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Abstract
Feature selection (FS) can be defined as the problem of finding the minimal number of features from an original set with
the minimum information loss. Since FS problems are known as NP-hard problems, it is necessary to investigate a fast and
an effective search algorithm to tackle this problem. In this paper, two incremental hill-climbing techniques (QuickReduct
and CEBARKCC) are hybridized with the binary ant lion optimizer in a model called HBALO. In the proposed approach, a
pool of solutions (ants) is generated randomly and then enhanced by embedding the most informative features in the dataset
that are selected by the two filter feature selection models. The resultant population is then used by BALO algorithm to find
the best solution. The proposed binary approaches are tested on a set of 18 well-known datasets from UCI repository and
compared with the most recent related approaches. The experimental results show the superior performance of the proposed
approaches in searching the feature space for optimal feature combinations.

Keywords Bio-inspired optimization · Particle swarm optimization · Binary ant lion optimizer · Approximate entropy
reducts · Rough set theory · Feature selection

1 Introduction

Feature selection (FS) can be defined as the problem of
searching the least subset of features which can retain a
suitably high accuracy in representing the original features
(Liu and Motoda 1998). FS has become a mandatory task in
machine learning to eliminate the redundant and irrelevant
features from the fast increasing amount of data in the real
world (Jensen and Shen 2008). The existence of redundant
and irrelevant features in the learning process mostly mis-
leads learning algorithms and reduces their performance and
efficiency (Theodoridis andKoutroumbas 2006).Anattribute
is said to be relevant if a decision depends on it, otherwise
it is irrelevant. However, an attribute can be considered to
be redundant if it is highly correlated with other attributes
(Jensen and Shen 2002). The main objective of feature selec-
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tion is to select the optimal subset by removing these features
(redundant and irrelevant) and use the features that contain
important information that will be obscure if any of them is
excluded (Bell and Wang 2000). This area has been popu-
lar with challenging applications in operational and artificial
intelligence research communities since the 1970s (Kittler
1975).

Feature selection methods can be differentiated by two
main criteria: search strategy and subset evaluation (Liu
and Motoda 1998). Wrappers and filters are the two most
important models of feature selection when talking about the
evaluation criteria (Kohavi and John 1997). The difference
between these two models is that wrapper models depend on
the learning algorithm used in the data mining step of the
KDD process like classifiers (Wang et al. 2015), while filter
models use statistical methods to eliminate features regard-
less of the data mining algorithm (Xue et al. 2014).

Feature selection can be seen as a search process for the
optimal subset. The rapid increase in the information amount
makes it impractical to use the exhaustive search in finding
the optimal subset (Liu and Motoda 1998). A large number
of recent works can be found in the literature trying to imple-
ment stochastic methods to tackle the challenges of feature
selection problems mainly due to better local optima avoid-
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ance compared to conventional optimization techniques (Asir
et al. 2016).

As the classical optimization approaches suffer from some
restrictions in tackling the FS problem, meta-heuristic opti-
mization techniques have been proposed over the last two
decades in the field of feature selection as an alternative
to overcome these limitations (Wang et al. 2015; Zawbaa
et al. 2016). Nature-inspired algorithms (called evolutionary
computation) that mimic the social and biological behav-
ior of animals, birds, fish, wolves, etc., have shown a high
performance in solving the searching problems in general
(BoussaïD et al. 2013; Osman and Kelly 2012).

In the literature, many methods have been proposed in
order to mimic the behavior of these species in seeking their
food sources (optimal solutions). Other heuristic techniques
mimic the behavior of biological and physical systems in
nature. Genetic algorithm (GA) was first developed by J.
Holland in the 1970s to achieve the goal of understanding
the adaptive process of natural systems (Holland 1992). It is
considered as the first evolution-based algorithm which has
the ability to solve the nonlinear and complex problems. The
traditional GA uses a population of solutions when solving a
givenproblem; each solution is represented by a chromosome
with a length ofm, wherem is the number of attributes in the
data set (Yang and Honavar 1998). Different genetic algo-
rithm approaches have been proposed to tackle the feature
selection (Anusha and Sathiaseelan 2015; Il-Seok et al. 2004;
Jensen andShen 2004;Mafarja andAbdullah 2013;Yang and
Honavar 1998). A chaotic genetic feature selection optimiza-
tion method (CGFSO) is proposed in Chen et al. (2013). The
main advantage of these stochastic feature selectors is that
flexibility and high local optima avoidance, yet they require
more function evaluation and fine tuning of parameters for
dataset which is considered to be a challenge.

The particle swarm optimization algorithm (PSO), pro-
posed by Kennedy and Eberhart (1995), is the primary
swarm-based algorithm that mimics the social synergy of
a flock of birds. Normally, a flock of birds or school of fish
are led by a leader or ‘agent’. Every single individual of the
swarm follows the leading navigator based on their intuition.
PSO is capable of producing quick solutions for nonlinear
optimization problems (Kennedy and Eberhart 1995). Many
PSO feature selection approaches can be found in Bello et al.
(2007), Chakraborty et al. (2008), Wang et al. (2007), and
Xue et al. (2014). Recently, PSO has been used in many FS
approaches. InMoradi and Gholampour (2016), for instance,
a hybrid FS method that hybridized a local search algorithm
with PSOwas proposed to find the salient and less correlated
feature subset. An enhanced PSO was proposed in Gunasun-
dari et al. (2016). In fact, a new variable was added to the
main equation of the PSO algorithm which increased its effi-
ciency in tackling FS problem. Other examples of using PSO
for FS problem can be found in Abualigah et al. (2017).

Ant colony optimization (ACO) algorithm is another
swarm-based meta-heuristic algorithm that was initially pro-
posed by Dorigo et al. (1996). The algorithm simulates the
behavior of real ants when searching for the shortest path
to a food source, deposit pheromone as they travel; each ant
prefers to follow the path that is rich in this pheromone. ACO
mimics this pattern of behavior by applying a simple commu-
nication mechanism to enable the ant to find the shortest path
between two points. An efficient ACO algorithm for feature
selection has been proposed in Ke et al. (2008). For fur-
ther ACO-based feature selection approaches, one can refer
to Bello et al. (2005), Chen et al. (2010), Jensen and Shen
(2003, 2004), and Wang et al. (2012).

Based on the biological behavior of bees,Karaboga (2005)
proposed an optimization approach called the artificial bee
colony (ABC) algorithm. The ABC model has three types
of bees, namely employed, onlookers, and scout bees. Pre-
sumably, there is a solitary artificial employed bee for each
food source. In this model, the artificial bees traverse the
entire multidimensional search space. During the search,
some employed and onlooker bees select food locations and
change their positions based on their personal and net mates’
experiences. However, some of the scout bees traverse the
space in search of food without any prior experience. If a
newly identified source has more nectar than the source in
their memory, the bees will store the new location and dis-
card the old location. In Shokouhifar and Sabet (2010), a
hybrid approach for effective FS using neural networks and
ABC optimization is described. A FS algorithm for intrusion
detection systems using binary ABC is proposed in Wang
et al. (2010).

Grey Wolf Optimizer (GWO) is a recent swarm intel-
ligence algorithm (Mirjalili et al. 2014) that has been
successfully employed for solving FS problems in Emary
et al. (2016) and Grosan et al. (2018). In 2017, many FS
that based on new optimizers were proposed in the litera-
ture includingWhale Optimization Algorithm (WOA)-based
FS approaches have been proposed in Mafarja and Mirjalili
(2017, 2018). Other recent works in this area can be found
in Mafarja et al. (2017a, b).

One of the recent algorithms is the ant lion optimizer
(ALO) (Mirjalili 2015). ALO is a stochastic population-
based algorithm that mimics the hunting mechanism of ant
lions in nature. It has been proved that this algorithm benefits
from superior performance in terms of computational time
and the ability to search for the optimal or near optimal solu-
tions (Christaline et al. 2016). An ALO-based technique has
been first proposed by Zawbaa et al. (2015) to tackle the fea-
ture selection problem, in which the basic ALO was applied
in a wrapper feature selectionmodel. The proposed approach
was compared with PSO- and GA-based algorithms, and the
authors showed that ALO is able to delivery very competitive
and promising performance.
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Another FS that is based on ALO was proposed in Zaw-
baa et al. (2016). The proposed technique utilizes a chaotic
function in adapting the single parameter that controls the
balance between exploration and exploitation in the original
algorithm . Later on, a binary version of the ALO algorithm
was proposed byEmary et al. (2016). In this paper, twobinary
approacheswere developed: The first approach takes only the
inspiration of ALO operators and makes the corresponding
binary operators. In the second approach, the native ALO
is applied, while its continuous steps are thresholded using
suitable threshold function after squashing them. A set of FS
approaches using recent optimizers that were enhanced by
employing a set of chaotic maps to control their parameters
can be found in Emary and Zawbaa (2016). A recent ALO
for feature selection was proposed in Mafarja et al. (2017b),
where eight different transfer functions were used to convert
the continuous ALO to binary to suit the FS problem. More
recently, a novel feature selection approach that handled high
dimensional datasets with a low number of samples using a
hybrid meta-heuristic approach that hybridized GWO with
ALO algorithmwas proposed in Zawbaa et al. (2018). More-
over, in Emary andZawbaa (2018), an improved FS approach
using ALO algorithm was proposed. The authors improved
the local search ability of ALO by employing a Levy flight
random walk to help the algorithm escape from local minim.

The main question here is if there is a need for improv-
ing the algorithms proposed so far since they perform well
on test cases. According to No-Free-Lunch (NFL) theorem
for optimization (Wolpert 1997), there is no algorithm to
solve all optimization problems. This mean that currently
proposed algorithms for feature selectionare not able to solve
all feature selection problems. This motivated our attempt to
enhance the performance of ALO to solve a wider range of
problems in this field or better solves the current ones.

The main aim of this paper is tostudy the influence of the
quality of the initial population on the searching progress of
the ALO algorithm and on the computational time. In this
approach, we proposed the use of two filter feature selection
methods: Rough Set Quick Reduct (Jensen and Shen 2003)
and the Conditional Entropy-Based Algorithm for Reduc-
tion of Knowledge with Computing Core (CEBARKCC) (Yu
et al. 2002) to enhance the initial population. By using these
two methods the most informative features will be selected
to form the initial population which means that the search-
ing process will not start from randomly generated solutions.
The proposed algorithm is tested on 18 well-known datasets
and shows a very good performance when compared to the
other algorithms in the literature.

The rest of this paper is organized as follows: Sect. 2
discusses rough set theory and conditional entropy as evalua-
tion and reductionmechanisms. Section 3 describes the ALO
algorithm. The proposed approaches are analyzed in Sect. 4.

In Sect. 5, results of our experiments are presented, and Sect.
6 addresses the conclusion and suggests future works.

2 Preliminaries

2.1 Rough set theory

Let I = (U , A) be an information system, whereU is a non-
empty set of finite objects called the universe of discourse; A
is a non-empty set of attributes. With every attribute a ∈ A,
a set of its values (Va) is associated. For a subset of attributes
P ⊆ A there is an associated equivalence relation IND (P),
which is called an indiscernibility relation. The relation IND
(P) can be defined as follows:

IND (P) =
{
(x, y) ∈ U 2|∀a ∈ P, a (x) = a (y)

}
(1)

If (x, y) ∈ IND(P), then x and y are indiscernible
by attributes from P . The equivalence classes of the P-
indiscernibility relation are denoted[x]p. The indiscernibil-
ity relation is the mathematical basis of the rough set theory.
In rough set theory, the lower and upper approximations
are two basic operations. For a subset X ⊆ U . X can be
approximated using only information contained within P by
constructing the P-lower approximation donated as P X , is
the set of all elements ofU , which can be certainly classified
as elements of X based on the attribute set P. The P-upper
approximation of X , denoted as PX , which can be possibly
classified as elements of X based on the attribute set P . These
two definitions can be expressed as:

P X = {X | [X ]P ⊆ P X} (2)

PX = {X |[X ]P ∩ X �= ϕ} (3)

Definition 1 (Dependency degree) Let P, Q ⊆ A, the
dependency degree k is defined by:

k = γP (D) = POSP (Q)

|U | (4)

where |U | is the cardinality of U . POSP (Q) called positive
region, is defined by:

POSP (Q) = YX∈U/Q P X (5)

The positive region contains all objects of U that can be
uniquely classified to blocks of the partition U/Q using the
knowledge in attributes P .

For P, Q ⊂ A, it is said that Q depends on P in a degree
of k (0 ≤ k ≤ 1) denoted P ⇒ kQ,
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If k = 1, we say that Q depends totally on P , if k < 1,
we claim that Q depends partially on P , and if k = 0, we
say that Q does not depend on P .

One of the major applications of rough set theory is to find
the minimal reducts by eliminating the redundant attributes
fromoriginal sets, without any information loss (Pawlk 1982,
1991). The reduction of attributes can be achieved by com-
paring the dependency degrees of the generated subsets so
that the reduced set has the same dependency degree of the
original set (Jensen and Shen 2004). A reduct is formally
defined as a subset R of minimal cardinality of the condi-
tional attribute set C such that γR(D) = γC (D) where D is
a decision system.

Definition 2 (Reduct). Let R be a subset of C , R is said to
be a reduct if:

rR(D) = rC (D)∀R′ ⊂ R, rR(D) < rc(D) (6)

The intersection of all reduced subsets is called the core given
in Eq. 7:

Core (�) = IR∈�R (7)

The core contains all those attributes that cannot be
removed from the dataset without introducing more contra-
dictions to the dataset. In the process of attribute reduction,
a set �min ⊆ � of reducts with minimum cardinality is
searched for:

�min = {R ∈ � : |R| ≤ |S| ,∀S ∈ �} (8)

It is obvious that finding all possible reducts is a time con-
suming process, and it is applicable only to small datasets as
well. It is meaningless to calculate all reducts aiming to find
only one minimal. To improve the performance of the above
method, an alternative strategy is required for large datasets.
Therefore, two important reduction methods are discussed:
QuickReduct andCEBARKCCmethod that used the concept
of rough set theory to find the minimal reducts.

2.2 Quick Reduct

The QuickReduct algorithm given in Algorithm 1 and
obtained from Jensen and Shen (2003) starts with an empty
set and adds the best candidate attribute that increases the
dependency degree until the consistent state (1 if the dataset
is consistent) is achieved. QuickReduct algorithm attempts to
find the minimal reduct without exhaustively generating all
possible solutions which will be computationally expensive.

Table 1 Example dataset x ∈ U a b c d ⇒ e

u0 1 0 2 2 0

u1 0 1 1 1 2

u2 2 0 0 1 1

u3 1 1 0 2 2

u4 1 0 2 0 1

u5 2 2 0 1 1

u6 2 1 1 1 2

u7 0 1 1 0 1

In the example represented in Table 1, the attribute d is
initially chosen as its corresponding degree of dependency
is the highest (a value of 0.25). Next, the subsets {a, d},
{b, d}, and {c, d} are evaluated. The subset {b, d} produces
a dependency degree of 1 and the algorithm terminates as
a reduct has been found. The generated reduct shows the
way of reducing the dimensionality of the original dataset by
eliminating those conditional attributes that do not appear in
the set.

By using QuickReduct algorithm to enhance the initial
population, we make sure that all solutions are close to min-
imal reducts and contain the most informative features that
may lead to higher accuracy in the following stages.

2.3 Approximate entropy reducts

2.3.1 Conditional information entropy

Rough set entropy reduct (Ślezak2002) is the reduction based
on conditional information entropy. For a decision system

I = (U , A ∪ {d}), A is the condition attributes and d is
decision attribute. B is a subset of attributes where
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B ⊆ A. The entropy of B is defined as in Eq. 9.

H (B) = −
∑

Xi∈U/B

p (Xi ) log (p (Xi )) (9)

If U/d = {Y1,Y2, . . . ,Ym}, the conditional entropy of B
with reference to d is as in Eq. 10:

H (d |B) = −
n∑

i=1

p (Xi )

m∑
j=1

p
(
Y j |Xi

)
log p

(
Y j |Xi

)
(10)

where p(Y j |Xi ) = Y j∩Xi
|Xi | , i = 1, 2, . . ., n, j = 1, 2, . . .,m.

The rough set entropy reduct can be defined as in Eq. 11:

Reduct = {R ⊆ A|H(d|R) = H(d|A),

∀B ⊂ RH(d|B) �= H(d|A)} (11)

2.3.2 Approximate entropy reducts

The approximate entropy reduct (Ślezak 2002) is defined as
in Eq. 12:

H (d |B) + log (1 − ε) ≤ H (d |A) (12)

where ε ∈ [0, 1), B ⊆ A.
The approximate reducts is the attribute subsets that can

approximate decision classes accurately enough based on the
slack factor ε. The minimal ε-approximate entropy reducts
is to find a minimal B satisfying Eq. 12, which is NP-hard
for any ε ∈ [0, 1).

2.4 The CEBARKCCmethod

Another technique for discovering rough set reducts is
entropy-based reduction calledCEBARKCCdeveloped from
work carried out in Yu et al. (2002) represented in Algorithm
2. This approach used the forward greedy search strategy to
search a distribution reduct where H(D|B ∪ {ai } is used as
the heuristic information.

In CEBARKCC the reduction process is being processed
step by step by adding one attribute at a time to the reduct and
the conditional entropy is calculated, if an attribute a cannot
add any information to the classes induced by an attributes
subset B, namely H(D|B ∪ {ai}) = H(D|B), it may be
reduced (Yu et al. 2002). The algorithm stopped when the
condition H(D|C) = H(D|B) is satisfied.

3 Ant Lion optimizer (ALO)

ALO is a nature-inspired algorithm that mimics the forag-
ing behavior of the ant lions’ larvae. ALO was proposed
by Mirjalili (2015). The ALO algorithm is a stochastic
population-based optimization algorithm that can be consid-
ered as one of the meta-heuristics (Mirjalili 2015) that has a
very good performance in tackling a wide range of optimiza-
tion problems.

Ant lions’ life is divided into two stages: the larva stage
and adulthood. Themost important characteristic of the larva
stage is hunting. The ant lion larvae digs a trap in the sand
which takes the formof a cone bymoving in a circularmotion
and throws sand outside the trap the area using its massive
jaws. The size of the trap depends on two factors; the hunger
level and the moon shape (Goodenough et al. 2009; Hutchins
and Olendorf 2004; Mirjalili 2015). After digging a trap, the
larvae disappears under the bottom of the cone and waits for
its preferable prey (ants) to be trapped in the hole. Once the
ant lion realizes that the prey is in the trap, it tries to catch it.
However, insects usually try to escape from the cone and are
not caught immediately. In this case, the ant lion throws sand
intelligently toward the edge of the trap until the prey slides
toward the bottom of the hole again. When the prey slips to
the bottom of the hole and is caught by the jaw, it is pulled
under the soil and consumed. After the consumption of prey,
ant lions throw food scraps out of the hole and adjust the hole
to hunt other prey. Based on this description of the ant lion
hunting process, a set of conditions can be formulated as in
the following items (Mirjalili 2015):

• Preys (ants) move randomly around the search space.
These moves are affected by the traps of ant lions.

• The highest fitness ant lion builds a larger pit.
• Catching an ant by an ant lion is proportional to the fitness
of that ant lion.
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• Each ant lion can catch an ant in each iteration.
• To simulate sliding ants toward ant lions, the range of
random walks is decreased adaptively.

• If an ant becomes fitter than an ant lion, this means that
it is caught and pulled under the soil by the ant lion.

• An ant lion repositions itself to the latest caught prey and
builds a pit to improve its chances of catching another
prey after each hunt.

3.1 Randomwalks of ants

Ants move around the search space (update their positions)
using random walks at each iteration of the algorithm based
on Eq. 13.

X(t) = [0, cumsum(2r(t1) − 1), cumsum(2r(t1) − 1), . . . ,

cumsum(2r(tn) − 1)] (13)

where cumsum represents the cumulative sum, n is the max
iteration, t is the iteration, and r(t) is a stochastic function
that takes value (1) if a random number is less than 0.5 and
0 otherwise.

To insure that the ants move within the boundaries of the
search space, the random walks are normalized using Eq. 14
(min–max normalization) in each iteration:

Xt
i =

(
Xt
i − ai

) × (
di − cti

)
(
dti − ai

) + ci (14)

where ai and bi are the minimum and maximum of random
walk of ith variable, cti and d

t
i are theminimumandmaximum

ith variable in tth iteration.

3.2 Trapping in ant lion’s pits

Random walks of ants are affected by the traps of the ant
lions. Equations 15 and 16 model this assumption:

cti = Ant liontj + ct (15)

dti = Ant liontj + dt (16)

where ctand dtare two vectors that contain the minimum and
maximum of all variables in tth iteration, cti and dti are the
minimum and maximum ith ant and Ant liontj represents the
position of the jth ant lion at the tth iteration.

3.3 Building a trap

A selection mechanism should be used to model the hunting
capability of ant lions. The ant lion with the higher fitness
has a higher chance to catch an ant. In this work, roulette

wheel selection (RWS) for selecting ant lions based on their
fitness value was applied.

3.4 Sliding ants toward ant lion

When the ant slips into the pit, it tries to escape.When the ant
lion realizes that there is a prey in the pit it shoots the sand
outwards the center of the pit. To model this behavior math-
ematically, the radius of the ant’s random walk is decreased
adaptively using Eqs. 17 and 18.

ct = ct

I
(17)

dt = dt

I
(18)

where ct and dt are vectors that represent the minimum and
maximum of all variables at tth iteration, I is a ration, which
is defined in Eq. 19.

I = 10w t

T
(19)

where t is the current iteration, T is themax iteration, andw is
a constant that can adjust the accuracy level of the exploita-
tion. w is defined based on the current iteration (w = 2
when t > 0.1T , w = 3 when t > 0.5T , w = 4 when
t > 0.75T , w = 5 when t > 0.9T , and w = 6 when
t > 0.95T ).

3.5 Catching prey and rebuilding the pit

In the final stage of hunting, the prey reaches the bottom of
the pit and is caught in the ant lion’s jaw. After that, the ant
lion pulls the ant inside the sand and consumes its body. It is
assumed that prey is caught when the ant becomes fitter than
its corresponding ant lion. Here, the ant lion has to update
its position to the position of the hunted ant to increase its
ability of hunting new ant. Equation 20 models this process
(for a minimization problem without the loss of generality):

Ant liontj =
{
Antti if f

(
Antti

)
< f

(
Ant liontj

)

Ant liontj otherwise

(20)

where t represents the current iteration, Ant liontj , Ant
t
i rep-

resent the position of the jth ant lion and the ith ant at the tth
iteration.

3.6 Elitism

The ant lion with the higher fitness in each iteration is con-
sidered as an elite. The elite ant lion and the selected ant lion
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by using the selection mechanism guide the random walk of
an ant, and hence the repositioning of a given ant follows the
following Eq. 9.

Antti = Rt
A + Rt

E

2
(21)

where Rt
A represents the random walk around the selected

ant lion using the selection mechanism, and Rt
E represents

the random walk around the elite ant lion.

4 Hybrid binary ant lion optimizer for
feature selection

In this section, the two proposed hybrid approaches are
exploited in feature selection for classification problems.
The proposed ant lion Optimizer is mainly based on the
hybridization between rough set and conditional entropy-
based approaches (QuickReduct and CEBARKCC) and
ALO-based approaches namely (BALO-1, BALO-S, and
BALO-V)) reported in Emary et al. (2016). These three
approaches are ALO-based approaches where the solution is
represented in a binary format instead of using the continuous
version in cALO (Zawbaa et al. 2016). The average operator
in the ALO is replaced by crossover operation between two
binary solutions. The two solutions to perform the crossover
are either obtained by performing mutation as a local search
around ant lions with suitable mutation rate, called BALO-1,
or as a threshold continuous random walk around ant lions
with suitable step size, called BALO-S and BALO-V.

For further information about these approaches, readers
are referred to Zawbaa et al. (2016) and Emary et al. (2016).

As shown in Fig. 1, in the HBALO, both QuickReduct and
CEBARKCCare employed to search for theminimal reducts.
An initial population for the ants is randomly generated, and
two solutions (reducts) are generated for each data set using
QuickReduct and CEBARKCC approaches, then the ants’
population is updated by applying the OR logical opera-
tor between each solution in the population and the redcut.
This step will include the most informative attributes in each
solution of the population. The algorithm then starts from
a population that contains the most informative attributes in
each individual of the population. In order to balance between
the number of selected features and the quality of each reduct,
the fitness function in Eq. 22 is used (Jensen and Shen 2003).

Fitness (R) = γR (D) ∗ |C | − |R|
|C | , (22)

where γR (D) represents the dependency degree in the
QuickReduct and the conditional entropy for CEBARKCC.
|R| is the cardinality of the selected subset and |C | is the total
number of features in the dataset.

The fitness function that is used in BALO approaches to
evaluate individual search agents is shown in Eq. 23 (Emary
et al. 2016).

Fitness = αγR(D) + β
R

C
(23)

whereγR(D) represents the classification error rate of a given
classier (the K-nearest neighbor (KNN) classifier (Chuang
et al. 2008) is used here). |R| is the cardinality of the selected
subset and |C | is the total number of features in the dataset,
α and β are two parameters corresponding to the importance
of classification quality and subset length, α ∈ [1, 0] and
β = (1 − α) adopted from Emary et al. (2016). The source
code of the proposed method can be found in http://www.
alimirjalili.com/Projects.html

5 Experimental results and discussion

The implementation of the proposed algorithms is done in
MATLAB. The performance of the proposed algorithms is
tested using eighteen FS benchmark datasets in Table 2 from
the UCI data repository (Blake andMerz 1998). The selected
datasets contain various number of features and instances;
some of them are of high dimensionality which insures per-
formance of optimization algorithms in huge search spaces.

A filter-wrapper approach for feature selection is used.
First, twofilter approaches basedon rough set and conditional
entropy are used to generate the initial population and then the
wrapper approach based on theKNNclassifier [where K = 5
(Emary et al. 2016)] is used to generate the best reduct. In the
wrapper approach, the training/testing model is used, where
80% of each individual dataset is used to build the learning
model, while the other 20% of the instance is used for testing
purposes (Friedman et al. 2001).

The experiments are tested on Intel machine Core i5 CPU
2.2GHz and 4 GB RAM, and the parameter values are in
Table 3 as adopted from Emary et al. (2016).

The proposed approaches are tested and compared against
the ALO optimizer and other three enhanced ALO optimiz-
ers namely BALO-1, BALO-S, and BALO-V (Emary et al.
2016) where each of them used three different initialization
methods in generating the ant lion positions; namely Mixed
initialization, small initialization, and large initialization.

In the fitness function, two objectives are adopted. The
first one is the classification accuracy while the second is the
number of selected features in each reduct. The performance
of the QuickReduct-based approaches over the first objective
(classification accuracy) is outlined in Tables 4, 5 and 6.

From Tables 4, 5 and 6, it is evident that the classification
accuracy produced when using the full feature set is worse
thanusing the three proposed approaches. In addition, bALO-
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Fig. 1 Flowchart of the
proposed ant lion optimizer
(HBALO)

Start

Initialize the Ants population randomlyInitialize the Ant lions 
population randomly

Improve the ants population 
using QR and CER

Find the best Ant lion and denote it as the Elite

t < T

Show the Elite Ant lion as the 
result

ant  < 
Ants 

Select an Ant lion using RWS

Slide an Ant towards the 
selected Ant lion (Eq. 15 and 

Eq. 16 )

Update the position of the Ant 
(random walk)

Calculate the fitness of each 
Ant

If the Ant becomes fitter than 
its corresponding Ant lion then 

replace it

Update the Elite Ant lion

End

Evaluate Ants and Ant lions

QR that based on the basic ALO algorithms outperforms all
other approaches on five datasetswhen comparedwhen using
large and small-mixed initialization, and on 6 datasets when
using small initialization. bALOV-QR approach performs
better than other approaches on eight datasets regardless of
the initialization method used.

In Emary et al. (2016), it was stated that the mixed
initialization-based methods outperform other approaches.
From the previous results, we can see that the QuickReduct-
based approaches are able to produce better results on many
datasets than those produced by the mixed initialization-

based methods. The performance of the proposed approach
can be interpreted by the assumption that the generated pop-
ulation contains the closest subsets to the optimal solution.
This mechanism enhanced the ability to concentrate on the
classification accuracy in the fitness function since the solu-
tions are closed to the minimal.

Tables 7, 8, and 9 represent the comparison between the
CEBARKCC-based approaches and the other approaches
that use the large, small and mixed-small initializations,
respectively. Both bALO-CE and bALOV-CE outperformed
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Table 2 List of datasets used in the experiments

Dataset No. of features No. of samples

1 Breastcancer 9 699

2 BreastEW 30 569

3 CongressEW 16 435

4 Exactly 13 1000

5 Exactly2 13 1000

6 HeartEW 13 270

7 IonosphereEW 34 351

8 KrvskpEW 36 3196

9 Lymphography 18 148

10 M-of-n 13 1000

11 PenglungEW 325 73

12 SonarEW 60 208

13 SpectEW 22 267

14 Tic-tac-toe 9 958

15 Vote 16 300

16 WaveformEW 40 5000

17 WineEW 13 178

18 Zoo 16 101

Table 3 Parameter setting for experiments

Parameter Value(s)

No. of search agents 8

No. of iterations 70

Problem dimension Number of features
in the data

Search domain in
binary algorithms

{0, 1}

Number of runs 20

α parameter in the
fitness function

0.99

β parameter in the
fitness function

0.01

other approaches over five datasets with a significant differ-
ence (reached 13%) in some cases.

Although the QuickReduct-based approaches perform
better than CEBARKCC in terms of classification accu-
racy, the latter, still has a good performance when com-
pared against other approaches. This might be because
QuickReduct simulates the forward selection mechanism
when generating the next subset where the algorithm starts
from an empty set and adds only the feature that improves
the quality of the solution.

Tables 10 and 11 outline the secondary objective in the
fitness function namely average selection size. bALOV-CE
has a much enhanced performance over the other optimiz-
ers adopted in the paper where it outperformed all other

approaches on seven datasets. Other approaches have shown
good performance over many datasets. The QuickReduct-
based approaches showed a good performance in terms of
the number of selected features but the CEBARKCC-based
approaches still perform better, while the former outperforms
the latter in terms of classification accuracy. This is not con-
tradictory, since the two methods used to reduce the number
of the selected features are independent from the classifica-
tion algorithm in a filter mode. This proves that the selected
features by the QuickReduct algorithm are the most infor-
mative features in the dataset.

Figures 2 and 3 shows the representation of the compari-
sonbetweenQuickReduct andCEBARKCCbased approaches
respectively, and other approaches from literature in terms
of selection size, where our approaches are the first three
approaches in each figure. It can be seen that the proposed
approaches outperform other approaches on many datasets.

In Tables 12 and 13 the average computational time
of different optimization algorithms is outlined. Since all
approaches are using the same parameter settings, we can use
the computational time to compare the performance of the
algorithms. Inspecting Table 12, it may be seen that bALO-
QR bALO-CE (bALO1 based) have the minimum running
time among other approaches. From these observations we
can remark that the bALO1-based approaches are able to pro-
duce the results faster than other approaches due to its simple
operators that depend on simple mutation and crossover. In
addition, there is a significant difference between the per-
formance of BALOS- and BALOV-based approaches and all
other adopted approaches in this paper. This proves the con-
vergence capability of these approaches and their ability to
provide better results in terms of classification accuracy and
selection ratio in a very short time. Figures 4 and 5 visualize
the comparison between the proposed approaches and the
other obtained approaches from literature in terms of com-
putational time.

Taken together, the results of this section show that the ini-
tial population influences the robustness and the convergence
of ALO algorithm. In the proposed algorithms the initial
population is generated in two phases. In the first phase, a
simple method based on the mathematical theory of random
number generation is employed to generate a sequence of
random numbers by spreading points uniformly in the search
space. Then, in the second phase, the two incremental local
search techniques (QuickReduct and CEBARKCC) are used
to enhance the random population by embedding the most
informative features with the randomly generated solutions.
The first phase ensures diversity of the population, while
the second tries to converge the initial solutions toward the
optimal solution. Here, we can remark that the enhanced per-
formance of the proposed algorithms is due to the diversity
in population provided by this method and the closeness of
some search agents to the global optima. It is worth mention-
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Table 4 Comparison of classification accuracy between QuickReduct-based approaches and approaches that use large initialization

DS no. Dataset bALO-QR bALOS-QR bALOV-QR ALO BALO-1 BALO-S BALO-V Full

1 Breastcancer 0.974 0.945 0.974 0.969 0.974 0.966 0.978 0.944

2 BreastEW 0.962 0.916 0.961 0.972 0.977 0.976 0.979 0.963

3 CongressEW 0.972 0.916 0.973 0.960 0.964 0.956 0.968 0.917

4 Exactly 0.912 0.640 0.974 0.705 0.777 0.746 0.857 0.673

5 Exactly2 0.760 0.702 0.758 0.766 0.767 0.768 0.771 0.743

6 HeartEW 0.884 0.804 0.889 0.856 0.876 0.867 0.876 0.815

7 IonosphereEW 0.869 0.795 0.884 0.897 0.903 0.885 0.893 0.866

8 KrvskpEW 0.975 0.761 0.975 0.941 0.965 0.946 0.967 0.915

9 Lymphography 0.886 0.711 0.878 0.830 0.845 0.827 0.865 0.683

10 M-of-n 1.000 0.701 1.000 0.901 0.989 0.898 0.980 0.849

11 PenglungEW 0.665 0.573 0.659 0.962 0.964 0.958 0.966 0.951

12 SonarEW 0.840 0.717 0.852 0.832 0.853 0.834 0.844 0.620

13 SpectEW 0.900 0.788 0.894 0.858 0.886 0.863 0.886 0.831

14 Tic-tac-toe 0.800 0.654 0.811 0.772 0.787 0.787 0.783 0.715

15 Vote 0.948 0.887 0.953 0.957 0.960 0.953 0.963 0.877

16 WaveformEW 0.794 0.689 0.798 0.785 0.797 0.781 0.800 0.768

17 WineEW 1.000 0.921 1.000 0.983 0.992 0.992 0.992 0.932

18 Zoo 0.961 0.816 0.973 0.906 0.921 0.916 0.911 0.792

Bold values indicate the best results

Table 5 Comparison of classification accuracy between QuickReduct-based approaches and approaches that use small initialization

DS no. Dataset bALO-QR bALOS-QR bALOV-QR ALO BALO-1 BALO-S BALO-V Full

1 Breastcancer 0.974 0.945 0.974 0.967 0.974 0.967 0.938 0.944

2 BreastEW 0.962 0.916 0.961 0.976 0.976 0.979 0.962 0.963

3 CongressEW 0.972 0.916 0.973 0.959 0.966 0.960 0.941 0.917

4 Exactly 0.912 0.640 0.974 0.699 0.861 0.730 0.718 0.673

5 Exactly2 0.760 0.702 0.758 0.762 0.768 0.767 0.748 0.743

6 HeartEW 0.884 0.804 0.889 0.857 0.870 0.870 0.802 0.815

7 IonosphereEW 0.869 0.795 0.884 0.900 0.887 0.885 0.832 0.866

8 KrvskpEW 0.975 0.761 0.975 0.955 0.963 0.948 0.962 0.915

9 Lymphography 0.886 0.711 0.878 0.827 0.862 0.848 0.776 0.683

10 M-of-n 1.000 0.701 1.000 0.909 0.980 0.903 0.945 0.849

11 PenglungEW 0.665 0.573 0.659 0.961 0.963 0.958 0.955 0.951

12 SonarEW 0.840 0.717 0.852 0.825 0.858 0.829 0.702 0.620

13 SpectEW 0.900 0.788 0.894 0.846 0.884 0.863 0.807 0.831

14 Tic-tac-toe 0.800 0.654 0.811 0.764 0.787 0.779 0.756 0.715

15 Vote 0.948 0.887 0.953 0.948 0.962 0.952 0.918 0.877

16 WaveformEW 0.794 0.689 0.798 0.792 0.800 0.776 0.781 0.768

17 WineEW 1.000 0.921 1.000 0.992 0.994 0.989 0.921 0.932

18 Zoo 0.961 0.816 0.973 0.906 0.921 0.921 0.831 0.792

Bold values indicate the best results

ing here that the proposed initialization methods enhanced
the ability of ALO algorithm balance between exploration
and exploitation.

Also, the results of this section showed the superior perfor-
mance of the proposed HBALO as compared to the current

algorithms in the literature. TheALOalgorithmbenefits from
high exploration due to the position updating equations. The
solutions constantly face randomchanges usingmultiple best
solutions obtained so far. The search landscape of feature
selection problems changes for every dataset. Also, such
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Table 6 Comparison of classification accuracy between QuickReduct-based approaches and approaches that use small mixed initialization

DS no. Dataset bALO-QR bALOS-QR bALOV-QR ALO BALO-1 BALO-S BALO-V Full

1 Breastcancer 0.974 0.945 0.974 0.971 0.974 0.969 0.970 0.944

2 BreastEW 0.962 0.916 0.961 0.972 0.979 0.979 0.979 0.963

3 CongressEW 0.972 0.916 0.973 0.961 0.970 0.961 0.963 0.917

4 Exactly 0.912 0.640 0.974 0.701 0.856 0.723 0.856 0.673

5 Exactly2 0.760 0.702 0.758 0.764 0.766 0.766 0.766 0.743

6 HeartEW 0.884 0.804 0.889 0.869 0.872 0.867 0.878 0.815

7 IonosphereEW 0.869 0.795 0.884 0.885 0.889 0.877 0.892 0.866

8 KrvskpEW 0.975 0.761 0.975 0.948 0.967 0.946 0.966 0.915

9 Lymphography 0.886 0.711 0.878 0.824 0.875 0.844 0.861 0.683

10 M-of-n 1.000 0.701 1.000 0.930 0.994 0.917 0.990 0.849

11 PenglungEW 0.665 0.573 0.659 0.962 0.963 0.959 0.964 0.951

12 SonarEW 0.840 0.717 0.852 0.827 0.868 0.825 0.846 0.620

13 SpectEW 0.900 0.788 0.894 0.850 0.890 0.863 0.891 0.831

14 Tic-tac-toe 0.800 0.654 0.811 0.772 0.787 0.779 0.787 0.715

15 Vote 0.948 0.887 0.953 0.950 0.955 0.953 0.960 0.877

16 WaveformEW 0.794 0.689 0.798 0.786 0.800 0.778 0.805 0.768

17 WineEW 1.000 0.921 1.000 0.989 0.989 0.989 0.994 0.932

18 Zoo 0.961 0.816 0.973 0.891 0.931 0.906 0.921 0.792

Bold values indicate the best results

Table 7 Comparison of classification accuracy between CEBARKCC-based approaches and approaches that use large initialization

DS no. Dataset bALO-CE bALOS-CE bALOV-CE ALO BALO-1 BALO-S BALO-V Full

1 Breastcancer 0.974 0.955 0.974 0.969 0.974 0.966 0.978 0.944

2 BreastEW 0.968 0.927 0.962 0.972 0.977 0.976 0.979 0.963

3 CongressEW 0.970 0.881 0.965 0.960 0.964 0.956 0.968 0.917

4 Exactly 0.962 0.653 0.980 0.705 0.777 0.746 0.857 0.673

5 Exactly2 0.763 0.718 0.762 0.766 0.767 0.768 0.771 0.743

6 HeartEW 0.859 0.776 0.868 0.856 0.876 0.867 0.876 0.815

7 IonosphereEW 0.890 0.815 0.892 0.897 0.903 0.885 0.893 0.866

8 KrvskpEW 0.973 0.718 0.972 0.941 0.965 0.946 0.967 0.915

9 Lymphography 0.902 0.624 0.904 0.830 0.845 0.827 0.865 0.683

10 M-of-n 1.000 0.719 0.994 0.901 0.989 0.898 0.980 0.849

11 PenglungEW 0.881 0.784 0.872 0.962 0.964 0.958 0.966 0.951

12 SonarEW 0.869 0.754 0.906 0.832 0.853 0.834 0.844 0.620

13 SpectEW 0.888 0.813 0.882 0.858 0.886 0.863 0.886 0.831

14 Tic-tac-toe 0.820 0.695 0.815 0.772 0.787 0.787 0.783 0.715

15 Vote 0.952 0.859 0.955 0.957 0.960 0.953 0.963 0.877

16 WaveformEW 0.807 0.681 0.812 0.785 0.797 0.781 0.800 0.768

17 WineEW 0.987 0.987 0.984 0.983 0.992 0.992 0.992 0.932

18 Zoo 0.957 0.847 0.961 0.906 0.921 0.916 0.911 0.792

Bold values indicate the best results

problems have higher number of variables due to their binary
nature. To handle such challenges, an algorithm requires high
exploratory behavior to avoid the local optimal solutions and
find the global optimum. The main issue with promoting
exploration is the reduction in the accuracy of solutions. This

was themotivation of integrating hill-climbing technique into
ALO and the proposal of HBALO. Hill climbing is one of the
best local search techniques in the literature. This algorithm
improves the accuracy of the solutions obtained by the ALO
algorithm in the proposed method. The results showed that
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Table 8 Comparison of classification accuracy between CEBARKCC-based approaches and approaches that use small initialization

DS no. Dataset bALO-CE bALOS-CE bALOV-CE ALO BALO-1 BALO-S BALO-V Full

1 Breastcancer 0.974 0.955 0.974 0.967 0.974 0.967 0.938 0.944

2 BreastEW 0.968 0.927 0.962 0.976 0.976 0.979 0.962 0.963

3 CongressEW 0.970 0.881 0.965 0.959 0.966 0.960 0.941 0.917

4 Exactly 0.962 0.653 0.980 0.699 0.861 0.730 0.718 0.673

5 Exactly2 0.763 0.718 0.762 0.762 0.768 0.767 0.748 0.743

6 HeartEW 0.859 0.776 0.868 0.857 0.870 0.870 0.802 0.815

7 IonosphereEW 0.890 0.815 0.892 0.900 0.887 0.885 0.832 0.866

8 KrvskpEW 0.973 0.718 0.972 0.955 0.963 0.948 0.962 0.915

9 Lymphography 0.902 0.624 0.904 0.827 0.862 0.848 0.776 0.683

10 M-of-n 1.000 0.719 0.994 0.909 0.980 0.903 0.945 0.849

11 PenglungEW 0.881 0.784 0.872 0.961 0.963 0.958 0.955 0.951

12 SonarEW 0.869 0.754 0.906 0.825 0.858 0.829 0.702 0.620

13 SpectEW 0.888 0.813 0.882 0.846 0.884 0.863 0.807 0.831

14 Tic-tac-toe 0.820 0.695 0.815 0.764 0.787 0.779 0.756 0.715

15 Vote 0.952 0.859 0.955 0.948 0.962 0.952 0.918 0.877

16 WaveformEW 0.807 0.681 0.812 0.792 0.800 0.776 0.781 0.768

17 WineEW 0.987 0.987 0.984 0.992 0.994 0.989 0.921 0.932

18 Zoo 0.957 0.847 0.961 0.906 0.921 0.921 0.831 0.792

Bold values indicate the best results

Table 9 Comparison of classification accuracy between CEBARKCC-based approaches and approaches that use small-mixed initialization

DS no. Dataset bALO-CE bALOS-CE bALOV-CE ALO BALO-1 BALO-S BALO-V Full

1 Breastcancer 0.974 0.955 0.974 0.971 0.974 0.969 0.970 0.944

2 BreastEW 0.968 0.927 0.962 0.972 0.979 0.979 0.979 0.963

3 CongressEW 0.970 0.881 0.965 0.961 0.970 0.961 0.963 0.917

4 Exactly 0.962 0.653 0.980 0.701 0.856 0.723 0.856 0.673

5 Exactly2 0.763 0.718 0.762 0.764 0.766 0.766 0.766 0.743

6 HeartEW 0.859 0.776 0.868 0.869 0.872 0.867 0.878 0.815

7 IonosphereEW 0.890 0.815 0.892 0.885 0.889 0.877 0.892 0.866

8 KrvskpEW 0.973 0.718 0.972 0.948 0.967 0.946 0.966 0.915

9 Lymphography 0.902 0.624 0.904 0.824 0.875 0.844 0.861 0.683

10 M-of-n 1.000 0.719 0.994 0.930 0.994 0.917 0.990 0.849

11 PenglungEW 0.881 0.784 0.872 0.962 0.963 0.959 0.964 0.951

12 SonarEW 0.869 0.754 0.906 0.827 0.868 0.825 0.846 0.620

13 SpectEW 0.888 0.813 0.882 0.850 0.890 0.863 0.891 0.831

14 Tic-tac-toe 0.820 0.695 0.815 0.772 0.787 0.779 0.787 0.715

15 Vote 0.952 0.859 0.955 0.950 0.955 0.953 0.960 0.877

16 WaveformEW 0.807 0.681 0.812 0.786 0.800 0.778 0.805 0.768

17 WineEW 0.987 0.987 0.984 0.989 0.989 0.989 0.994 0.932

18 Zoo 0.957 0.847 0.961 0.891 0.931 0.906 0.921 0.792

Bold values indicate the best results

the high exploratory mechanism of ALO and accurate local
search of hill climbing combined are able to provide superior
results when solving feature selection problems.

The comparative results of HBALO with BALO-S and
BALO-V showed the superior performance of the proposed

algorithm as well. The BALO-S and BALO-V algorithms
uses different transfer functions. The literature shows that
the performance of binary algorithms can be significantly
improvedwith changing the transfer function. However, such
transfer functions change the way that an algorithm flips the
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Table 10 Comparison between QuickReduct-based approaches and other optimizers on all the data sets averaged on all initialization methods

DS no. Dataset bALO-QR bALOS-QR bALOV-QR ALO BALO-1 BALO-S BALO-V

1 Breastcancer 0.444 0.444 0.444 0.519 0.419 0.513 0.443

2 BreastEW 0.447 0.547 0.440 0.519 0.494 0.537 0.537

3 CongressEW 0.275 0.313 0.288 0.271 0.313 0.399 0.309

4 Exactly 0.462 0.585 0.462 0.406 0.436 0.517 0.462

5 Exactly2 0.446 0.446 0.415 0.457 0.338 0.547 0.333

6 HeartEW 0.462 0.646 0.446 0.650 0.474 0.573 0.504

7 IonosphereEW 0.388 0.294 0.335 0.335 0.431 0.350 0.399

8 KrvskpEW 0.389 0.522 0.411 0.688 0.457 0.559 0.468

9 Lymphography 0.500 0.578 0.478 0.417 0.361 0.475 0.432

10 M-of-n 0.462 0.615 0.462 0.684 0.483 0.675 0.513

11 PenglungEW 0.424 0.497 0.396 0.111 0.393 0.329 0.374

12 SonarEW 0.403 0.457 0.423 0.286 0.443 0.444 0.462

13 SpectEW 0.345 0.391 0.327 0.508 0.391 0.543 0.389

14 Tic-tac-toe 0.733 0.644 0.733 0.691 0.654 0.617 0.630

15 Vote 0.350 0.413 0.388 0.285 0.326 0.292 0.330

16 WaveformEW 0.550 0.650 0.525 0.847 0.593 0.654 0.567

17 WineEW 0.431 0.569 0.400 0.526 0.444 0.470 0.389

18 Zoo 0.375 0.463 0.413 0.441 0.361 0.458 0.396

Bold values indicate the best results

Table 11 Comparison between CEBARKCC-based approaches and other optimizers on all the data sets averaged on all initialization methods

DS no. Datset Atts Objects bALO-CE bALOS-CE bALOV-CE ALO BALO-1 BALO-S BALO-V

1 Breastcancer 9 699 0.400 0.422 0.333 0.519 0.419 0.513 0.443

2 BreastEW 30 569 0.480 0.613 0.400 0.519 0.494 0.537 0.537

3 CongressEW 16 435 0.350 0.375 0.338 0.271 0.313 0.399 0.309

4 Exactly 13 1000 0.462 0.585 0.462 0.406 0.436 0.517 0.462

5 Exactly2 13 1000 0.138 0.308 0.077 0.457 0.338 0.547 0.333

6 HeartEW 13 270 0.523 0.615 0.615 0.650 0.474 0.573 0.504

7 IonosphereEW 34 351 0.318 0.294 0.271 0.335 0.431 0.350 0.399

8 KrvskpEW 36 3196 0.433 0.589 0.439 0.688 0.457 0.559 0.468

9 Lymphography 18 148 0.356 0.422 0.367 0.417 0.361 0.475 0.432

10 M-of-n 13 1000 0.462 0.585 0.462 0.684 0.483 0.675 0.513

11 PenglungEW 325 73 0.402 0.462 0.414 0.111 0.393 0.329 0.374

12 SonarEW 60 208 0.423 0.513 0.450 0.286 0.443 0.444 0.462

13 SpectEW 22 267 0.327 0.409 0.373 0.508 0.391 0.543 0.389

14 Tic-tac-toe 9 958 0.556 0.667 0.556 0.691 0.654 0.617 0.630

15 Vote 16 300 0.188 0.250 0.175 0.285 0.326 0.292 0.330

16 WaveformEW 40 5000 0.480 0.620 0.560 0.847 0.593 0.654 0.567

17 WineEW 13 178 0.446 0.446 0.431 0.526 0.444 0.470 0.389

18 Zoo 16 101 0.375 0.475 0.388 0.441 0.361 0.458 0.396

Bold values indicate the best results

binary bits of decision variables in the problem. This can
improve the exploration of algorithm when the frequency
of changing binary bits is high. However, it might interrupt
other mechanism of algorithms and degrades the accuracy of
the final approximated solution. The results of this section

show that a memtic algorithm can be more beneficial since
the best feature of algorithms can be combined to better solve
a problem.
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Fig. 2 Average number of
selected features by
QuickReduct-based approaches
and other optimizers
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Fig. 3 Average number of
selected features by
CEBARKCC-based approaches
and other optimizers
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Fig. 4 Total time for
QuickReduct approaches and
other optimizers
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6 Conclusion

This paper presented two variants of a hybrid Ant Lion
Optimizer for feature selection called (HBALO) where a

hybridization model between ALO and two incremental hill-
climbing algorithms namely QuickReduct and CEBARKCC
was proposed. QuickReduct algorithm is a rough set-based
filter feature selectionmethod that simulates the forward gen-
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Fig. 5 Total time for
CEBARKCC approaches and
other optimizers
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Table 12 Total computational time for QuickReduct-based approaches and other different optimizers averaged over the different initializers

DS no. Dataset bALO1-QR bALOS-QR bALOV-QR ALO BALO-1 BALO-S BALO-V

1 Breastcancer 24.942 25.406 29.118 62.006 57.561 67.067 66.571

2 BreastEW 24.509 31.653 31.016 54.539 58.863 61.860 62.393

3 CongressEW 19.528 21.672 21.152 56.461 59.967 71.188 71.825

4 Exactly 37.324 37.977 37.641 67.170 78.934 84.121 83.861

5 Exactly2 45.448 36.708 37.530 66.609 74.356 83.471 78.834

6 HeartEW 16.329 18.757 22.111 43.311 47.528 51.228 51.639

7 IonosphereEW 16.914 20.267 21.528 51.923 48.638 58.363 58.286

8 KrvskpEW 285.617 298.467 314.330 560.125 456.039 464.636 466.768

9 Lymphography 15.293 20.724 18.711 42.352 44.308 50.204 50.405

10 M-of-n 38.596 40.047 41.328 79.271 80.473 82.328 85.512

11 PenglungEW 18.630 52.698 53.478 8598.746 6435.019 6542.570 6668.146

12 SonarEW 20.894 28.935 21.741 55.097 45.025 62.185 62.402

13 SpectEW 15.246 18.733 20.021 44.499 46.777 52.721 53.075

14 Tic-tac-toe 36.895 31.796 39.662 75.378 72.649 71.961 75.947

15 Vote 17.902 19.501 19.210 49.078 49.682 54.245 54.341

16 WaveformEW 444.731 441.899 436.883 1685.168 1256.171 1230.965 1276.610

17 WineEW 7.969 8.808 8.654 42.959 46.632 51.161 50.704

18 Zoo 7.875 9.345 9.302 49.572 46.751 51.571 52.328

Bold values indicate the best results

eration method where the algorithm starts from an empty set
and only the features that improve the fitness value will be
added. CEBARKCC is a conditional entropy-based method
that finds the core features and adds them to the feature subset.
These two methods are hybridized with the ALO algorithm
in order to improve the quality of the initial population and
eventually final optimal solution. The proposed approaches
were tested over 18 well-known UCI datasets and com-
pared among well-known feature selection methods: PSO,
GA and continuous ALO. Different aspects of performance
were assessed to evaluate the proposed approaches. For one,
results show that the QuickReduct-based approach performs

better than the CEBARKCC approach in terms of classifi-
cation accuracy while the latter outperforms the former in
terms of the minimal reducts. For another, both HBALO
methods outperform other approaches in the majority of case
studies. This shows the ability of the proposed approach to
search the space of features adaptively and its capability to
balance between exploration and exploitation efficiently. We
can conclude that the quality of the initial population affects
the search capability of the optimization algorithm. As the
proposed approach shows a good performance when using a
good initial population, we recommend further enhancement
of the ALO algorithm using other local search algorithms.
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Table 13 Total computational time for CEBARKCC-based approaches and other different optimizers averaged over the different initializers

DS No. Dataset bALO-CE bALOS-CE bALOV-CE ALO BALO-1 BALO-S BALO-V

1 Breastcancer 11.307 12.107 11.750 62.006 57.561 67.067 66.571

2 BreastEW 12.555 14.499 14.369 54.539 58.863 61.860 62.393

3 CongressEW 10.095 11.189 11.364 56.461 59.967 71.188 71.825

4 Exactly 18.130 19.108 18.709 67.170 78.934 84.121 83.861

5 Exactly2 15.768 21.031 16.076 66.609 74.356 83.471 78.834

6 HeartEW 8.356 9.188 9.289 43.311 47.528 51.228 51.639

7 IonosphereEW 9.374 11.173 11.032 51.923 48.638 58.363 58.286

8 KrvskpEW 168.453 173.027 170.298 560.125 456.039 464.636 466.768

9 Lymphography 7.474 8.513 8.719 42.352 44.308 50.204 50.405

10 M-of-n 18.005 18.678 18.542 79.271 80.473 82.328 85.512

11 PenglungEW 8.922 27.502 27.393 8598.746 6435.019 6542.570 6668.146

12 SonarEW 8.120 11.747 11.475 55.097 45.025 62.185 62.402

13 SpectEW 8.241 9.487 9.547 44.499 46.777 52.721 53.075

14 Tic-tac-toe 17.303 17.025 17.469 75.378 72.649 71.961 75.947

15 Vote 8.420 9.580 9.328 49.078 49.682 54.245 54.341

16 WaveformEW 433.546 445.087 441.927 1685.168 1256.171 1230.965 1276.610

17 WineEW 7.766 7.766 8.612 42.959 46.632 51.161 50.704

18 Zoo 7.929 8.940 8.946 49.572 46.751 51.571 52.328

Total 779.763 835.647 824.844 12948.000 9819.000 10418.000 10586.000

Bold values indicate the best results
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