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Abstract

Octupole deformations play a significant role in the rare-earth region of the

nuclear chart. We will study the ground state properties in the even-even

Sm isotopes, and investigate the role of octupole deformation and its effect

on several ground state properties, such as binding energy, binding energy

per nucleon, neutron and proton mean radii, and two neutron separation

energy. For this investigation covariant density functional theory with BCS

approximation for the pairing correlation will be employed.
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Chapter 1

Introduction

1.1 Covariant Density Functional Theory

The atomic nucleus is made up of many nucleons(protons and neutrons), that

interact with each other, thus one can treat it as a many body problem.

Density functional theory (DFT) is a tool that was developed by Kohn

and Sham, and it was implemented in nuclear structure through the self-

consistent mean-field approach [1–4]. Further more, in nuclear physics one

can take the interaction between nucleons to be either relativistic or non-

relativistic. The relativisitc version of DFT is called covariant density func-

tional theory (CDFT).

K. Karakatsanis et.al [5] applied CDFT to study the structure of the atomic

nuclei. Moreover, if one had a full quantum-mechanical nuclear many-body

problem, and it was considered as a single-particle problem, then the exact

solution of this problem is determined by Slater determinant, and the corre-

sponding single particle density matrix that generated from the product of

1



1.1. COVARIANT DENSITY FUNCTIONAL THEORY

single-particle states. By applying a variation principal on the energy func-

tional with respect to this density matrix, so one had the equation of motion

of the independent moving nucleons, the specific form of density functional

leads to a certain form of the mean field.

If one looked back at the history of DFT in nuclear physics, he could deduce

that there were two forms, the most widely known forms are Skerme-type

functionals [6] which based on zero-range interactions, and Gogny-type func-

tionals [7] with finite-range interactions. Both models had been successful

in describing bulk and structure properties of nuclei along beta stability line

giving very similar results [5].

As we said, that nucleus is considered as a many body problem, and one of

the of the ways to overcome the hardness of many-body problems is CDFT

[8] which is another approach to the non-relativistic methods. CDFT is built

on Lorentz covariance and the Dirac equation, it takes the spin degrees of

freedom into considerations [9,10] and it provide an accurate description of

spin-orbit splittings [9](see also Fig. 2 in Ref. [11]), also it leads to better

understanding of nuclear forces and better description of atomic nuclei [12].

Lorentz covariance of the CDFT equations leads to the fact that time-odd

mean fields of this theory are determined as spatial components of Lorentz

vectors and therefore coupled with the same constants as the time-like com-

ponents [13] which are fitted to ground state properties of finite nuclei. In

addition, pseudo-spin symmetry finds a natural explanation in the relativistic

framework [14].

Over the years many nuclear phenomena have been successfully described

within the CDFT [8]. It was successfully described ground state properties

of spherical and deformed nuclei [12]. It has been also successful used in the

2



CHAPTER 1. INTRODUCTION

description of the atomic nuclei behavior in extreme conditions such as high

spin and deformation (Super- and hyper-deformation). Super-deformation

(SD) was discovered thirty years ago in 152Dy [15]. The tremendous success

of (CDFT) was description of fission barriers for many nuclei even if it super

heavy nuclei [16]

Hyper-deformation (HD) is another important phenomena in nuclear struc-

ture, which will enable us to advance our knowledge of nuclei at extreme

conditions of very large deformation and fast rotation. CDFT was very suc-

cessful in describing and predicating the experimental observation of discrete

HD bands, in the Z=40-58 part of the nuclear chart. The spin at which HD

bands become yrast was identified, and it was predicted that 107Cd was the

best candidate to observe discrete HD bands [17,18].

G.A. Lalazissis, P. Ring [34], they have shown a calculated results for ground

states properties of spherical and deformed nuclei using the CDFT with DD-

ME2 as the effective interaction, They calculated the binding energy for

approximately 400 nuclei and they compare there results with experimental

values, then they concluded that the CDFT with DD-ME2 as the effective

interaction was highly successful in describing the ground state properties.

H. Abusara [20], has studied the fission barrier of actinides, and super-heavy

nuclei, using CDFT he calculated the fission barrier in axially symmetric

relativistic mean field and Bardeen-Cooper-Schrieffer(BCS) approach, and

he concluded that the avarge deviation of the hight of the fission barrier is

reduced by 30%.

The Walecka model [21] and its extensions with meson carrying isospin [22]

are not able to provide quantitative description of nuclei, its compressibil-

3



1.2. OCTUPOLE DEFORMATION

ity is two much large and the surface properties are not produced well, in

particular deformation are much too small [23]. In order to obtain realistic

density functional one needs an additional density dependence [8], over the

years three types of models have been developed, non-linear meson coupling

models [24–27], density dependent meson coupling models [28–30], and point

coupling models with density dependent vertices’s.

1.2 Octupole Deformation

The shape of the atomic nuclei in ground state is one of the important prop-

erties that we try to study in nuclear structure, the shape of the nucleon is

related to interaction between single particle state.

Mottelson [31], showed that breaking of rotational symmetry is spontaneously

induced by coupling between individual particle motions and the collective

motion. Furthermore interaction between the pairing and spatial deforma-

tion, plays an important role in nuclear structure. So one can realized that

the deformation is a fundamental element to determine spectroscopic prop-

erties of nuclei [32].

S. Ebata, et.al. [32] calculated the ground state deformation of 1002 even-

even nuclei, in the mass region with Z=6-92 and Z ≤ N ≤ 2Z. They found

that the 58.5% of even-even nuclei are quadrapole deformed. Among them,

the ratios of prolate, oblate, and triaxial nuclei are 70%, 12%, and 18% re-

spectively. They also found that octupole deformed nuclei are obtained by

a correlations between the shell structure and the pairing correlation, and

they concluded that pairing affect the number of even-even octupolly de-

formed nuclei. In their calculations 30 nuclei were octupolly deformed and

4



CHAPTER 1. INTRODUCTION

they did not take pairing into account. Most of these nuclei appeared in the

nuclear chart which are located in the region of 84<N<88 with 54<Z<70,

and 130<N<136 with 84<Z <92.

From a microscopic point of view, symmetry breaking is always associated

with pairs of quantum states that are almost have same energy. In quantum

systems something like hydridization leads to reduce stability, and even an

infinitely small perturbation of a degenerate system produces final response in

the system due to rearrangement of many close states. For instance coupling

between intrinsic states of opposite parity is produced by long-range octupole-

octupole residual interaction. In some cases the mixing is very strong such

that a nucleus will possess a stable octupole deformation in the body-fixed

frame. For normally deformed systems the condition for octupole coupling

occurs for particle numbers associated, with the maximum number ∆N =

1 interaction between the intruder sub shells(l, j) and normal parity sub

shells (l − 3, j − 3) the regions of nuclei with strong octupole correlations

corresponding to particle numbers 34(g9/2 ←→ p3/2 coupling), 56(h1/2 ←→

d5/2 coupling), 88(i13/2 ←→ g9/2 coupling) the tendency towards octupole

deformation occurs just above closed shells [33]. Single particle states and

the number of particles are shown in figure 1.1 [34]. So our region of interest

is (Z ∼ 56, N ∼ 88)

5



1.2. OCTUPOLE DEFORMATION

Figure 1.1: Nuclear energy levels in a diffuse potential well. At the left are

the levels obtained without spin-orbit coupling and, to the right, the levels

obtained with spin-orbit coupling.

The importance of octupole correlation in deformed nuclei has been empha-

sized over the past 30-40 years. [35–37]

If we can expand the surface radius that defined as:

R(θ, φ) = R0[1 +
∑
lm

[almYlm(θ, φ)]] (1.1)

Where R0 is equilibrium radius, alm is the deformation deviating from spher-

ical shape, and Ylm is the spherical harmonics. One can see the term Y30

which represents the octupole shape which is equal:

Y30 =
1

4

√
(
7

π
)(5cos3(θ)− 3cos(θ)) (1.2)

6



CHAPTER 1. INTRODUCTION

An explanation of the behavior of the energies would be an existence of the

stable octupole deformation of the nuclei. The potential energy surface as a

function of octupole deformation parameter ε3 (where ε3 is a30 = β3) would

look them as in figure 1.2. In such case the ground state rotational bandKπ =

0+, Iπ = 0+, 2+, 4+, ..... Were the excited rotational band Kπ = 0−, Iπ =

1−, 3−, 5−, .... of even-even nucleus would be displaced by an energy shift

∆E, which is strongly dependent on octupole barrier hight EB the situation

will be similar in Sm isotopes [38].

Figure 1.2: Potential energy as a function of octupole deformation parameter

Single-particle spectrum provide an evidence of existence of octupole defor-

mation [31], the reason is that the octupolarity is enhanced when in a given

major shell the intruder interacts with standard parity orbital with three unit

less of angular momentum. This happens where both protons and neutrons

feel strong octupole interaction, octupole-related effects are expected [39].

The field of octupole deformation is the most quickly expanding area of nu-

clear structure [33], such like the discovery of nuclear quasi-molecular bands,

parity doublets and collective intrinsic dipole moments certainly gave the

octupole deformation strong push.

This thesis organized as follows: CHAPTER (2) contains formalism of the

7



1.2. OCTUPOLE DEFORMATION

general concept of covariant density functional theory, the formalism of the

two parameterizations (non linear meson coupling, and density-dependent

meson nucleon coupling), and mass moments constraints. In CHAPTER(3)

results for potential energy surfaces, and physical properties, was presented,

discussed, and compared with other models. In CHAPTER (4) summary

and main results was presented, and future work was suggested.

8



Chapter 2

FORMALISM

2.1 General Concept of Covariant Density Func-

tional Theory

Deformed nuclei were studied by CDFT, and it describe successfully the

ground state properties [32]. It follows three assumptions [40]:

1. Nucleons are treated as point-like particles.

2. The theory is fully Lorentz invariant (see 2.1.1)

3. It obeys strictly causality. One can deduce form the previous assump-

tions that the nucleons is Dirac spinor(ψ).

2.1.1 Mesons

Nucleons are interacting by exchange of particles called Mesons, they distin-

guished by their quantum numbers(Spin(J), Parity(P), and isospin(T)), their

9



2.1. GENERAL CONCEPT OF COVARIANT DENSITY FUNCTIONAL
THEORY

masses Mm. However the values of their masses, and their coupling constants

are fitted to experimental values.

In CDFT nucleons are treated as dirac spinners, and they interact by the

exchange of several mesons namely, scalar σ-meson causing medium range

interaction, the vector ω-mason leading to strong short range repulsion, and

isovector ρ-meson which guaranty that the proton-neutron interaction taking

the T= 1, the source of this field are given in the self consistent way by

nucleonic and current densities.

1. σ-meson: It has a spin (J)=0, isospin(T)=0, and parity(P)=+1. The

corresponding field is σ(x).

2. ω-meson: It produce a vector field ωµ(x), the time like component is

strongly repulsive, in close analogy to coulomb repulsion. The coupling

constant mω ≈ 738MeV, the spin of ω=1, P=-1, and the isospin is zero.

3. ρ-meson: Its isospin value T=1, spin(J)=1, and P=-1.

2.1.2 Lagrangian Density

Nucleus composed of fermions , so it act like many body quantum mechanics

system, in which those fermion are interacting by the exchange of several

mesons, so the classical lagrangian density can be written as:

L = LNucleon + Lmeson + Lint (2.1)

Where LNucleon is nucleon Lagrangian density and it given by:

LNucleon = ψ̄γ (i∂ −m)ψ (2.2)

10



CHAPTER 2. FORMALISM

ψ is the Dirac spinor and m is the nucleon mass.

The Lagrangian density of the meson (Lmeson), and electromagnetic field is

Lmeson =
1

2
∂µσ∂µσ −

1

2
m2
σσ

2 − 1

4
ΩµνΩ

µν +
1

2
m2
ωω

2

−1

4
~Rµν

~Rµν +
1

2
m2
ρ~ρ

2 − 1

4
FµνF

µν

Where

Ωµν = ∂µων − ∂νωµ
~Rµν = ∂µ~ρν − ∂ν~ρµ

Fµν = ∂µAν − ∂νAµ

Where A is the vector potential.

The interaction Lagrangian density term is given by:

Lint = −ψ̄
(
gσσ + gωγ

µωµ + gρ~τγ
µρµ + e

1− τ3
2

γµAµ

)
ψ (2.3)

The stationary Dirac equation for nucleon(spinner field) ψi (i=1,.....A) in

intrinsic frame is given by

ĥDψi = εiψi (2.4)

Where ĥD is the Dirac Hamiltonian for a nucleon with mass m

ĥD = α[−i∇− V (r)] + V (R)0 + β[m+ S(r)] (2.5)

The terms shown in the Dirac Hamiltonian are; ~V (−→r ), which is the space

like component of the potential, and is called the magnetic potential, V0(~r)

is the time like component of potential, which are due to the ω, ρ mesons

and the photon, and a scalar field due to the σ-meson. [13]. These terms are

writen as follows:

V (r) = gωω(r) + gρτ3ρ(r) + e[
1− τ3

2
]A(r) (2.6)

11



2.1. GENERAL CONCEPT OF COVARIANT DENSITY FUNCTIONAL
THEORY

and the repulsive time like component of of the vector field V0(r)

V0(r) = gωω0(r) + gρτ3ρ0(r) + e[
1− τ3

2
]A0(r) (2.7)

The attractive scalar field S(r).

S(r) = gσσ(r) (2.8)

Meson fields are described by the Klein-Gordon equations, the corresponding

meson field and the electromagnetic potential also determine by this equa-

tions, [13,41] {
−52 +m2

σ

}
σ(r) = −gσ[ρns (r) + ρps(r)]

−g2σ2(r)− g3σ3(r), (2.9){
−52 +m2

ω

}
ω0(r) = gω[ρnv (r) + ρpv(r)], (2.10){

−52 +m2
ρ

}
ρ0(r) = gρ[ρ

n
v (r)− ρpv(r)], (2.11)

−52 A0(r) = eρpv(r), −52 A(r) = ejp(r), (2.12)

The source terms ρn,ps (r),and ρn,pν (r),and involve various nucleic densities cur-

rents :

ρn,ps (r) =

N,Z∑
i=1

[ψi(r)†]βψi(r) (2.13)

ρn,pν (r) =

N,Z∑
i=1

[ψi(r)†]xsψi(r) (2.14)

The n,p in eqs.(2.13, and 2.14 ) denoted for neutron, and proton respectively,

the magnetic potential V(r).

2.1.3 Pairing Correlation

Pairing correlation is important in open shell nuclei, it plays a role for this

type of problems, so constant gap of Bardeen-Cooper-Schrieffer(BCS) was

12



CHAPTER 2. FORMALISM

used. The pairing energy expression is written as:

Epair = −G[
∑
i>0

uivi]
2 (2.15)

where G is pairing force constant, ui and vi are occupation probabilities, and

u2
i=1-v2

i . [42,43].

The simple form of BCS equation can be derived from variational method

with respect to occupation number v2
i and is given by:

2εiuivi −4(u2i − v2i ) = 0 (2.16)

using

4 = −G
∑
i>0

uivi (2.17)

The occupation number is defined as

ni = v2i =
1

2
[1− εi − λ√

(εi − λ)2 +42
] (2.18)

The chemical potentials λ, are determined by the avarge particle number,

and εi are the eigenvalues of dirac equation. The sum over i in Eqs.2.1.3,

2.17, 2.1.3 run over states in pairing window Ei < Ecutoff

In Ref. [44] empirical pairing gap parameters have been determined by the

systematic fit to experimental data on neutron and proton gaps in the normal

deformed minimum.

∆p =
4.8

Z1/3
(2.19)

∆n =
4.8

N1/3
(2.20)

13



2.2. PARAMETERIZATIONS OF THE LAGRANGIAN

Where Z is proton number, and N is the number of neutrons.

Shan-Gui Zhou [45] studied the deviation of intrinsic nuclear shapes, he de-

duced that the intrinsic nuclear shapes deviating from a sphere not only

manifest themselves in nuclear collective states but also play important role

in determining nuclear potential energy surfaces(PES’s), and fission barri-

ers. Pairing is the most striking phenomenon whose description requires an

extension of the extreme Mean-Field model [46].

As a results of this importance Chong Qi, and Tao Chen [47], solved analyt-

ically the pairing problem and they found an exact solution. They proved

that the simple Bardeen-Cooper-Schrieffer(BCS) approximation and gener-

alized Hartree-Fock-Bogoliubov theory(HFB)are successfully describing the

pairing properties of open shell nuclei.

In 2017 V.De Donno, and G.Co, M.Anguiano [46] investigated the effect of

pairing in spherical nuclei, They used finite range interaction of Gogny type

in three steps, Hartree-Fock, Bardeen, Cooper and Schriffe. They concluded

that pairing increase the values of excitation energy in all cases. Pairing

is known to play an important role in low energy nuclear excitations for

the ground state, and it is usually treated within (BCS) or Hartree-Fock-

Bogoliubov(HFB) method. [48,49]

2.2 Parameterizations of the Lagrangian

In this study, we intend to test the sensitivity of our calculations to the choice

of parameterization.

For the work in this thesis we choose to perform calculation using meson
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exchange models. In this model one can use non-linear model, or density

dependent model. The calculation will be done by using both of them, the

set NL3∗ for non-linear model, and DD-ME2 for density dependent model.

As you will see in the next sections, that the two parameterizations are

widely used in many nuclear physics applications, for example NL3∗ was

used for fission barrier calculations, and DD-ME2 was used for the physical

properties of different types of nuclei( octupolly, and axially deformed nuclei),

for instance DD-ME2 was used for finding the mean proton and neutron radii

for Ce isotopes.

2.2.1 Non-linear Meson Coupling

A density dependence via a non-linear meson coupling was introduced by

Boguta and Bodmer [50], replaced the term 1
2
m2
σσ

2 in equation 2.3 with

U(σ) =
1

2
m2
σσ

2 +
1

3
g2σ

3 +
1

4
g3σ

4 (2.21)

Where m, mσ, and mρ are fixed values of masses, and there is six phenomeno-

logical parameters (mσ, gσ, gω, gρ, g2, g3) as shown in table 2.1.
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2.2. PARAMETERIZATIONS OF THE LAGRANGIAN

Table 2.1: NL3∗ and DD-ME2 parameterizations of the RMF Lagrangian

parameter NL3∗ DD-ME2

m 939 939

mσ 502.5742 550.1238

mω 782.600 783.000

mρ 763.000 763.000

gσ 10.0994 10.5396

gω 12.8065 13.0189

gρ 4.5748 3.6836

g2 -10.8093 0.0000

g3 -30.1486 0.0000

aσ 0.0000 1.3881

bσ 0.00000 1.0943

cσ 0.0000 1.7057

dσ 0.0000 0.4421

aω 0.0000 1.3892

bω 0.0000 0.9240

cω 0.0000 1.4620

dω 0.0000 0.4775

aρ 0.0000 0.5647

In 2009,G. A. Lalazissis, S. Karatzikos, et.al [51] introduced effective force to

NL3∗, which improved the description of nuclear masses, provided an excel-

lent results for collective properties of vibrational and rotational character.
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2.2.2 Density-dependent meson-nucleon coupling

In density dependent meson-nucleon coupling there are no nonlinear terms

in the σ meson (g2 = g3 = 0) The meson-nucleon vertices’s are defined as:

gi(ρ) = gi(ρsat)fi(x) (2.22)

where i = σ, ω, and ρ and.

for σ and ω

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(2.23)

But for ρ

fρ(x) = exp(−aρ(x− 1)) (2.24)

Where x is defined as the ratio between the baryonic density ρ at a specific

location and the baryonic density at saturation ρsat. one can get the values

of the parameter form table 2.1. The parameters in equation 2.23 are not

independent, but constrained as fi(1) = 1, f ′′σ (1) = f ′′ω(1) = f ′′(0) = 0, These

constrained reduce the the number of independent parameters for density

dependance to three.

In 2005, G. A. Lalazissis, et.al [53], showed that the result for calculated

properties of spherical and deformed nuclei using the effective interaction

DD-ME2. Pairing correlation have been included in(RHB) model with finite

range forces of Gogny. They calculated the binding energy for approximatly

400 nuclei, then compare their results with experimental ones, finally they

concluded that there was a vary good agreement between the calculated and

the experimental results.
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2.3. QUADRATIC CONSTRAINTS

2.3 Quadratic Constraints

The method of quadratic constraints uses an unrestricted variation of the

function

< H ′ >= 〈H〉+
∑
ν=2,3

Cν0(〈Q̂ν0〉 − qν0)2 (2.25)

Where 〈H〉 is the expectation value of Hamiltonian (total energy), qν0 is the

constrained value of multipole moment, and Cν0 is the corresponding stiffness

constant [48]. Moreover, the quadratic constraint adds an extra force term∑
ν=2,3 λνQ̂ν0 to the system, where

λν = 2Cν0(〈Q̂ν0〉 − qν0)2 (2.26)

For a self consistent solution. This term is necessary to force the system to a

point in deformation space different from a stationary point. The augmented

Lagrangian method [54] has also been implemented in order to resolve the

problem of convergence of the self-consistent procedure which diverges while

increasing the value of stiffness constant.

And 〈Q̂ν0〉 denotes the expectation value of mass quadrapole and octupole

operators. The quadrapole and octupole moment constraint can applied with

the following relations:

< Q̂20 >=< Q̂20 >n + < Q̂20 >p (2.27)

< Q̂30 >=< Q̂30 >n + < Q̂30 >p (2.28)

The deformation parameter β2 and β3 are related to < Q̂20 > and < Q̂30 >

18



CHAPTER 2. FORMALISM

by the following relation

< Q̂20 >=
3√
5π
Ar2β2 (2.29)

< Q̂30 >=
3√
7π
Ar3β3 (2.30)

Where r = R0A
1
3 , R0 = 1.2fm, and A(A = Z +N) is the nucleon number.

By constraining quadrapole moment and octupole moment simultaneously

the total energy surface in the (β2, β3) plane can be obtained.
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Chapter 3

Discussion of Results

We perform a systematic calculations along the Sm isotopic chain, mapping

the potential energy surface for all even-even nuclei, to determine the effect

of octupole deformation. In this chapter results for both parameterizations

NL3∗, and DD-ME2 will be discussed. Then we compare the binding energies,

two neutron separation energy, neutron and proton radii, and the location of

global minimums for each parametrization.

3.1 Potential Energy Surfaces

We perform constrained calculation on quadratic and octupole mass moments

and plot the binding energy as a function of β2, and β3.

Figures [3.1-3.3] display potential energy surfaces (PES) in β2-β3 plane cal-

culated using constrained covariant density functional theory (CDFT)with

non-linear model using the parameter set NL3* for even-even Sm isotopes

with mass number 140-160.
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CHAPTER 3. DISCUSSION OF RESULTS

Figure 3.1: Potential energy surface for 140Sm, 142Sm, 144Sm, and 146Sm in

β2 and β3 deformation space using NL3∗ parametrization.

In upper left panel of figure 3.1, for 140Sm we can see the existence of two

local minimums, one of them is located near β3 =0 and β2 = -0.20, while

the other one is near β2 = 0.15. The difference in energy between these two

minimum is around 3.4 MeV. However, near the deepest minimum one can

see that the ground state extend from β3 = 0 to β3 -0.2. Thus there exist a

possibility of octupolly deformed ground state. And the binding energy per

nucleon(As seen in next section was approx. -8.25). Similar behavior can

also be seen in the case of 142Sm, shown in upper right of figure 3.1 but with

a decrease in the energy difference between the two minimum to around 3

MeV as listed in table 3.1. And the minimums was less octupolly deformed

so we expect that the nuclei will be more stable than 140Sm.
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As we move along the isotopic chain to 144Sm one can notice that the ground

state island located at (β2) form ≈ −0.1 to ≈ 0.1, which can be seen in down

left of figure 3.1, and the island started to extend in the direction of β3 away

from β3 =0, and cover the range from −0.15 up to 0.15. So the minimum

island of 144Sm is not octupolly deformed so it has the largest binding energy

per nucleon(The most stable nuclei in the chain). Thus we can see that

indeed the octupole deformation starts to play a role in defining the ground

state properties.

For 146Sm, the down right panel of figure 3.1 shows that the value of β3

increases up to 0.2. This increase made the binding energy per nucleon

decrease so as the value of octupole deformation increased the binding energy

per nucleon decrease. The ground state island is located between 0.1 to -0.1 in

the β2 direction. This is similar to result of 144Sm. One can notice a smooth

change in the PES along the isotopic chain, that is the transition from a

specific nuclear shape to another one through the chain is not sudden. The

connection of this smooth transition to other physical observables such as

binding energy, binding energy per nucleon, two neutron separation energy,

proton and neutron radii, will be discussed later in this chapter.

The case of 148Sm, shown in upper left panel of figure 3.2, is very interesting

one, as we can clearly see the development of two distinct minimum. The

first one is axially deformed(oblate)with no octupole deformation, and the

second one is an island that is elongated along the β3 direction and ranging

from -0.25 to 0.25, and at β2 = 0.2. As a results of that we see a decrease in

the binding energy per nucleon. This island has some kind of necking around

β3, thus we might expect that as we increase the number of neutrons to see

this island split into two distinct parts.
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Figure 3.2: Potential energy surface for 148Sm, 150Sm, 152Sm,and 154Sm in β2

and β3 deformation space using NL3∗ parametrization.

In upper right panel of figure 3.2 does indeed shows that there is two distinct

minimum for 150Sm, located at β2 =0.20 and β3 = ±0.2. In addition to that

there is another minimum, not octupole deformed, that is higher in energy

located at β2 = -0.2. Similar trend continues to show up in the case of

152,154Sm, seen in down panel of figure 3.2, but in 154Sm one of the minimums

located at β3 = 0.15 and β2 = 0.30., the other one, centered at β3 = 0 and

β2 =-0.2. and there is a barrier with 14MeV potential separate the two

minimums, the energy difference between the two minimums 4MeV. Not like

other Sm isotopes there is a symmetry in energy values around β3 = 0. As

one could notice also form figure 3.2 as the β3 increase, the stability of nuclei

will decrease.
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3.1. POTENTIAL ENERGY SURFACES

Figure 3.3: Potential energy surface for 156Sm, 158Sm,and 160Sm in β2 and β3

deformation space using NL3∗ parametrization

In upper right panel of figure 3.3, there exist a barrier between the two

minimums for 156Sm of width(16MeV), and also the energy difference between

the two minimum islands was 6 MeV which is larger than the one seen in

154Sm. One of those minimum is located at β3 = 0.15 and β2 = 0.30, and the

second one is located at β3 = 0 and β2 = -0.25. Similar to the cases of 150Sm,

152Sm and 154Sm one of the minimum is octupoly deformed and the other

one is not. In upper right and down panels of figure 3.3, where 158Sm, and

160Sm are shown respectively. They have the same pattern as 156Sm, where

the barrier between the two minimums, and the energy difference between

them has increased. The following table summarizes the location of the two

minimums (if exists) in (β2,β3) planes and the energy difference between

them.
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Table 3.1: List of minimums (β2, β3) for Sm isotopes and its locations using

NL3∗ parametrization. The first minimum is the deepest one.

Isotope 1st minimum 2nd minimum ∆E

140Sm (-0.2,0) (0.15,0) 3.482640 MeV

142Sm (0.65,-0.05) (0.2,0) 2.996795 MeV

144Sm (0,-0.05) - It has one minimum

146Sm (0.05,-0.10) - It has one minimum

148Sm (-0.10,0) (0.15,0.05) 1.080943 MeV

150Sm (-0.15,0) (0.20,0.20) 3.442387 MeV

152Sm (-0.25,0) (0.25,0.20) 3.896257 MeV

154Sm (-0.25,0) (0.30,0.15) 3.782354 MeV

156Sm (-0.25,0) (0.35,0.15) 4.195289 MeV

158Sm (-0.30,0) (0.35,0.15) 4.028288 MeV

160Sm (-0.30,0) (0.35,0) 4.439858 MeV
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3.1. POTENTIAL ENERGY SURFACES

Figures[3.4-3.6] show PES in (β2, β3) plane using density dependent meson

interaction represented by the parametrizations set DD-ME2 for even-even

nuclei with mass number 140-160.

If one compares the upper left panel of figure 3.4, and the upper left panel of

figure 3.1, where PES for 140Sm is plotted, two things can be noticed. The

first one, that there is a slightly difference in the location of the two local

minimums, and the second one also that the shape of the two islands is differ-

ent. If one refer to table 3.1 and table 3.2 could see that the energy difference

between the two minimums are slightly different in two parametrization. As

we move forward to upper right panel of figure 3.4, PES of 142Sm, the same

pattern to the previous upper left panel of figure 3.4 can be seen. However,

there is a decrease in energy difference between the two local minimum as

listed in table 3.2. In comparison with the NL3∗ results, one can notice a

difference in the shape of the ground state, but if one look at the stability

the binding energy per nucleon were almost the same of NL3∗ parameteriza-

tion(see figure 3.7).

As we move forwarded through the chain to 144Sm, shown in down left panel

of figure 3.4 it has one global minimum, which is located at (β2)form≈ 0

to ≈ 0.1, and (β3)form ≈ −0.15 away to ≈ 0.15. As a results of circular

ground state island, this nuclei is the most stable nuclei in the chain. Thus

the octupole deformation plays as important role in defining the ground state

properties for this nuclei. If one refer to the down left panel of figure 3.1 there

is a difference in the ground state shape between the two parameterizations.

In down left panel of figure 3.4 the ground state for 144Sm for has one global

minimum, and 146Sm shows a similar pattern. As the value of β3 increased
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Figure 3.4: Potential energy surface for 140Sm, 142Sm, 144Sm, and 146Sm in

β2 and β3 deformation space using DD-ME2 parametrization.
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3.1. POTENTIAL ENERGY SURFACES

Figure 3.5: Potential energy surface for 148Sm, 150Sm, 152Sm, and 154Sm in

β2 and β3 deformation space using DD-ME2 parametrization.

the nuclei was less stable.

The case of 148Sm is shown in the upper left panel of figure 3.5, as we can see

that we have two distinct minimums developed. Similar to the results ob-

tained with NL3∗ parametrization, shown in the upper left panel of figure 3.2.

One of those minimum has an oblate shape with no octupole deformation,

β2 values ranges from ≈ 0.12 to ≈ 0.20. The second one was directed in β3

axis, it located at β2 from ≈ −0.15 to ≈ −0.5.

If one refer to upper left panel of figure 3.2,148Sm with NL3∗, there is no

significant difference in the shape of the two islands, and one could clearly

see that energy difference between the minimum was almost the same in both

parametrizations, as can be seen in the two tables 3.2, and 3.1.
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The upper right panel of figure 3.5 and the upper right panel of figure 3.2

have similar trends, shows PES for 150Sm. Both of them show two distinct

minimums, the first one has an octupole shape elongated at(β2) form ≈ 0.19

to≈ 0.25, and the other one was not octupolly deformed with β2 form ≈

−0.25 to≈ 0.10, the second island has higher energy as shown in table 3.2.

One can notice that there is a barrier between the two minimums with energy

around 10 MeVs, which did not existed in the down left panel of figure 3.2.

As we move through the chain to 152Sm the same trend was noticed but with

increase in potential barrier as obviously appeared in down left of figure 3.5,

and if we refer to table 3.2 we can see the increases in the energy difference

between the two minimum islands.

In down left panel figure 3.5, 152Sm, one of the minimum located at β3 = 0.15

and β2 = 0.30, the second one located at β3 = 0 and β2 = -0.25 as appeared

in table 3.2. The barrier between the two islands was grater than down right

of figure 3.5,154Sm, similar trend appeared in 156Sm but the location of the

minimum as appeared in upper left of figure 3.6, and table 3.2 that β3 = 0.15

and β2 = 0.35,and the second one was β3 = 0, and β2 = -0.25. The energy

difference as ≈ 4MeV .

Both 158,160Sm have the same pattern as clearly seen in figure 3.6, the energy

difference between the two minimums was increased and the barrier energy

was increased too the following table 3.2 sum up the location of the two

minimums(if exists) and also, the energy difference between them.
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Figure 3.6: Potential energy surface for 156Sm, 158Sm, and 160Sm in β2 and

β3 deformation space using DD-ME2 parametrization.

Table 3.2: List of global minimums (β2, β3) for Sm isotopes and its locations

using DD-ME2 parametrization. The first minimum is the deepest

Isotope 1st minimum 2nd minimum ∆E

140Sm (0.15,0) (-0.20,0) 3.422080 MeV

142Sm (0.65,0) (0.05,0.05) 5.163854 MeV

144Sm (0,0) - It has one minimum

146Sm (0.10,0.10) - It has one minimum

148Sm (-0.15,0) (0.15,0.15) 1.810199 MeV

150Sm (-0.20,0) (0.20,0.15) 3.624392 MeV

152Sm (-0.25,0) (0.25,0.15) 3.903804 MeV

154Sm (-0.25,0) (0.30,0.15) 3.828174 MeV

156Sm (-0.25,0) (0.35,0.15) 4.176513 MeV

158Sm (-0.30,0.05) (0.35,0.10) 4.263953 MeV

160Sm (-0.30,0) (0.35,0) 4.835485 MeV
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3.2 Physical Properties

3.2.1 Binding Energy and Two Neutron-Separation En-

ergy

The energy required to disassemble the nucleus into its parts (protons, and

neutrons) called the binding energy of nucleus, this energy are due to attrac-

tive force between protons and neutrons.

Because of the linearity of the binding energy with nucleon number, it is

meaningful to define binding energy per nucleon (EB/A). The lesser BE/A

less stable nuclei, because lesser binding energy per nucleon are easier to

separate the nucleus into its constituent nucleons.

In figure 3.7, the binding energy per nucleon for the two parameterizations

(NL3∗, and DD-ME2) is shown as and compared with experimental data

(see [55]). The sharpness on the curve is due to the increase of the nucleon

number.

As one could see from the previous figure 3.7, the two parameterizations

agreed with the experimental data that 144Sm are the most stable nuclei in

the chain because it has the largest binding energy per nucleon, and 160Sm

is the most unstable nuclei in the chain. There were another agreement

in the figure between calculated binding energy by both parameterizations

(NL3∗, and DD-ME2), and the experimental one, this agreement was for

142Sm, and also one could notice that the binding energy calculated by DD-

ME2 parameterizations and the experimental value for 150Sm are almost

the same. If one look back to the PES’s he could deduce that there is a
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Figure 3.7: Binding energy per nucleon using NL3∗,DD-ME2, and experi-

mental data

relationship between octupole deformation and stability, as we saw before

144Sm was the most stable nuclei in the chain and it has the smallest octupolly

deformed ground state island(see figures 3.1, and 3.4), were 160Sm has the

largest octupully deformed ground state islands as a results it has the smallest

binding energy per nucleon(see figures 3.3, and 3.6).

In the following figure 3.8 we analyze the behavior of two neutron separation

energy, which is defined as follows:

S2n = BE(N + 2, Z)−BE(N,Z) (3.1)

Two neutron separation energy is an important quantity used as an indication

of nuclear shell closure. We calculate the S2n using two different parameter
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sets and compare their results with the available experimental data [56].

As one can deduce form the following figure, there were a very good agree-

ment between the results obtained with CDFT, and experimental data. The

sharpness of 144Sm in both figures (3.7, and 3.8) is due to the shell closure

at N = 82 where 82 is a magic number.

Figure 3.8: Two Neutron-Separation Energy by using NL3∗, and DD-ME2

parameterizations in comparison with experimental values

3.2.2 Proton and Neutron Radii

Both parameterizations(DD-ME2, and NL3∗) were used to calculate the

mean radius of neutron, and proton for even-even Sm isotopes. As obvi-
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ously appeared from Fig. 3.9 142Sm has the smallest mean proton radius and

after, as the nucleon number increased the mean proton radius increased as

shown in Fig. 3.9 thus protons in 160Sm have the largest mean radii in the

chain.

Figure 3.9: Proton mean radius using NL3∗, and DD-ME2

As one can noticed from the figures (3.10, 3.9) 142Sm as the smallest mean

proton, and mean neutron radii, were 160Sm has the largest proton, and

neutron radii. If one compare the results between DD-ME2, and NL3∗ pa-

rameterizations he could conclude that there is an agreement between them.

The results by both parameterizations was so close.

As clearly appeared in figure 3.10. If one compare the results with experi-

mental data ( [56,58]), one could see that that the results for DD-ME2 have

a better agreement than compared with NL3 ∗. 142Sm has the smallest radii
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in the chain, and the 160Sm has the largest mean neutron radii.

Figure 3.10: Neutron mean radius using NL3∗, and DD-ME2, and experi-

mental data [56,58]

3.3 Comparison with other models

K. Nomara, and D. Vretenar [59] plotted the PESs for 146−156Sm in (β2, β3)

plane, by mapping the deformation constrained self-consistent axially sym-

metric mean-filed energy onto equivalent Hamiltonian of the sfd interact-

ing boson model (IBM), that based on the gobal relativistic energy density

functional(DD-PC1), the ranges of β3, and β2 respectively was 0 ≤ β3 ≤ 0.15,

and −0.3 ≤ β2 ≤ 0.5, because of the symmetry around β3 = 0 axis they

did not look at the negative values of β3. They plotted the PESs for Sm
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isotopes(146−156Sm). If one refer to [59] he could deduce the global mini-

mums for Sm isotopes and its locations using interaction boson model(IBM),

and DD-PC1 the results was as the following respectively:

Table 3.3: List of minimums for Sm(146Sm-156Sm) isotopes and its locations

using IBM model see [59]

Isotope 1st minimum 2nd minimum

146Sm (-0.05,0) (0.09,0)

148Sm (-0.10,0) (0.15,0)

150Sm (-0.15,0) (0.22,0.12)

152Sm (-0.20,0) (0.30,0)

154Sm (-0.25,0) (0.35,0)

156Sm (-0.25,0) (0.35,0.08)

Table 3.4: List of minimums for Sm(146Sm-156Sm) isotopes and its locations

using DD-PC1 model see [59]

Isotope 1st minimum 2nd minimum

146Sm (0.05,0) -

148Sm (-0.15,0) (0.15,0.1)

150Sm (-0.15,0) (0.20,0.15)

152Sm (0,0) (0.30,0)

154Sm (-0.25,0) (0.35,0)

156Sm (-0.25,0) (0.35,0.10)

At first if one refer to the tables(3.3,and 3.4) he could deduce that 146Sm has

two local minimums as appeared in the IBM results, but in comparison with
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our results, both parameterizations(NL3∗, and DD-ME2) agreed that it has

one Local minimum. The location of the first minimum was far from our

results that we found by NL3∗ and DD-ME2 parameterizations. If one go

through the PES’s of 148Sm and compare the results of IBM, and DD-PC1

with DD-ME2, and NL3∗ he could conclude that DD-ME2 results was almost

the same of DD-PC1, and the location of the first minimum in IBM was the

same of NL3∗ parameterization but the second minimum was not.

If we moved forward in the chain to 150Sm, we could conclude that the loca-

tion of the first minimum found by DD-ME2, NL3∗, IBM, and DD-PC1 was

exactly the same, but there were an agreement in location of the second min-

imum between DD-ME2 and DD-PC1. Otherwise there were no agreement

between IBM, and DD-PC1.

In 152Sm, 154Sm, and 156Sm the location of the first minimum in IBM, DD-

PC1, DD-ME2, and NL3∗ was exactly the same, but the location of the

second minimum was almost the same.

W. Zhang, Z. P. Li [60] they calculated the PES’s of even- even nuclei

146−156Sm in (β2, β3) plane, that were investigated in the constrained reflec-

tion asymmetric-relativistic mean field approach (RAS-RMF) with PK1 as a

parameter set, they plotted the contour plots for the total energy in (β2, β3)

plane that obtained in the RAS-RMF approach with PK1 and constant-∆

paring, and the results were in the following table
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Table 3.5: List of minimums for Sm(146Sm-156Sm) isotopes and its locations

using RAS-RMF approach with PK1 and constant-∆ paring [60]

Isotope 1st minimum 2nd minimum

146Sm (-0.10,0) -

148Sm (-0.15,0) (0.15,0.15)

150Sm (-0.20,0) (0.20,0.20)

152Sm (-0.25,0) (0.20,0.15)

154Sm (-0.25,0) (0.30,0.1)

156Sm (-0.25,0) (0.35,0)

As one can deduce from the previous table 3.5 and compare the results, with

NL3∗, and DD-ME2 parameterizations results, he could conclude that the

location of the local minimum of146Sm had no agreement with DD-ME2,

and NL3∗, but if one go through the results of the Sm isotopic chain such

like the locations of the local minimums of 148Sm, and 152Sm he could see

that the results was the same as DD-ME2 results, the location of the other

minimums in the chain such as the local minimums of 154Sm, and 156Sm was

almost the same of DD-ME2 results.

Y. El Bassem, M. Oulne, [61] used finite range droplet model(FRDM), and

relativistic mean field(RMF) theory to calculate the physical properties for

Sm isotopes such like proton radii, neutron radii, binding energy per nucleon,

two neutron separation energy for Sm, Nd, and Ce isotopes, and the results

were compared with CDFT model, if one took the results of mean proton,

and neutron radii for Sm isotopes that calculated by FRDM and RMF in

considerations, he could deduced two things, the first one results were so close

to the results in figures (3.9, 3.10). The second thing he could conclude that
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142Sm has the smallest mean proton, and neutron radii in all models(FRDM,

RMF, CDFT).

If one refer to the ref. [61] he conclude that 144Sm is the most stable nuclei

in the chain such as CDFT predicted, and also one could see that DD-ME2

results(3.7) was close to the results in [61].

In ref. [61] two neutron separation energy was plotted and compared with

FRDM, and RMF models. If one compare the results with our results that

plotted by NL3∗, and DD-ME2 parameterizations he could see the agreement

between the results.
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Conclusion

The ground state properties of even-even Sm isotopes were studied using

covariant density functional theory(CDFT), using nonl-linear meson interac-

tion, represented by the set NL3∗, and density-dependent meson interaction

represented by the set DD-ME2. We mapped the potential energy surfaces

defined by octupole and quadrupole deformation. The results of the study

can be summarized as follows:

1. The first and second minimum are defined by the octupole deforma-

tions, In the majority of the cases. However, the second one is usually

soft(flat inβ3 direction)in the octupole deformation.

2. The results of the study showed that the results of covariant density

functional theory is independent of the choice of parametrizations.

3. Potential energy surfaces shows a softness in the direction of β3 in the

first minimum. However, this minimum starts to split into two separate

minimum as the nucleon number increases.

4. When the number of nucleon was 150 a barrier between the two min-
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imums islands starts to develop to separate the ground state island.

Then the barrier width increased as the number of nucleon increased

beyond 150 and separate the island.

5. The nucleon mean radius is usually increasing as a function of mass

number (A), the results is not sensitive to the choice of parametrization.

However, the proton radius is smallest for 142Sm and the neutron radius

is smallest for 140Sm

6. Our results is in agreement with the results obtained from other models

and experimental data.
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