεη∇αgγε∇βgδη +B2(h)gγδ∇αgβγ∇βgαδ +B3(h)gαβ∇γgγα∇δgδβ

+B4(h)gαβgγδgεη∇αgγδ∇βgεη +B5(h)gγδ∇αgαβ∇βgγδ

+C(h)εαβγδgεη∇αg
γε∇βgδη

]
(7)

=

∫
d4x
√
−g
[

1

2
F (h)gαβRαβ(Γ, ∂Γ)− 1

2
K(h)gαβ∇αh∇βh− V (h)

−A1(h)∇αhQ̂α −A2(h)∇αhQα

+B1(h)QγαβQ
γαβ +B2(h)QγαβQ

βγα +B3(h)Q̂αQ̂
α +B4(h)QαQ

α +B5(h)QαQ̂
α

+C(h)εαβγδgεηQαγεQβδη
]
, (8)

where g is the determinant of gαβ , Rαβ = Rγαγβ is the Ricci tensor4 and εαβγδ is the Levi–Civita tensor. If we did
not exclude boundary terms, there would be more possible terms, including those involving the Riemann tensor built
from the Levi–Civita connection alone and terms that mix it and the full Riemann tensor [125, 130]. In the action,
the covariant derivatives acting on h are of course partial derivatives, and the connection that they will be paired with
in the equations of motion is determined by the vanishing of boundary terms when varying the action. The kinetic
mixing terms on second line of (7) that couple derivatives of the scalar field and of the metric have been discussed in
[139, 151, 142, 144], but do not seem to have been studied in the context of inflation before.5 They will source Qαβγ ,
which will in turn change the evolution of the scalar field. The quadratic terms on the third and fourth lines have
been considered in different contexts in [139, 99, 152, 104, 102, 110, 106, 109, 107, 108, 144]. In (8) we have written
the action in terms of Qαβγ to more clearly display the structure where we effectively have two extra vector fields of
mass dimension one (in addition to the traceless part of Qαβγ , which we have not separated out). However, note that
we do not vary the action with respect to them, but with respect to gαβ and Γγαβ . The Qαβγ terms contribute to both

variations. If we were to make the split (1) already in the action before applying the variational principle, we would
get boundary terms involving the variation of the first derivative of the metric, which would not vanish, just as in the
metric case. With only scalar field matter, the Levi–Civita term on the last line does not contribute to the equations
of motion, so we drop it henceforth.

With the set of independent variables {h, gαβ ,Γγαβ}, the variation of the action reads

δS= δh
δS

δh
+ δgαβ

δS

δgαβ
+ δΓγαβ

δS

δΓγαβ

= δh
δS

δh
+ δgαβ

δS

δgαβ
+ δΓγ(αβ)

δS

δΓγ(αβ)
+ pδΓγ[αβ]

δS

δΓγ[αβ]
. (9)

The first variation gives the scalar field equation of motion, the second gives the generalisation of the Einstein equation,
and the third determines the connection in terms of the scalar field and the metric. On the second line we have split
the variation with respect to the connection into the symmetric and the antisymmetric part. In the unconstrained
case we have p = 1; if the connection is taken to be symmetric a priori, we have p = 0.

When varying the fields, it is important to note that the contraction of the covariant derivative with a vector does
not reduce to a boundary term, because the connection is not Levi–Civita. Instead, (3) gives

∇αAα= ∇̊αAα −
1

2
QαA

α − TαAα , (10)

3 In the case when the equation of motion of the connection has no derivatives, the Palatini formulation can be viewed as the low-energy
limit of a theory with a connection field (more precisely, Lαβγ) that has high mass [99, 102, 103]. For related considerations of confinement
of the spin connection, see [149, 150].

4 In the Palatini case Rαβ is not in general symmetric, but the antisymmetric part does not contribute to the action or the equations
of motion. The quantity Rαβ is not the only independent first contraction of the Riemann tensor [128]. However, there is only one total
contraction, i.e. the Ricci scalar is unique.

5 The term kinetic mixing may be slightly inappropriate because in the equations of motion the partial derivatives of the metric cancel
with the Levi–Civita part of the connection, and only terms algebraic in Qαβγ remain.
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where the Levi–Civita covariant derivative ∇̊αAα gives a boundary term as usual.
Often in the Palatini formulation the connection is taken to be symmetric a priori, i.e. the torsion is set to zero by

hand. However, if the connection is taken to be an independent degree of freedom, from the effective theory point
of view is no reason to assume that its antisymmetric part is zero. For the Einstein–Hilbert action, the equations of
motion only show that a linear combination of Qαβγ and Tαβγ vanishes, a part is left undetermined, because of the the
invariance of the action under the projective transformation Γγαβ → Γγαβ + δγαAβ , where Aβ is an arbitrary vector [96].
If we assume that either Qαβγ or Tαβγ vanishes, then it follows that the other one is zero as well. This can be seen as a
motivation to extend the Einstein–Hilbert action so that the equations of motion fully determine the evolution of the
degrees of freedom, rather than a reason to set some of the degrees of freedom to zero by hand. We will see that the
quadratic Qαβγ terms we have introduced break the projective invariance, and the equations motion fully determine
the connection.

2.2. Connection equation of motion

General case.— Variation of the action with respect to Γγαβ gives, making the split (1) in the equation of motion and

taking into account ∇̊γgαβ = 0,

8B1Qαβγ + 8B2Q(βγ)α + 4gα(β(2B3Q̂γ) +B5Qγ)) + 4gβγ(2B4Qα +B5Q̂α)

−FQγαβ + FgαγQ̂β + Fgα[βQγ] + FTαβγ + 2Fgα[βTγ]

= 4A1gα(β∂γ)h+ 4A2gβγ∂αh− 2F ′gα[β∂γ]h , (11)

where prime denotes derivative with respect to h. This shows how non-metricity and torsion are sourced by the
derivative of the non-minimal coupling F ′ and the kinetic mixings Ai.

The general solution of (11) has the form

Qγαβ = q1(h)gαβ∂γh+ 2q2(h)gγ(α∂β)h

Tαβγ = 2t(h)gα[β∂γ]h . (12)

Inserting (12) into (11), we get

(a− 2Ft)gαβ∂γh+ (b+ c+ 2Ft)gγ(α∂β)h+ p(b− c+ 2Ft)gγ[α∂β]h = 0 , (13)

where

a≡−2A1 + F ′ + (4B2 + 4B3 + 8B5 + F )q1 + (8B1 + 4B2 + 20B3 + 4B5 + F )q2
b≡−2A1 − F ′ + (4B2 + 4B3 + 8B5 − F )q1 + (8B1 + 4B2 + 20B3 + 4B5 + 3F )q2
c≡−4A2 + (8B1 + 32B4 + 4B5)q1 + (8B2 + 16B4 + 20B5 − F )q2 . (14)

Unconstrained case.— In the unconstrained case (p = 1), (13) gives a = 2Ft, a+ b = 0, c = 0, leading to

q1 =
−A1(8B2 + 16B4 + 20B5 − F ) + 4A2(4B1 + 2B2 + 10B3 + 2B5 + F )

2M

q2 =
2A1(2B1 + 8B4 +B5)− 4A2(B2 +B3 + 2B5)

M
t={−A1(8B1 + 8B2 + 48B4 + 24B5 − F ) + 4A2(4B1 + 4B2 + 12B3 + 6B5 + F )

+2[16B2
1 − 8B2

2 − 36B2
5 + 144B3B4 + 4B1(2B2 + 10B3 + 16B4 + 4B5)

+B2(−8B3 + 16B4 − 32B5) + (4B1 +B2 +B3 + 16B4 + 4B5)F ]F ′/F}/(4M)

M ≡16B2
1 − 8B2

2 − 36B2
5 + 4B1(2B2 + 10B3 + 16B4 + 4B5) + 144B3B4

+B2(−8B3 + 16B4 − 32B5) + F (4B1 +B2 +B3 + 16B4 + 4B5) . (15)

If M = 0, the equations do not in general have a solution. A particular case of this is Bi = 0. If we put all Qαβγ terms
to zero in the action, Ai = Bi = 0, we get 2t − q1 = F ′/F, q2 = 0, showing how only a particular linear combination
of the torsion and non-metricity is determined. If we keep the quadratic terms but put the linear terms to zero,
Ai = 0, Bi 6= 0, we get q1 = q2 = 0, t = F ′/(2F ). In other words, without the kinetic mixing terms, the non-minimal
coupling generates torsion, but not non-metricity. If we also remove the non-minimal coupling (i.e. put F ′ = 0), the
connection becomes Levi–Civita. So if were to only include the terms quadratic in Qαβγ , they would successfully
break the projective invariance and reduce the connection to Levi–Civita without otherwise affecting the equations of
motion. However, when also A1, A2 and/or F ′ is non-zero, the functional form of the quadratic terms is relevant, and
they can have a significant effect on the evolution.
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Zero torsion.— If torsion is taken to be zero a priori (t = 0, p = 0), (13) gives a = 0, b+ c = 0, leading to

q1 = [−2A1(8B2 + 16B4 + 20B5 + F ) + 4A2(8B1 + 4B2 + 20B3 + 4B5 + F )

+(16B1 + 16B2 + 40B3 + 16B4 + 28B5 + 3F )F ′]/N

q2 = 4[A1(4B1 + 16B4 + 2B5 − F )−A2(4B2 + 4B3 + 8B5 + F )

−(2B1 + 2B2 + 2B3 + 8B4 + 5B5)F ′]/N

N ≡64B2
1 − 32B2

2 − 144B2
5 + 8B1(4B2 + 20B3 + 32B4 + 8B5)− 4B2(8B3 − 16B4 + 32B5)

+576B3B4 − (8B1 + 20B2 + 44B3 − 16B4 + 32B5 + 3F )F . (16)

If N = 0, the equations do not in general have a solution. In contrast to the case with torsion, N 6= 0 even if Bi = 0.
This corresponds to the fact that the projective invariance has been broken by setting the torsion to zero by hand.
Here F ′ sources non-metricity, unlike in the case with torsion, where it exclusively sources torsion and only Ai act as
sources for Qαβγ . If we take Ai = Bi = 0, we get q1 = −F ′/F, q2 = 0. This is the usual case of non-minimally coupled
Higgs inflation in the Palatini formulation, studied originally in [140].

Zero non-metricity.— If we impose Qαβγ = 0 a priori instead of Tαβγ = 0, the Qαβγ terms in the action obviously
vanish, so we are left only with the non-minimal coupling F , and get the solution t = F ′/(2F ). If F ′ = 0, the torsion
is zero, and we again recover the Levi–Civita connection, having set one of the degrees of freedom to zero by hand. It
is straightforward to show that the torsion generated by F ′ 6= 0 has exactly the same effect on the equations of motion
of the scalar field and the metric as the non-zero Qαβγ in the above case when the torsion is set to zero and only
the non-minimal coupling is relevant (i.e. Ai = Bi = 0). This has to be the case, because the non-minimal coupling
can be eliminated via a conformal transformation of the metric, which knows nothing about the symmetries of the
connection. So we see that the effect of the non-minimal coupling in usual Higgs inflation in the Palatini formulation
can be mapped not only from the non-minimal coupling and non-metricity to the kinetic term or the potential, but
also between the non-metricity and the torsion. (Mapping between non-metricity and torsion has also been studied in
[133, 136, 144].) Let us now look at field transformations in more detail.

2.3. Field transformations

General case.— The equations of motion written in terms of the original variables {h, gαβ ,Γγαβ} are rather complicated.
Therefore, rather than solving them directly, as we did above for the connection, we simplify the problem by choosing
suitable coordinates in field space. Without introducing higher order derivatives into the action, we can make the
following field transformations:

h→χ(h) (17)

gαβ→Ω(h)−1gαβ (18)

Γγαβ→Γγαβ + Σγαβ = Γγαβ + gγδ
[
Σ1(h)gαβ∂δh+ 2Σ2(h)gδ(α∂β)h+ 2Σ3(h)gδ[α∂β]h

]
, (19)

so we have 5 free functions χ(h), Ω(h) and Σi(h).6 The formulation of non-minimally coupled scalar field theories that
is covariant with respect to transformations of the scalar field (17) and the metric (18) [153–159] can be extended to
also cover transformations of the connection (19) [142]. For more general mapping of gravitational degrees of freedom
into matter degrees of freedom in the Palatini formulation, see [132–135].

The scalar field redefinition (17) simply gives

∇αh→
dh

dχ
∇αχ . (20)

Under the conformal transformation of the metric (18), we have

gαβ→Ωgαβ
√
−g→Ω−2

√
−g

∇γgαβ→Ω(∇γgαβ + gαβ∂γω) , (21)

where we have denoted ω ≡ ln Ω.

6 The term Σ4(h)εγδαβ∂δh could also be added to the torsion, but in our case where the torsion is generated by a scalar field its totally

antisymmetric part is zero, so this term will not be needed.
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Under the translation of the connection (19), we have

∇γgαβ→∇γgαβ + 2Σ(α β)
γ

gαβRαβ→ gαβRαβ + gαβ∇γΣγ αβ − g
αβ∇αΣγ γβ + ΣαββΣγγα − ΣαβγΣγαβ − TαβγΣγαβ

= R−
(

1

2
Qα + Tα

)
(Σαββ − Σ βα

β )− TαβγΣγαβ +QγαβΣγαβ − Q̂αΣββα

+ΣαββΣγγα − ΣαβγΣγαβ + ∇̊α(Σαββ − Σ βα
β ) . (22)

where we have applied (10). In the unconstrained case where torsion is present, this transformation generates a term
proportional to Tα∂αh in the action. As we have assumed that the torsion enters only via the connection that in
turn enters only via the Riemann tensor and covariant derivatives, we have no such term in the action to begin with.

Demanding that such terms are not generated requires Tα(Σαββ − Σ βα
β ) + TαβγΣγαβ = 0, which according to (17) is

equivalent to Σ3 = Σ1−Σ2. Then we also have Σαββ −Σ βα
β = 0, and the boundary term in (22) vanishes. (If we had

a Tα∂αh term in the original action, we would fix Σ3 by demanding that the new term cancels it.) In the constrained
case where the torsion is put to zero a priori, we instead have Σ3 = 0.7

Redefining the functions of h in the action to absorb these changes, for the scalar field transformation h→ χ we get

K→ K̃ =

(
dh

dχ

)2

K

Ai→ Ãi =
dh

dχ
Ai . (23)

For the metric transformation gαβ → Ω−1gαβ applied to the action (7) we get

F→ F̃ = Ω−1F

K→ K̃ = Ω−1[K − 2(A1 + 4A2)ω′ − 2(4B1 +B2 +B3 + 16B4 + 4B5)ω′2]

V → Ṽ = Ω−2V

A1→ Ã1 = Ω−1[A1 + (2B2 + 2B3 + 4B5)ω′]

A2→ Ã2 = Ω−1[A2 + (2B1 + 8B4 +B5)ω′]

Bi→ B̃i = Ω−1Bi . (24)

Finally, the connection transformation Γγαβ → Γγαβ + Σγαβ gives, using the decomposition (19),

K → K̃=K − 3F (Σ2
1 + Σ2

2 − Σ2
3 + 4Σ1Σ2 + 4Σ1Σ2 + 2Σ2Σ3 + 4Σ3Σ1)

−2A1(5Σ1 + 7Σ2 + 3Σ3)− 4A2(Σ1 + 5Σ2 − 3Σ3)

−4B1(5Σ2
1 + 17Σ2

2 + 9Σ2
3 + 14Σ1Σ2 − 6Σ2Σ3 + 6Σ3Σ1)

−2B2(7Σ2
1 + 31Σ2

2 − 9Σ2
3 + 34Σ1Σ2 + 6Σ2Σ3 − 6Σ3Σ1)

−2B3(5Σ1 + 7Σ2 + 3Σ3)2 − 8B4(Σ1 + 5Σ2 − 3Σ3)2

−4B5(5Σ2
1 + 35Σ2

2 − 9Σ2
3 + 32Σ1Σ2 − 6Σ2Σ3 − 12Σ3Σ1)

A1 → Ã1 =A1 +
1

2
F (Σ1 + 3Σ2 + 3Σ3) + 4B1(Σ1 + Σ2 + Σ3) + 2B2(Σ1 + 3Σ2 − Σ3)

+2B3(5Σ1 + 7Σ2 + 3Σ3) + 2B5(Σ1 + 5Σ2 − 3Σ3)

A2 → Ã2 =A2 +
1

4
F (Σ1 − 3Σ2 − 3Σ3) + 4B1(Σ2 − Σ3) + 2B2(Σ1 + Σ2 + Σ3)

+4B4(Σ1 + 5Σ2 − 3Σ3) +B5(5Σ1 + 7Σ2 + 3Σ3) . (25)

Unconstrained case.— In the case when the torsion is left free to be determined by the field equations and we have no
Tα∂αh terms in the original action, we have Σ3 = Σ1 − Σ2. Using (25) and setting Ãi = 0 then fixes Σ1,Σ2 as

Σ1 =
−A1(2B1 + 8B4 +B5) + 2A2(B2 +B3 + 2B5)

M

Σ2 =
A1(−8B1 + 8B2 − 16B4 + 16B5 − F )− 4A2(4B1 + 8B3 − 2B5 + F )

8M
, (26)

7 In this case we are also left with a boundary term, which we discard. We used the principle of not adding or subtracting boundary
terms when writing down the action. However, the field transformation is just a calculational device. We would get the same result by
solving the field equations without making field redefinitions.
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where M is defined in (15).

We can now take Ω = F to set F̃ = M2
Pl

(and choose units such that M
Pl

= 1) and then choose Σ1,Σ2 to set Ãi = 0.
According to (24) and (26) we get

Σ1 ={−[A1 + (2B2 + 2B3 + 4B5)ω′](2B1 + 8B4 +B5)

+2[A2 + (2B1 + 8B4 +B5)ω′](B2 +B3 + 2B5)}M−1

Σ2 ={[A1 + (2B2 + 2B3 + 4B5)ω′](−8B1 + 8B2 − 16B4 + 16B5 − F )

−4[A2 + (2B1 + 8B4 +B5)ω′](4B1 + 8B3 − 2B5 + F )}(8M)−1 . (27)

It is straightforward to check that this shift gives the same result for the connection as solving for Qαβγ directly from
(13) and applying (5), up to terms proportional to F ′, which have to be accounted for by a conformal transformation
of the metric. The correspondence is

Σ1 =
1

2
q1 − q2 − t+

F ′

2F

Σ2 =−1

2
q1 +

1

2
t− F ′

4F
. (28)

The overall transformation of the kinetic term is, according to (24) and (25) and taking into account Σ3 = Σ1−Σ2,

K→F−1{K − 2(A1 + 4A2)ω′ − 2(4B1 +B2 +B3 + 16B4 + 4B5)ω′2

+F (−12Σ2
1 + 6Σ2

2 − 24Σ1Σ2)− 8[A1 + (2B2 + 2B3 + 4B5)ω′](2Σ1 + Σ2)

+[A2 + (2B1 + 8B4 +B5)ω′](8Σ1 − 32Σ2) +B1(−80Σ2
1 − 128Σ2

2 + 64Σ1Σ2)

+B2(16Σ2
1 − 32Σ2

2 − 128Σ1Σ2)−B3(128Σ2
1 + 32Σ2

2 + 128Σ1Σ2)

+B4(−32Σ2
1 − 512Σ2

2 + 256Σ1Σ2) +B5(64Σ2
1 − 128Σ2

2 − 224Σ1Σ2)} , (29)

with Σ1,Σ2 given by (27).

As we have discussed, with F̃ ′ = 0 and Ãi = 0, the connection equation of motion (11) gives Qαβγ = Tαβγ = 0
(because the Bi terms break the projective invariance), so Γγαβ becomes the Levi–Civita connection, and the system

reduces to metric gravity with a minimally coupled scalar field h. We can then choose χ to set K̃ = 1, though in some
cases it may be more convenient to keep using h and retain a non-canonical kinetic term, if dχ

dh = ±
√
K(h) cannot be

integrated in closed form. In terms of the action, we have

S=

∫
d4x
√
−g
[

1

2
gαβRαβ(Γ, ∂Γ)− 1

2
K(h)gαβ∇αh∇βh−

V (h)

F (h)2

]
=

∫
d4x
√
−g
[

1

2
gαβRαβ(Γ, ∂Γ)− 1

2
gαβ∇αχ∇βχ− U(χ)

]
, (30)

where K(h) is given by (29) and U(χ) ≡ V [h(χ)]/F [h(χ)]2.

Zero torsion.— When torsion is put to zero a priori, we have Σ3 = 0, so according to (25) setting Ãi = 0 fixes Σ1,Σ2

as

Σ1 =
−A1(16B1 + 8B2 + 80B4 + 28B5 − 3F ) + 2A2(8B1 + 12B2 + 28B3 + 20B5 + 3F )

N

Σ2 =
A1(8B2 + 16B4 + 20B5 + F )− 2A2(8B1 + 4B2 + 20B3 + 4B5 + F )

N
, (31)

with N given in (16). It is again straightforward to verify that this shift gives the same result for the connection as
solving for Qαβγ directly from (13) and applying (5), up to terms proportional to F ′.

Again first transforming the metric to get F̃ = 1 and then adjusting the connection to get Ãi = 0 we have, from
(24) and (25),

Σ1 = {−[A1 + (2B2 + 2B3 + 4B5)ω′](16B1 + 8B2 + 80B5 + 28B5 − 3F )

+2[A2 + (2B1 + 8B4 +B5)ω′](8B1 + 12B2 + 28B3 + 20B5 + 3F )}N−1

Σ2 ={[A2 + (2B1 + 8B4 +B5)ω′](8B2 + 16B4 + 20B5 + F )

−2[A2 + (2B1 + 8B4 +B5)ω′](8B1 + 4B2 + 20B3 + 4B5 + F )}N−1 , (32)

Again, in the chosen field coordinates the connection is Levi–Civita, and all effects of the original non-minimal coupling
and non-metricity are shifted to the kinetic term and potential of the scalar field, and the action has the form (30).
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The kinetic term reads, from (18) and (19),

K→F−1{K − 2(A1 + 4A2)ω′ − 2(4B1 +B2 +B3 + 16B4 + 4B5)ω′2

−3F (Σ2
1 + Σ2

2 + 4Σ1Σ2 + 4Σ1Σ2)− 2[A1 + (2B2 + 2B3 + 4B5)ω′](5Σ1 + 7Σ2)

−4[A2 + (2B1 + 8B4 +B5)ω′](Σ1 + 5Σ2)

−4B1(5Σ2
1 + 17Σ2

2 + 14Σ1Σ2)− 2B2(7Σ2
1 + 31Σ2

2 + 34Σ1Σ2)− 2B3(5Σ1 + 7Σ2)2

−2B3(5Σ1 + 7Σ2)2 − 8B4(Σ1 + 5Σ2)2 − 4B5(5Σ2
1 + 35Σ2

2 + 32Σ1Σ2)} , (33)

with Σ1,Σ2 given by (32).

3. THE HIGGS CASE

3.1. The potential and CMB observables

Structure of the potential and the kinetic term.— We have fully mapped the effects of the non-minimal coupling and non-
metricity term to the kinetic term and the potential in the scalar sector, so their effect can be analysed with the usual
inflationary vocabulary. Let us now specialise to the case of Higgs inflation and consider what kind of phenomenology
the terms can lead to.

We identify h with the SM background Higgs field. As the Higgs is part of a doublet, it only appears in even powers
in the action. Restricting to terms of up to dimension 4, we have

K = k , F = f + ξh2 , Ai = aih , Bi = bi0 + bi1h
2 , (34)

where k, f, ξ, ai, bi0, bi1 are constants. Note that f does not have to be close to M2
Pl

= 1, since the Planck scale is
defined in terms of gravity analysed in the Einstein frame. The SM Higgs potential is

V (h) =
1

4
λ(h2 − v2)2 . (35)

The only thing that changes the potential as a function of h is the non-minimal coupling F , which (for ξ 6= 0) flattens
the transformed potential for large values of h as usual in Higgs inflation,

U(χ) ≡ V [h(χ)]

Ω[h(χ)]2
=

V [h(χ)]

F [h(χ)]2
=
λ

4

(h2 − v2)2

(f + ξh2)2
' λ

4ξ2

(
1− 2f

ξh2

)
. (36)

However, the potential as a function of χ is affected also by the redefinition of the kinetic term. The kinetic function
has the same qualitative structure in the unconstrained case (29) and in the zero torsion case (33). With the functions
(34), the kinetic term in both cases reads

K(h) =
k

f + ξh2
+

h2

(f + ξh2)3(O0 +O1h2 +O2h4)2

5∑
n=0

Knh
2n , (37)

where Kn and the coefficients of O(h) ≡ O0 + O1h
2 + O2h

4 are complicated polynomials of the constants defined in
(34). The function K(h) is determined by and (27) and (29) (with torsion) or (32) and (33) (no torsion). In the case
with torsion, O(h) = M(h) given in (15), and in the case with no torsion, O(h) = N(h) given in (16).

The field transformation to the canonically normalised field χ is given by

dχ

dh
= ±

√
K(h) . (38)

In the small field limit h� 1, the second term in (37) does not contribute, so (38) gives χ =
√
k/fh, and the potential

reduces to U(χ) = V (
√
f/kχ)/f2. The parameters of the Higgs potential (35) written in terms of the canonical field

become λ → λ/k2, v →
√
k/fv. The Higgs mass correspondingly changes as mh =

√
2λv → mh/

√
kf . Starting from

the original action, we can therefore scale the quartic coupling and the Higgs mass at will. In particular, a large Higgs
mass can be brought down to the EW scale by choosing a large f . Restoring dimensions, we have F = M2 + ξh2

and Ω =
M2

Pl

M2+ξh2 . In the limit of small h, the transformation to the minimally coupled canonical field reduces to the

field-independent redefinition mh → 1√
k
M
M

Pl
mh, so the hierachy between mh and M

Pl
can be transformed into the

question why M is much smaller than M
Pl

.

CMB observables.— The observational constraints from cosmic microwave background (CMB) data on the scalar
perturbation amplitude As, scalar spectral index ns and tensor-to-scalar ratio r are (assuming no running of the
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spectral index) [20]

24π2As=
U

ε
= (4.97± 0.07)× 10−7

ns= 1 + 6ε− 2η = 0.9653± 0.0041

r= 16ε < 0.07 , (39)

where the slow-roll parameters are ε ≡ 1
2 (U ′/U)2, η ≡ U ′′/U .

The inflationary behaviour is determined by the shape of U(h) and K(h). Let us consider some possibilities and
compare to the observed values (39).

3.2. Types of inflationary potentials

Large-field case with ξ 6= 0.— If the non-minimal coupling is non-zero, the potential U(h) is asymptotically flat in the
limit of large h, and the behaviour of K(h) in this limit determines how rapidly the plateau is approached.8 The
function K(h) is the ratio of two polynomials, the numerator being of order 12 and the denominator of order 14. Thus,
in the general case when neither of the leading order coefficients is tiny, K(h) is proportional to h−2 in the large field
limit. This leads to an exponential potential for χ as in usual Higgs inflation. In the case Ai = Bi = 0, we have

K = k/(ξh2), and for k = 1 we get h = 1
2
√
ξ
e
√
ξχ and U = λ

4ξ2 (1− 2e−2ξχ) [140]. In the general case, the coefficient of

the leading contribution is a complicated polynomial of the constants defined in (34). In the limit h � 1, ξ � 1 the
kinetic function reduces to K ' (k−4a1−16a2−32b11−8b21−8b31−128b41−32b51)/(ξh2) both in the unconstrained
case and in the zero torsion case. (The kinetic functions in the two cases differ at order 1/(ξ2h2).) This corresponds
to the replacement ξ → ξ/(k − 4a1 − 16a2 − 32b11 − 8b21 − 8b31 − 128b41 − 32b51) in the exponential potential. In
the tree-level Palatini case with the exponential potential the normalisation of the perturbations gives λ/ξ = 10−10,
requiring ξ = 109 for λ = 0.1. (When loop corrections change the potential, ξ can be orders of magnitude smaller
[59, 60, 68].) If the coefficients dividing ξ are of order unity, ξ is reduced by at most two orders of magnitude, unless
they conspire so that the sum is much smaller than the individual terms. Thus, absent such tuning, when the leading
terms of the polynomials in the numerator and denominator of K(h) dominate, the situation is not much changed
from the case with Ai = Bi = 0.

Different behaviour can be obtained by choosing the coefficients so that the leading term of the numerator or the
denominator vanishes. For example, with the choice k = 1, f = 1, ξ = 2 × 105 and ai = 10, bi0 = bi1 = −0.96 (with
torsion) or ai = 1.463314 × 105, bi0 = bi1 = −1.39 (no torsion), the h12 term in the numerator in suppressed relative
to the h10 term, so for large h we have K(h) ' κ1h−4 with κ1 = 10−3. The relation (38) then gives χ =

√
κ1h

−1, and
the potential becomes

U(χ) ' λ

4ξ2

(
1− 2

ξκ1
χ2

)
, (40)

with χ� 1. This is a small-field potential of the hilltop type. We have chosen the parameters (taking again λ = 0.1)
to reproduce the amplitude As and the spectral index ns in agreement with the observations (39), taking the CMB
pivot scale to correspond to χ = 0.06. We did not check the constraint of obtaining the right number of e-folds. For
this example, the tensor-to-scalar ratio is r = 1 × 10−5. The value of ξ is four orders of magnitude smaller than in
the case with only the non-minimal coupling F , because now U(χ) is less flat, so the slow-roll parameter ε is larger;
recall that 24π2As = U/ε = 16U/r. Hilltop-type Higgs inflation has previously been considered with loop corrections
[56, 59, 60], here we get similar behaviour at the classical level. As the polynomials in K(h) are of high order and
the coefficients are large, canceling the leading terms requires a lot of tuning. This is also true for an observationally
viable hilltop generated by quantum corrections.

Alternatively, we can choose the coefficients (34) so that O2 = 0 and the two leading terms of the denominator in

(37) vanish.9 In this case K(h) ' κ3h2 for large h, so (38) gives χ =
√
κ3

3 h3, and the potential becomes

U(χ) ' λ

4ξ2

(
1− 2f

ξκ3
χ−2/3

)
. (41)

In the case with torsion, this is not possible, as all of the leading terms of the numerator are proportional to M2,
so they will also be suppressed. In the case without torsion, this case can be realised for example by choosing
a1 = 315, a2 = 289, bi0 = 1, bi1 = 1.4, and χ = 8 at the pivot scale gives As and ns in agreement with the central
values (39) and r = 0.04. Again, we did not check the number of e-folds. For these coefficients, the 1/h2 term and
other higher order terms can contribute to K(h), and might have to be suppressed by further tuning of coefficients.

8 How large h has to be depends on the value of ξ and the coefficients appearing in K(h). As there are many terms, the numerical factors
multiplying h can be large, so large field does not necessarily mean h� 1.

9 It is not possible to make just the leading term to vanish identically, although we could try to tune O1 and O2 so that the leading term
is strongly subdominant to the next-to-leading term. This would lead to a potential of the form U(χ) ∝ 1 − κ2χ−2, which gives a viable
inflationary model.
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Large-field case with ξ = 0.— Let us now consider the case without non-minimal coupling.10 Now U is not asymptotically
flat. We have K4 = K5 = 0, so the numerator and denominator of K(h) are both polynomials of order 8, with
complicated coefficients. If coefficients are not tuned, in the large field limit the field transformation (38) thus simply
rescales the field by a constant, so we have U ∝ χ4. The rescaling could be used to make the value of the effective
quartic coupling compatible with the constraint from the perturbation amplitude, but ns would anyway be below and
r above the observational bound (39) [20].

If we choose the leading term of the numerator to vanish, we have K(h) = κ4h
−2 for large h. This gives h ∝ eχ/

√
κ4 ,

so U ∝ e4χ/
√
κ4 . Such a potential gives r in excess of the observational upper bound.

If we instead choose the two leading terms of the denominator to vanish, we have K(h) ∝ h4 for large h, leading
to χ ∝ h3 and U ∝ χ4/3, which gives r & 0.1, taking into account the constraint (39) on ns, and is thus excluded.
Suppressing only the first leading term would give K(h) ' h2, χ ∝ h2 and U ∝ χ2, which would also give to a too
large r.

α-attractor.— We can have inflation at intermediate values of h if the potential is very flat there. There are two
possibilities. We can have an α-attractor, where the denominator of K(h) is zero [161–163],11 or we can have an
inflection point (or a near-inflection point) where K(h) remains regular. In the context of Higgs inflation an inflection
point is usually also an extremum (or nearly so), and it is then called a critical point [44, 51, 50, 52, 53, 56, 58, 57,
59, 67, 68].

Let us first consider the α-attractor case. The kinetic function K(h) has a zero in the denominator at h0 if the
functions F,Bi are chosen so that O(h0) = 0. This produces an inflationary plateau if the numerator is positive at
h0. In the case of Higgs inflation (34), the parameters f, ξ, bi0, bi1 can be chosen to make the pole either of order
(h − h0)−2 or (h − h0)−4. In order to have a viable model, we must also demand that K(h) > 0 for 0 ≤ h < h0.
These conditions are easy to satisfy. For example, in the case with torsion the choice of parameters k = 1, f = 1, ξ =
0, a1 = −a2 = a, b10 = 1, b50 = −1, bj0 = −1, b11 = 1, b51 = 5000, bj1 = 0 (with j = 2, 3, 4) with arbitrary a, gives a
second order pole, K(h) ' κ5(h−h0)−2 at h0 = 0.01 with κ5 = 2× 10−9a2. In the case with no torsion we can choose
k = 1, f = 1, ξ = 0, ai = a, b10 = b50 = 1, bj0 = −1, b11 = 1, b51 = 5000, bj1 = 0 (with j = 2, 3, 4) to get a second order
pole at h0 = 0.01 with κ5 = 2× 10−8a2. In the limit of large number of e-folds N , this gives [163]

ns = 1− 2

N
, r =

8κ5
N2

. (42)

The spectral index is the same as in the usual Higgs inflation case (and thus agrees with observations for N = 50,
the usual number of e-folds for the case without the extra terms [59, 164–166] – though see [167, 168]), whereas the
tensor-to-scalar ratio can be adjusted at will. The normalisation of the perturbations (39) implies λ = 10−7rh−40 ,
which for the above examples gives r = 0.08λ. However, the parameters could be adjusted to change h0 to make r
smaller or larger.

Inflection point.— We can also choose parameters to produce an inflection point, where d2U/dχ2 = 0 and K(h)
remains regular and positive. The important difference to an α-attractor is that the field can roll through an inflection
point. In the context of Higgs inflation, inflection points from quantum corrections have been considered to get large
values of r [44, 51, 50, 52, 53, 56, 58, 57, 59] or an enhancement in the spectrum to produce primordial black holes as
dark matter candidates [67, 68].

It is easy to tune the parameters to make a regular inflection point. For example, in the case with torsion, k =
1, f = 1, ξ = 0, a1 = 1, a2 = −100, b20 = −1, bj0 = 1, bi1 = −1, (with j = 1, 3, 4, 5) gives an inflection point at h = 0.77.
In the case without torsion, k = 1, f = 1, ξ = 0, a1 = 1, a2 = 100, b20 = −1, bj0 = 1, bi1 = 1 (with j = 1, 3, 4, 5) gives
an inflection point at h = 0.04.

We cannot get dU/dχ = 0 exactly (unless ξ < 0), because U is monotonic as a function of h, and while field
redefinitions can change the curvature of the potential, they do not affect the existence or locations of its extrema.
Therefore we cannot obtain hillclimbing inflation [61, 62], nor have an exact hilltop [56, 59, 60] or an exact critical
point. However, it may be possible to suppress dU/dχ by tuning the coefficients so as to get a near-critical point
or a potential that looks similar to the vicinity of a hilltop. We leave investigation of such possibilities and detailed
comparison to observations, including checking the right number of e-folds, for future work.

4. DISCUSSION

Fermions and gauge bosons.— Let us now look at fermions and gauge bosons. Considering only terms with up to a
total of two derivatives, the only new fermionic contributions are

Sf =

∫
d4x
√
−g
[
D1(h)ψ̄γαQαψ +D2(h)ψ̄γαQ̂αψ

]
. (43)

With the solution (12) for Qαβγ , we will end up with a term of the form g(h)ψ̄γα∂αhψ. In the SM, where we have a
U(1) gauge field, such a term corresponds to a gauge transformation, and thus does not lead to any physical effect such

10 In general, ξ is generated by quantum corrections [160], and it will run with scale, and thus cannot be zero on all scales. However, it
can be negligibly small in the inflationary region.

11 We can also have an α-attractor at large field values. Usual Higgs inflation in the large h limit can be understood as an α-attractor
model [163, 24].
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as generation of gravitational waves, unlike the corresponding pseudoscalar term.12 Fermions also contribute to the
equation of motion of Γγαβ by generating a spin current via their coupling to the connection [96, 98, 114]. This is not
important during inflation when the scalar field dominates, and while fermions become significant during reheating,
there is no overall spin order, so the spin current is expected to be highly suppressed.

As for gauge fields, if we restrict to a total of two derivatives, there are no new terms involving Qαβγ . If we allow
terms with more than two derivatives in total (as long as they are not acting on the same field), at leading order in
the derivatives we have

Sg =

∫
d4x
√
−g
[
E1(h)FαβQ

αβγQγ + E2(h)FαβQ
αβγQ̂γ + E3(h)FαβQ

αQ̂β

+E4(h)εαβγδFαβQ
ε

γδ Qε + E5(h)εαβγδFαβQ
ε

γδ Q̂ε + E6(h)εαβγδFαβQγQ̂δ

]
, (44)

where Fαβ is an Abelian field strength. In the case of the SM, Fαβ is the U(1)Y gauge field strength, and these terms
terms break the conformal symmetry of the gauge field, so they might at first sight seem like candidates for inflationary
magnetogenesis [169, 170]. However, when Qαβγ is sourced only by a single scalar field, all of these contributions vanish
in the equations of motion due to the symmetry of the Qαβγ contributions paired with the antisymmetry of Fαβ or
εαβγδ. When fermions and gauge bosons contribute significantly during preheating, this could change. The situation

would also be different in models where more than one scalar field contributes, as then Qα and Q̂α are in general not
aligned.

Higher order Qαβγ terms.— We have allowed at most two derivatives in the action, but as the partial derivatives of the
metric vanish (by pairing with the Levi–Civita connection in the equations of motion), higher powers of Qαβγ do not
lead to higher order of the equations of motion. The restriction therefore seems arbitrary. Keeping to terms of up to
dimension 4, there are no new terms mixing the derivatives the metric with the scalar field, fermions or gauge bosons,
nor are there any new terms of order (∇g)3. The only new terms are of order (∇g)4, which do not couple directly
to the scalar field. There are dozens of different contractions, but they all contribute in essentially the same way to
the connection equation of motion (11), changing the equation from first to third order in Qαβγ . The tensor structure
of the solution (12) will remain the same, but the functions qi and t will depend on gαβ∂αh∂βh in addition to h via

equations of the form (denoting t ≡ q3) qk[P
(1)
k (h) +

∑3
i,j=1 P

(2)
kij (h)qiqjg

αβ∂αh∂βh] = P
(3)
k (h), where P

(1)
k , P

(2)
kij , P

(3)
k

are combinations of the functions of h appearing in the action. The functions Σi will then depend on gαβ∂αh∂βh, and
so will the kinetic function K. Therefore, the equation that relates h to the minimally coupled scalar field χ with a
canonical kinetic term will also depend on gαβ∂αh∂βh. During slow-roll inflation and in the long-wavelength limit,
the derivative contribution is suppressed, so this is expected to have little effect on potential-driven slow-roll inflation.
However, such terms could enable inflation driven by kinetic terms [171]. One issue is that as the equations are third
order, they could have homogeneous solutions, meaning that the equations of motion do not completely determine the
connection. Avoiding such ambiguity would translate into a constraint on the terms allowed in the action.

5. CONCLUSIONS

The gravity track of Higgs inflation.— We have considered scalar field inflation in the Palatini formulation of general
relativity, where the connection is an independent variable. The covariant derivative of the metric (i.e. the non-
metricity) is then non-zero, and it can couple to the scalar field. Assuming that the connection enters only via the
Riemann tensor and the covariant derivative, we have written down all coupling terms with at most two derivatives
such that the equations of motion follow from the bulk action without needing to add boundary terms. We have
considered both the unconstrained case when the antisymmetric part of the connection (the torsion) is determined by
the field equations and the case when it set to zero a priori.

Terms that are quadratic in the derivative of the metric are motivated by the fact that they break the projective
invariance of the action and thus allow the equations of motion to fully determine the degrees of freedom in the case
when the torsion is not taken to be zero. If the non-minimal coupling of the scalar field and the mixing between
the kinetic terms of the metric and the scalar field are zero, the quadratic terms simply set the non-metricity and
torsion to zero and make the connection Levi–Civita. When non-minimal coupling and/or the kinetic mixing between
the metric and the scalar field are non-zero, they source non-metricity and torsion. We transform to the Einstein
frame, where the connection becomes Levi–Civita and the scalar field is minimally coupled to gravity, and the effects
of non-metricity and torsion are mapped to the kinetic term and the potential of the scalar field.

Specialising to the Standard Model Higgs field h as the inflaton (meaning that for large field values the potential is
quartic and the field appears only in even powers), we study the range of inflationary models made possible by the new
terms. Including only terms of up to dimension 4, the kinetic term is the ratio of two complicated polynomials of h,
the numerator being of order 10 and the denominator of order 14. In general, if the leading terms of the polynomials
dominate at large field values, then the kinetic function is ∝ h−2 and the qualitative behaviour is the same as in usual
Higgs inflation, the new terms just effectively change the value of the non-minimal coupling ξ. If the leading terms
of either the numerator or the denominator are zero, we can get a variety of effective inflationary potentials for the
canonically normalised scalar field χ, such as U ∝ 1 − αχ2, U ∝ 1 − αχ−2/3, U ∝ χ2, U ∝ χ4/3, an α-attractor and

12 Thanks to Lorenzo Sorbo for pointing this out.
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a potential with an inflection point. Some of these can give inflation in agreement with the observations even if the
non-minimal coupling is zero. They can produce a range of values for the tensor-to-scalar ratio r, from too small
to be detected in near-future experiments to values in excess of the current observational limits. This shows that
Higgs inflation in the Palatini formulation can produce a large r, which has not been obtained earlier with quantum
corrections nor with the inclusion of a R2 term in the action [140, 59, 60, 63, 68]. However, we did not check the
constraint on the total number of e-folds nor investigate the full parameter space, which would require a numerical
study.

Getting leading terms of the polynomials to vanish requires fine-tuning (absent a symmetry that would relate the
coefficients in the action to each other), just like obtaining a critical point [44, 51, 50, 52, 53, 56, 58, 57, 59, 65–68],
hilltop [56, 59, 60] or a degenerate vacuum [61, 62] using quantum corrections. Tuning of the classical terms is also
presumably unstable to quantum corrections. The new terms could contribute to addressing the unitarity issue of
Higgs inflation [84, 38, 85, 86, 42, 87, 48, 88–93, 77], given that the non-minimal coupling can be smaller than in the
usual case or even zero. They could also change renormalisation group running and affect reheating.

Extension of the original tree-level Higgs inflation proposal has been widely discussed from the point of view of
quantum corrections [34, 35, 38, 41, 36, 37, 39, 40, 42–48, 51–56, 49, 57, 58, 50, 59, 60, 64, 63, 65–68, 62, 84, 85, 87–
93, 86, 172–176, 154, 155, 177–180], including the generation of higher order terms in the Riemann tensor [69, 70, 66, 71–
83].

The inclusion of kinetic terms for the metric extends the study on the parallel track of the choice of gravitational
degrees of freedom. Earlier work has looked at the differences between the metric and the Palatini formulation for the
same action [140, 86, 59, 60, 63, 68], whereas we have analysed the effect of terms that arise in the Palatini case and
have no equivalent in the metric case. It would be interesting to extend the frame-covariant formalism developed to deal
with conformal transformations of the metric [142] and partially translations of the connection [153, 156, 154, 155, 157–
159] to fully cover the transformations in the space of the scalar field, the metric and the connection, and make more
transparent the frame-dependent role of the non-metricity and the connection. This connects to formulating the
quantum theory in terms of frame-invariant variables to settle the issue of possible non-commutation of quantisation
and frame transformations [88, 172, 173, 91, 174, 175, 56, 176, 154, 155, 37, 39, 42, 44, 47, 177, 89, 178–180].

From the effective theory point of view, if gravity is described by the Palatini formulation, the terms we have
considered are required for not just for Higgs inflation, but for any scalar field model of inflation, and (like R2 terms
[80, 81, 83]) can significantly modify inflationary predictions.
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