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a b s t r a c t 

Searching for the optimal subset of features is known as a challenging problem in feature selection pro- 

cess. To deal with the difficulties involved in this problem, a robust and reliable optimization algorithm 

is required. In this paper, Grasshopper Optimization Algorithm (GOA) is employed as a search strategy 

to design a wrapper-based feature selection method. The GOA is a recent population-based metaheuris- 

tic that mimics the swarming behaviors of grasshoppers. In this work, an efficient optimizer based on 

the simultaneous use of the GOA, selection operators, and Evolutionary Population Dynamics (EPD) is 

proposed in the form of four different strategies to mitigate the immature convergence and stagnation 

drawbacks of the conventional GOA. In the first two approaches, one of the top three agents and a ran- 

domly generated one are selected to reposition a solution from the worst half of the population. In the 

third and fourth approaches, to give a chance to the low fitness solutions in reforming the population, 

Roulette Wheel Selection (RWS) and Tournament Selection (TS) are utilized to select the guiding agent 

from the first half. The proposed GOA_EPD approaches are employed to tackle various feature selection 

tasks. The proposed approaches are benchmarked on 22 UCI datasets. The comprehensive results and var- 

ious comparisons reveal that the EPD has a remarkable impact on the efficacy of the GOA and using the 

selection mechanism enhanced the capability of the proposed approach to outperform other optimizers 

and find the best solutions with improved convergence trends. Furthermore, the comparative experiments 

demonstrate the superiority of the proposed approaches when compared to other similar methods in the 

literature. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The existence of thousands of applications of information sys-

ems complicated the role of extracting useful information from

he collected data [1,2] . Data mining plays the main role in ex-

racting the useful knowledge from the collected datasets [3,4] . The

ollected datasets may contain irrelevant and redundant data. Fea-

ure selection (FS) is one of the major preprocessing phases that

ims to exclude the irrelevant/redundant data from the dataset be-

ng processed [5,6] . 
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FS methods can be broadly categorized into three main classes:

upervised [7] , unsupervised [8] , and semi-supervised methods [9] .

upervised FS requires the availability of the class labels to select

roper features and used for classification problems. While in un-

upervised FS, the class labels are not required, and used for clus-

ering tasks. On the other hand, semi-supervised methods applied

hen part of the data is labeled. 

There are several supervised, semi supervised, and unsuper-

ised FS algorithms in literature. To name a few, the correlation-

ased feature selection (CFS) [7] , fast correlation-based filter (FCBF)

10] , and wavelet power spectrum (Spectrum) [11] are examples

n supervised techniques. While non-negative spectral learning

nd sparse regression-based dual-graph regularized (NSSRD) fea-

ure selection is one of the latest unsupervised techniques pro-

osed by Shang et al. in 2017 [8] . The subspace learning-based

raph regularized (SGFS) technique and self-representation based
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dual-graph regularized feature selection clustering (DFSC) are also

well-established FS techniques proposed by Shang et al. in 2016

[12,13] . On the other hand, feature selection via spectral analy-

sis, and forward feature selection [9,14] are examples on semi-

supervised FS. 

FS process can be accomplished in four major steps [15] : sub-

set generation, subset assessment, ending criterion, and validation.

From the evaluation perspectives, FS methods can be divided to

two groups based on selection strategy: wrapper-based and filter-

based. In filter-based methods, the selection of a subset is per-

formed independently from the learning algorithm (e.g., classifi-

cation). The merits of a feature or a subset of them is estimated

with regard to specific characteristics of the information [16] . Ex-

amples of filter models include Chi-Square [17] , Information Gain

(IG) [18] , Gain Ratio [19] , and ReliefF [20] . In the wrapper-based

methods, the goodness of a subset is evaluated based on a learn-

ing algorithm [21] . Examples of wrapper models include the LVW

algorithm [22] and a neural network-based method [23] . 

Subset generation is considered as a search process to select

a subset of items from the initial set using complete, heuristic

search, or a random search [15,24,25] . The complete search gen-

erates all possible subsets to select the best one. If the dataset in-

cludes n features, then 2 n subsets will be generated and assessed,

which is computationally expensive for the larger size datasets.

Random search is another possible policy to select the attributes.

It searches for the next feature subset randomly [26] . The main

drawback of the random search strategy is that it may perform as

a complete search in the worst case [5,27] . 

An alternative strategy to the previous two strategies is the

heuristic search. Heuristic search can be clarified as a ‘depth first’

search managed by heuristics. According to Talbi [27] , metaheuris-

tic search methods can be defined as “upper level general method-

ologies (templates) that can be used as guiding strategies in de-

signing underlying heuristics to solve specific optimization prob-

lems” [27] . Various metaheuristics such as Grey wolf optimizer

(GWO) [28,29] , Whale Optimization Algorithm (WOA) [30] , Ant

Lion Optimization (ALO) [31] , Firefly Algorithm (FA) [32] , Parti-

cle Swarm Optimization (PSO) [33] , and Ant Colony Optimiza-

tion (ACO) [34] may demonstrate superior efficiencies in tackling

feature selection problems when compared to the exact meth-

ods [35,36] . Metaheuristic algorithms have shown improved results

and efficiencies in dealing with many real-life applications such as

path planning [37] , clustering [38–40] , neural network optimiza-

tion [41–44] and power dispatch [45] . For example, E.S. Ali et al.

applied the ALO to find the best location and sizing of renewable

distributed generations [46] . Wu et al. utilized the WOA for path

planning of solar-powered UAV [37] . Faris et al. also reviewed the

recent variants and applications of the GWO [47] . The history of

metaheuristics is presented in [48] . 

The GOA is a new efficient nature-inspired population-based

metaheuristic algorithm [49] proposed by Saremi et al. in 2017 to

inspire the idealized swarming behaviors of grasshopper insects

in nature. This algorithm can disclose improved results and effi-

ciencies on global unconstrained/constrained optimization and var-

ious real-life tasks. The basic GOA has been applied to realize the

best parameters of proton exchange membrane fuel cells (PEMFCs)

stack and the results exposed the viability of the GOA-based algo-

rithm in dealing with the steady-state and dynamic models [50] .

In 2017, Wu et al. [51] proposed a dynamic GOA for optimizing

the distributed trajectory of UAVs in urban environments. They

proved that this algorithm can attain enhanced results and satis-

factory trajectories. Tharwat et al. [52] developed a modified multi-

objective GOA (MOGOA) with external archive for constrained and

unconstrained problems. Mirjalili et al. [53] also developed the ba-

sic multi-objective GOA and revealed that the proposed algorithm

can tackle several benchmark problem, effectively and with better
Please cite this article as: M. Mafarja et al., Evolutionary Population 
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erformance in terms of accuracy of Pareto optimal solutions and

he related distribution. 

Although the metaheuristic algorithms do not guarantee finding

he best solution in all runs, they can find relatively accurate solu-

ions in a reasonable time [27,54] . Metaheuristics can be classified

nto two main families; single-solution and population-based algo-

ithms [27,55] . In the former class (e.g., Simulated Annealing), one

olution is manipulated and transformed during the search pro-

ess, while a set of solutions is evolved in the former class (e.g.,

SO). Single-solution-based algorithms show more exploitative be-

aviour; which means digging the space around a possible solution

hereas the population-based class are more explorative or a mix

f both behavior; which means exploring different regions of the

pace [27] . When designing a metaheuristic algorithm, these two

riteria should be taken into account. High exploration decreases

he quality of results and causes an unpromising convergence. This

esults in a failure to find the target global optimum. However,

igh exploitation may cause the optimizer to be trapped in Local

ptima (LO). 

Evolutionary algorithms (EA) are deep-rooted metaheuristics in-

pired by natural processes [56,57] . Genetic algorithms (GA), by J.

. Holland [58] ; and evolutionary programming by L. Fogel et.al

59] are two different kind of EA. In recent years, many EA are pro-

osed to tackle the optimization problems especially in the field

f feature selection [60–62] . Ant Colony (AntRSAR) and Genetic

lgorithm (GenRSAR) are two EAs that have been proposed by

ensen and Shen [63,64] and applied to FS problems. For instance,

 chaos-based genetic FS method (CGFSO) has been proposed in

65] . Two hybrid approaches have been proposed in [66] between

he GA and Simulated Annealing (SA) and in [67] between the

A and Record to Record algorithm. A Scatter Search-based ap-

roach (SSAR) proposed by Jue et al. [68] is another EA-based FS

ethod. Ant Lion Optimizer (ALO), a recent well-regarded meta-

euristic, proposed by S. Mirjalili in [69] , was utilized as a search-

ng mechanism in a wrapper FS method in [70,71] . A chaotic ALO

pproach was proposed for FS in [72] . The GWO, as another re-

ent population-based optimizer [29] , has been successfully em-

loyed to tackle several applications like the tuning of fuzzy con-

rol systems [73] . It has been applied to FS problems [74,75] as

ell. Recently, a new wrapper-based FS algorithm that uses a hy-

rid Whale Optimization algorithm (WOA) with SA algorithm as a

earch method was proposed in [76] . 

EAs are modeled to mimic the evolution of individuals from

heir initial states to become better adapted to some objectives

mposed upon them. These revolutionary paradigms apply some

volutionary operators (mutation and recombination in GA or

heromone updating rules of ACO) to some selected individuals

based on some selection mechanisms; random, tournament, and

oulette wheel selection) in the population to generate an off-

pring. However, these operators affect and manipulate individuals

ather that the whole population. Evolutionary Population Dynam-

cs (EPD) is another evolutionary operator that manipulates the

hole population rather than manipulating individuals [77] . Us-

ng this operator with EAs will omit the worst individuals from

he population rather than improving the best individuals in the

opulation (e.g., recombination in GA). Extremal optimization (EO)

78] is a metaheuristic algorithm that works based on the idea of

PD. The EO algorithm has been used in many research fields with

uch success [79–81] . The EPD operator is the main feature that

nhanced the performance of this algorithm [28] . 

This paper presents an efficient GOA-based optimizer with EPD

nd selection operators to improve the efficacy of the basic GOA in

ealing with FS tasks. In this work, we have made the following

ey contributions: 
Dynamics and Grasshopper Optimization approaches for feature 
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Table 1 

List of abbreviations. 

Abbreviations Expansions 

Acc Accuracy 

ACO Ant Colony Optimization 

ALO Ant Lion Optimizer 

Atts Attributes 

BGOA Binary GOA 

BGWO Binary GWO 

CFS Correlation-based Feature Selection 

CGFSO Chaos-based Genetic FS Method 

CM Crossover and Mutation 

DFSC Self-representation Based Dual-graph Regularized Clustering 

EA Evolutionary Algorithms 

EO Extremal Optimization 

EPD Evolutionary Population Dynamics 

EPSCO Evolutionary Programming using Self-Organizing Criticality 

FA Firefly Algorithm 

FCBF Fast Correlation-based Filter 

FS Feature Selection 

F-score Fisher Score 

GOA Grasshopper Optimization Algorithm 

GWO Grey Wolf Optimizer 

GA Genetic Algorithms 

IG Information Gain 

k -NN k -Nearest Neighbor 

LO Local Optima 

NSSRD Non-negative Spectral Learning and Sparse Regression-based Dual-graph Regularized 

PSO Particle Swarm Optimization 

RWS Roulette Wheel Selection 

SA Simulated Annealing 

SGFS Subspace Learning-based Graph Regularized 

SOC Self-Organized Criticality 

SSAR Scatter Search-based Approach 

StdDev Standard Deviation 

TS Tournament Selection 

Ts Tournament Size 

WOA Whale Optimization Algorithm 
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• The significant merits of the EPD operator motivated our at-

tempts to apply it to the recently proposed Grasshopper Op-

timization Algorithm (GOA) and investigate its effectiveness on

FS problems. 

• Four variants of GOA with EPD operator are proposed. In the

first two approaches, one of the top three solutions and a ran-

domly generated solution are selected to reposition a solution

from the worst half of the population. In the third and fourth

approaches, and to give a chance to the low fitness solutions to

reformulate the population, two different selection mechanisms

(namely Roulette Wheel Selection (RWS) and Tournament Se-

lection (TS) are utilized to select the guiding solution from the

first half. 

• The proposed approaches have been tested on 22 real bench-

marks datasets to show its efficiency for feature selection tasks.

• The hybrid GOA and EPD operator is proposed for the first time

to solve the feature selection tasks. 

• The proposed GOA based approaches have been tested on real

datasets with different settings and characteristics to demon-

strate its effectiveness and quality of solutions. 

The rest of this paper is organized as follows: Section 2 presents

 background about EPD operator. The basics of the GOA al-

orithm and the hybridization with EPD operator is given in

ection 2 as well. Section 3 presents the details of the proposed

pproaches. In Section 4 , the experimental results and analysis

re presented. Finally, in Section 5 , conclusions and future works

re given. Table 1 describes all the abbreviations used in this

aper. 
Please cite this article as: M. Mafarja et al., Evolutionary Population 
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. EPD for the GOA 

.1. Evolutionary Population Dynamics (EPD) 

EAs are known as stochastic search methods in which a set of

olutions (population) is initialized and then gradually improved

o become better adapted to the objectives imposed upon them.

ome EAs utilize mutation mechanisms to alter the selected solu-

ions, while others employ the crossover operators. These opera-

ors aim to evolve the top selected solutions that are mostly the

est solutions. The EPD is the process of eliminating the worst

olutions in a population by repositioning them around the best

nes. The EPD is basically based on the theory of self-organized

riticality (SOC) [82] , which indicates that a local change in the

opulation may affect the whole population and provide delicate

alances without external organising force [77] . In the GA, the best

olutions are combined using the evolutionary operators (crossover

nd mutation). In contrast, in the EPD, the worst solutions should

e omitted from the current population. Evolutionary program-

ing using self-organizing criticality (EPSCO) [83] and Extremal

ptimization (EO) [78] are two metaheuristics methods that were

roposed based on the SCO concept. The EPD is a simple and ef-

ective mechanism that can be embedded in different optimizers.

t starts by removing the worst solutions from the swarm and then

epositioning the removed solutions around the best search agents.

.2. Grasshopper Optimization Algorithm (GOA) 

The GOA is a recent swarm-based nature-inspired algorithm

49] proposed by Saremi et al. It mimics the idealized swarm- 

ng behavior of grasshopper insects in nature. Similarly other

opulation-based algorithms [84,85] , in GOA, a set of candidate
Dynamics and Grasshopper Optimization approaches for feature 
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Fig. 1. Function s when l = 1.5 and f = 0.5 and closer window when d changes in [0,4]. 
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solutions (each individual represents a grasshopper) are randomly

generated to construct the initial artificial swarm. Next, all candi-

date agents are evaluated with regard to the fitness values and the

best search agent in the current swarm in considered as the target

or leader. The target grasshopper starts attracting the other indi-

viduals around its location, and all grasshoppers start moving to-

wards the target grasshopper. 

The movement of the i th grasshopper towards the target

grasshopper is denoted as X i and is formulated as in Eq. (1) . 

X i = S i + G i + A i (1)

where S i is the social interaction, G i is the gravity force on i th

grasshopper, and A i shows the wind advection.The social interac-

tion S i acts as the main component during the grasshopper move-

ment process. It can be calculated as Eq. (2) : 

S i = 

N ∑ 

j =1 , j � = i 
s 
(
d i j 

)̂ d i j (2)

where d ij is the Euclidian distance of the i th with the j th grasshop-

per, and it is calculated as d i j = | x j − x i | . While, ̂ d i j = 

x j −x i 
d i j 

is a unit

vector from the i th grasshopper to the j th grasshopper. The s func-

tion is defined as the strength of social forces, which can be calcu-

lated as follows: 

s ( r ) = f e 
−d 

l − e −d (3)

where f is the intensity of attraction and l is the attractive length

scale. 

Fig. 1 illustrates the impact of s -function on the attraction and

repulsion (i.e., social interaction) of the grasshoppers. In this fig-

ure, the distance d has been considered in the interval of [0, 15].

The repulsion force between grasshoppers occurs when the dis-

tance between them is between 0 and 2.079 units. In the case that

the distance between a grasshopper and other agents is 2.079, it

enters to the comfort zone, where neither attraction nor repulsion

occurs there, while the attraction starts increasing after 2.079 till

4 and then starts decreasing. 

Fig. 1 shows that while the distance between grasshoppers be-

comes larger, s -function returns values close to 0. Thus, for large

distances between grasshoppers, s -function is not capable of ap-

plying strong forces to them. To overcome this drawback, the dis-

tance between agents are mapped between 1 and 4. The shape of

the s -function in the interval [1, 4] is shown in Fig. 1 (right). 

Different social behaviors can be obtained for the artificial

grasshoppers by changing the parameters l and f of s -function in

Eq. (3) as shown in Fig. 2 . 
Please cite this article as: M. Mafarja et al., Evolutionary Population 
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The conceptual model of the comfort zone and the attraction

nd repulsion forces between the grasshoppers is also shown in

ig. 3 . The gravity force G i (second component in Eq. (4)) is calcu-

ated as follows: 

 i = −g × ̂ e g (4)

here g denotes the gravitational constant and 

̂ e g is a unity vector

n the vertical direction of the surface. 

The wind advection A i (third component in Eq. (5)) is calculated

s follows: 

 i = u × ̂ e w 

(5)

here u represents a constant drift and 

̂ e w 

denotes a unity vector

n accordance with the wind. 

In stochastic optimisation, a metaheuristic optimizer must make

 fine balance between the exploration and exploitation when con-

ucting the search to find a accurate approximation of the global

ptimum. Therefore, the mathematical formulation of the GOA,

hich was presented in Eq. (1) , should be equipped with special

arameters to achieve to this purpose. The mathematical model

roposed by Saremi et al. in this regard is as follows: 

 

d 
i = c 

( 

N ∑ 

j =1 , j � = i 
c 

ub d − lb d 
2 

s 
(| x d j − x d i | 

)x j − x i 

d i j 

) 

+ ̂

 T d (6)

here ub d and lb d are respectively the upper bound and lower

ounds in the D th dimension, ̂ T d is the value of the D th dimension

f the target grasshopper. Parameter c is a decreasing coefficient

o shrink the comfort zone, attraction, and repulsion regions. Note

hat S is similar to the s function in Eq. (2) . In Eq. (6) , gravity force

as been considered equal to Zero (no G component), and the wind

orce ( A component) is always towards the target grasshopper ̂ T d .

he adaptive parameter c is considered as decreasing coefficient, it

as been used twice to simulate the deceleration of grasshoppers

pproaching the source of food and eventually consuming it. The

uter c (first c from the left) has been used to reduce the search

overage toward the target grasshopper as the iteration count in-

reases, while the inner c has been used to reduce the effect of the

ttraction and repulsion forces between grasshoppers with regard

o the number of iterations to shrink the comfort, repulsion, and

ttraction areas. 

The parameter c is updated with the following relation, it

hould be inversely proportional to the number of executed iter-

tions. This mechanism increases the degree of exploitation as the

teration count increases. It also reduces the comfort zone propor-

ional to the number of iterations. 

 = cMax − l 
cMax − cMin 

(7)

L 

Dynamics and Grasshopper Optimization approaches for feature 
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Fig. 2. Behavior of the function s based on l and f . 

Fig. 3. Primitive corrective patterns between individuals in a swarm of grasshop- 

pers. 
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Fig. 4. Sigmoidal Transfer function. 
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here cMax and cMin are respectively the maximum and mini-

um values of parameter c, l is iteration, and L is the maximum

ound of iterations. In [83] , the authors used 0.0 0 0 01 and 1 for

Min and cMax , respectively. 

. Binary GOA (BGOA) for feature selection 

Finding a minimal feature set has been described as a NP-hard

roblem [86] . Searching the best combination of features is a chal-

enging problem especially in the wrapper-based methods. Hence,

n intelligent optimization method is required to reduce the num-

er of evaluations. 

As reported in the literature [53,83] , the GOA algorithm can re-

eal a superior efficacy in tackling various optimization cases. The

erits of GOA motivated us to propose a binary version of the GOA

ptimizer and use it as the core search engine in this paper when

olving FS problems [86] . Based on the NP-hard nature of FS prob-

ems, where the search space can be represented by binary values,

ome operators of the GOA algorithm need to be modified. In the

ontinuous GOA, each individual updates its position based on its

urrent position, the position of the best grasshopper found so far

target), and the position of all other grasshoppers as in Eq. (6) .

his behavior of the GOA is similar to other swarm-based tech-

iques (e.g., PSO). In the GOA, the first term of Eq. (6) is analogous

o the velocity vector (step) in the PSO. According to the claims

rovided by Mirjalili and Lewis [87] , one of the easiest ways to
Please cite this article as: M. Mafarja et al., Evolutionary Population 
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onvert an algorithm from continuous to binary version without

odifying its structure is to utilize transfer functions. In the pro-

osed approach, the transfer function (see Fig. 4 ) use the first term

n Eq. (6) , that is re-defined �X in Eq. (8) as the probability for

hanging of the position elements. 

X = c 

( 

N ∑ 

j =1 , j � = i 
c 

ub d − lb d 
2 

s 
(| x d j − x d i | 

)x j − x i 

d i j 

) 

(8) 

Sigmoidal function is a common transfer function proposed by

ennedy and Eberhart [88] as Eq. (9) : 

 ( �X t ) = 

1 

1 + e −�X t 
(9) 

here �X represents the step vector of a search agent at a specific

teration. 

The position of the current grasshopper will be updated as ex-

ressed in Eq. (10) based on the probability value T ( �X t ) obtained

rom Eq. (9) . 

 

k 
t+1 ( t + 1 ) = 

{
1 If rand < T ( �X t+1 ) 
0 If rand ≥ T ( �X t+1 ) 

(10) 

In the wrapper FS, a learning algorithm should be involved in

he evaluation of the selected feature subset. In this work, the k -

earest Neighbor ( k -NN) classifier [89] is utilized to attain the clas-

ification accuracy of the solution. The higher classification accu-

acies show that the relevant solution is better. Moreover, since

he aim of FS is to eliminate the number of selected features, the

maller the number of features in the solution, the better the solu-

ion is. These are two contradictory objectives that should be taken

nto consideration when designing an objective function for FS al-
Dynamics and Grasshopper Optimization approaches for feature 
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gorithms. In this work, the fitness function in Eq. (11) that can bal-

ance among the selected features in each agent (minimum) and

the accuracy of classification (maximum) is used to evaluate the

selected subsets in all approaches. 

F itness = αγR (D ) + β
| R | 
| N| (11)

where γ R ( D ) is the classification error rate of the known classier,

| R | is the number of selected features and | N | is the original num-

ber of features, α and β are two parameters to reflect the role of

classification rate and length of subset, α ∈ [0, 1] and β = ( 1 − α)
adopted from [70] . The overall pseudocode of the BGOA algorithm

is described in Algorithm 1 . 

Algorithm 1 Pseudocode of the BGOA algorithm. 

Initialize the GOA parameters cMax , cMin , and maximum itera-

tions L 

Initialize a set of random solutions X i (i = 1 , 2 , . . . , n ) as initial

population 

Calculate the fitness of all agents 

Remark the best solution as the Target 

Set T as the best solution 

while t < L do 

Update c using Eq. (7) 

for each individual in the population do 

Normalize the distances between grasshoppers into [1, 4] 

Update the step vectors ( �X) using Eq. (8) 

Update position vectors using Eq. (10) 

Update Target if there is a better solution in population 

t = t + 1 

return T 

3.1. Applying the EPD strategy to BGOA 

As discussed earlier, the EPD eliminates the worst solutions

from the population and replaces them by generating neighbor so-

lutions around the good ones. The EPD mechanism is a simple but

effective operator for population-based techniques [77] , therefore,

it is applied to the conventional GOA here since it is also a stochas-

tic population-based optimizer. To equip the GOA algorithm with

the EPD technique, the swarm of grasshoppers is divided into two

parts after sorting it based on the fitness values. The half of the

worst grasshoppers is eliminated and reinitialized based on four

different strategies depending on the good half of the population. 

In this paper, four different strategies are utilized to combine

the EPD scheme with the binary BGOA. These versions can be cate-

gorized into two main classes based on the implemented selection

operators. 

3.1.1. BGOA_EPD with random selection operator 

The first model for hybridizing is to use random selection oper-

ator. For this purpose, one solution among the best three grasshop-

pers from the population is selected in addition to a random

grasshopper. Then, the leader of ‘poor’ solution will be selected

randomly. To implement this idea, two different approaches are de-

signed that work based on the random selection technique: 

1. BGOA_EPD: it is the simplest hybrid form of the EPD and BGOA

algorithms. In this approach, the random selection mechanism

is employed to select the solutions. This method also uses a

simple mutation operator (see Fig. 5 ). 

In this approach, the top three individuals are selected and

a fourth solution is generated randomly. Each solution in the

worst half is repositioned around any of these four solutions
Please cite this article as: M. Mafarja et al., Evolutionary Population 
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depending on a random number. The process is straightfor-

ward; a random number is generated X r in each iteration and

then one of the following four choices will be applied for repo-

sitioning of the poor solution: when X r ∈ [0, 0.25], then the

best solution is used, when X r ∈ [0.25, 0.5], then the second

best solution is used, when X r ∈ [0.5, 0.75], then the third best

solution is employed, and when X r ∈ [0.75, 1], a random solu-

tion is used. 

The selected solution will be used as a starting point to reposi-

tion the poor solution. Repositioning the poor solutions around

the best solutions aims to heighten the median of the swarm in

each step. However, this process may cause a premature con-

vergence of the algorithm. As a remedy, a randomly generated

solution is used in the first rule to promote exploration and

prevent trapping in local optima. 

2. BGOA_EPD_CM: this version is similar to the BGOA_EPD and the

only difference is that it also uses a crossover and a mutation

operator. 

In the second approach, a random number is generated and one

solution is selected similar to the first strategy, then the se-

lected solution is mutated to improve the exploration tendency

of the algorithm. The mutated solution is then crossover with

the poor solution. 

.1.2. BGOA_EPD with special selection operator 

According to the findings of Talbi [27] , “it does not mean that

sing better solutions as initial solutions will always lead to bet-

er local optima” [27] . The best individuals may bias the search-

ng process and this may cause a premature convergence and a

oss of diversity. For this reason, instead of selecting one of the

hree best solutions like the previous versions, two well-regarded

election mechanism are applied to select a solution from the first

alf of the population. For each solution in the second half of the

opulation, select a solution from the first half using the selec-

ion mechanism; mutate and then crossover it with the poor so-

ution. In this regard, the alternative method for hybridizing the

PD with the BGOA in the BGOA-EPD algorithm is to also employ

 special selection mechanism. There are two well-known selec-

ion techniques: Roulette wheel selection (RWS) [90] and the TS

91] . These methods are utilized in this work. Therefore, another

wo different strategies that can be developed for the BGOA_EPD

re: 

1. BGOA_EPD_Tour: in this version, a solution from the first half

of the swarm is selected using the TS operator, then the same

crossover and mutation operators utilized in the BGOA_EPD

version are applied on the obtained solution. 

The TS is the most popular selection mechanism used with GA

due to its efficiency and simple implementation. In TS, a set

of n individuals are randomly selected from the whole popu-

lation, then the best individual among the selected individu-

als will be selected to reposition the poor solution. The num-

ber of selected individuals called tournament size Ts . The ad-

vantage of TS is that it gives a chance to all individuals to

guide the poor solutions, which preserve the diversity of the

BGOA_EPD_Tour algorithm. An example of the TS mechanism

for the BGOA_EPD_Tour is illustrated in Fig. 6 , where three indi-

viduals are selected ( Ts = 3) and the best solution among them

is picked out. 

After applying the TS operator,the mutation operator with suit-

able mutation rate is applied the selected grasshopper hoping

to find a better solution in the neighbor of the selected solution

and to avoid the BGOA_EPD_Tour algorithm from the prema-

ture convergence. After that, the poor solution is repositioned

around the resulting solution by applying a crossover operator.

In the BGOA_EPD_Tour, a solution is selected using the TS to
Dynamics and Grasshopper Optimization approaches for feature 
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Fig. 5. The sorted population and related agents that should be repositioned around the best solutions and a random one. 

Fig. 6. The mechanism of TS. 

Fig. 7. Selection strategy with RWS. 
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give a chance to the lower fitness solution in the first half of

the population to be selected. 

2. BGOA_EPD_RWS: This version is similar to the BGOA_EPD_Tour

version and the only difference is that it uses the RWS operator

instead of the TS operator. 

In the BGOA_EPD_RWS, in each iteration of the BGOA process,

for each solution in the worst half of the population, a solution

from the first half is selected using the RWS operator. In RWS,

individuals are selected with a probability based on their fitness

values. In this selection strategy, a roulette wheel is formulated

with a circumference equals the sum of all fitness values of the

individuals (see Fig 7 ). 

Each individual will have a segment with a size proportional to

its fitness. The probability to select an individual can be seen as

spinning a roulette wheel, and the segment where the pointer

stops is taken and the corresponding individual will be selected.

Obviously, the individuals with the largest fitness (i.e. largest

segment sizes) have higher probability of being selected than

those who have lower probability (i.e. smallest segment sizes).

The advantage of RWS that it does not ignore any individual in

the population, therefore, it preserves the diversity of the pop-

ulation. 

After selecting a solution using the RWS operator, it is mutated

to explore more regions of the feature space, then; the resulted

solution from the mutation operator is used to reposition a so-
lution from the second half by applying a crossover operator. f
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The mutation rate r for all related approaches is shown in

q. (12) . The parameter r is decremented from 0.9 to 0, linearly,

ccording to the iteration number i . 

 = 0 . 9 

(
1 + 

(1 − i ) 

L − 1 

)
(12)

here L was the maximum number of iterations. 

The main difference between these versions is that they use

ifferent selection operators. In addition, the BGOA_EPD_CM uses

he best solutions in the population while BGOA_EPD_RWS and

GOA_EPD_Tour variants do not use this policy. They use other so-

utions from the first half of the population. 

The overall pseudo code of the BGOA_EPD algorithm is de-

cribed in Algorithm 2 . Flowchart of the BGOA_EPD is also demon-

lgorithm 2 Pseudo code of the BGOA_EPD approaches. 

Initialize GOA parameters ( cMax , cMin , and L ) 

Initialize a set of random solutions X i (i = 1 , 2 , . . . , n ) as initial

population 

Obtain the fitness of all agents 

Remark the best solution as Target 

while t < L do 

Update c using Eq. (7) 

for each individual in the population do 

Normalize the distances between grasshoppers into [1, 4] 

Update the step vectors ( �X) using Eq. (8) 

Update position vectors using Eq. (10) 

Update Target if there is a better solution in the population 

Sort the population based on the fitness 

for i = (n/ 2) + 1 to n do 

Update the position of i − th grasshopper using EPD ap-

proach 

t = t + 1 

return Target 

trated in Fig. 8 . 

Note that the computational complexity of the proposed

GOA_EPD is not significantly different from the GOA. The compu-

ational complexity of GOA is of O ( t × d × n 2 ) where t indicates the

umber of iterations, d is the number of variables, and n shows the

umber of solutions. The proposed binary operators do not change

he computational complexity since they have been applied to the

osition updating mechanism of the original GOA. To re-initialize

0% of solutions, however, the additional complexity of O ( n /2) is

equired, so the overall computational complexity of the proposed

GOA_EPD is O (t × d × n 2 + n/ 2) . Note that due to the need to re-

valuate the objective value of half of the solutions, the number of

unction evaluations in BGOA_EPD is n /2 units more that of GOA. 
Dynamics and Grasshopper Optimization approaches for feature 
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Fig. 8. The overall steps for proposed BGOA_EPD approach. 
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4. Experimental results and discussions 

In this section, the efficacy of the proposed hybrid EPD_BGOA

versions in dealing with 22 well-regarded datasets with differ-

ent characteristics. Table 2 reports the brief description of the 22

datasets utilized. For more details, interested readers are referred

to the UCI [92] repository. These benchmark cases have been stud-
Table 2 

List of used datasets. 

No. Dataset No. of Features No. of instances 

1. Breastcancer 9 699 

2. BreastEW 30 596 

3. Exactly 13 10 0 0 

4. Exactly2 13 10 0 0 

5. HeartEW 13 270 

6. Lymphography 18 148 

7. M-of-n 13 10 0 0 

8. PenglungEW 325 73 

9. SonarEW 60 208 

10. SpectEW 22 267 

11. CongressEW 16 435 

12. IonosphereEW 34 351 

13. KrvskpEW 36 3196 

14. Tic-tac-toe 9 958 

15. Vote 16 300 

16. WaveformEW 40 50 0 0 

17. WineEW 13 178 

18. Zoo 16 101 

19. Clean1 166 476 

20. Semeion 265 1593 

21. Colon 20 0 0 62 

22. Leukemia 7129 72 

e  

t  

t

 

c  

2  
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ed in several well-established works. The utilized test set cover

ifferent traits and the instances of small to high dimensional

atasets and can examine the searching competencies of EA and

etaheuristics in tackling the FS problems. Different variants of

GOA algorithm were employed to search for the best reduct with

he minimum error rate based on KNN classifier (where K = 5

93] ) with the Euclidean distance metric. For evaluation purposes,

ach datasets is divided into training and testing sets where 80% of

he instances in the datasets were used for training purposes and

he rest of them is utilized for testing tasks [94] . 

All the fair tests and the computed results in this research are

onducted and prepared on a PC with Intel Core(TM) i5-5200U

.2GHz CPU and 4.0GB RAM. The maximum iterations ( L ) is set to

00 and the number of search agents ( N ) is 10. Additionally, all

tatistical results are recorded over 30 independent runs. The di-

ension of cases is equal to the number of features in each exper-

mented dataset. The α and β parameters in the fitness equation

re set to 0.99 and 0.01, respectively. 

.1. Evaluation of proposed methods 

In this part, the efficiency, convergence and the quality of the

esults of four developed hybrid approaches are deeply measured

nd compared to each other’s to distinguish the preeminent vari-

nt for more advanced investigations. The four techniques utilizing

ifferent operators and the random, TS and RWS mechanisms are

ubstantiated and compared to judge and discover the influence of

he crossover and mutation strategies and using a specific selec-

ion scheme in preference to the random selection policy on either

he results or efficacy of the proposed variants. The performance of

he proposed optimizers is evaluated and compared in terms of the
Dynamics and Grasshopper Optimization approaches for feature 
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Table 3 

Comparison of the BGOA_S with four hybrid versions using Acc and StdDev metrics . 

Dataset BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour 

Acc StdDev Acc StdDev Acc StdDev Acc StdDev Acc StdDev 

Breastcancer 0.969 0.0 0 0 0.966 0.0 0 0 0.969 0.0 0 0 0.977 0.0 0 0 0.980 0.001 

BreastEW 0.960 0.005 0.962 0.002 0.963 0.003 0.964 0.003 0.947 0.005 

Exactly 0.946 0.036 0.997 0.006 0.993 0.009 0.999 0.008 0.999 0.005 

Exactly2 0.760 0.0 0 0 0.734 0.005 0.744 0.013 0.762 0.0 0 0 0.780 0.0 0 0 

HeartEW 0.826 0.010 0.842 0.006 0.841 0.012 0.815 0.008 0.833 0.004 

Lymphography 0.815 0.012 0.895 0.013 0.844 0.012 0.878 0.009 0.868 0.011 

M-of-n 0.979 0.030 0.997 0.007 0.999 0.004 0.999 0.004 1.0 0 0 0.0 0 0 

PenglungEW 0.861 0.015 0.868 0.008 0.839 0.021 0.750 0.012 0.927 0.013 

SonarEW 0.895 0.011 0.921 0.007 0.883 0.006 0.922 0.008 0.912 0.009 

SpectEW 0.851 0.011 0.850 0.007 0.882 0.006 0.852 0.007 0.826 0.010 

CongressEW 0.953 0.004 0.983 0.003 0.974 0.004 0.983 0.004 0.964 0.005 

IonosphereEW 0.883 0.007 0.907 0.004 0.922 0.007 0.911 0.005 0.899 0.007 

KrvskpEW 0.956 0.008 0.960 0.006 0.959 0.006 0.963 0.004 0.968 0.003 

Tic-tac-toe 0.803 0.007 0.797 0.001 0.789 0.0 0 0 0.785 0.0 0 0 0.808 0.0 0 0 

Vote 0.951 0.004 0.948 0.006 0.953 0.004 0.960 0.003 0.966 0.003 

WaveformEW 0.729 0.009 0.739 0.006 0.743 0.004 0.740 0.004 0.737 0.003 

WineEW 0.979 0.004 0.994 0.006 0.993 0.005 0.988 0.003 0.989 0.0 0 0 

Zoo 0.990 0.010 0.976 0.008 0.960 0.004 1.0 0 0 0.0 0 0 0.993 0.009 

Clean1 0.883 0.008 0.885 0.005 0.893 0.005 0.885 0.006 0.863 0.004 

Semeion 0.975 0.002 0.979 0.001 0.986 0.001 0.974 0.001 0.976 0.002 

Colon 0.745 0.010 0.812 0.012 0.712 0.008 0.810 0.010 0.870 0.006 

Leukemia 0.928 0.014 0.889 0.0 0 0 0.931 0.014 0.855 0.012 0.931 0.014 

Table 4 

Average selected attributes using the developed algorithms . 

Dataset BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour 

Atts StdDev Atts StdDev Atts StdDev Atts StdDev Atts StdDev 

Breastcancer 4.00 0.0 0 0 5.13 0.346 4.17 0.379 4.73 0.980 5.00 0.0 0 0 

BreastEW 15.37 2.697 20.00 2.729 17.50 1.889 17.20 2.747 17.33 2.440 

Exactly 7.63 0.809 6.60 0.498 6.57 0.504 6.43 0.568 6.53 0.571 

Exactly2 1.27 0.450 7.97 0.809 5.67 3.565 1.50 0.509 1.53 0.507 

HeartEW 6.77 1.524 6.67 0.922 5.77 0.817 6.13 1.548 8.40 1.037 

Lymphography 7.47 2.080 10.60 1.003 10.60 1.522 11.60 1.476 10.63 1.217 

M-of-n 7.53 0.973 6.53 0.629 6.57 0.504 6.57 0.568 6.47 0.507 

PenglungEW 150.13 8.509 166.53 15.937 198.90 8.707 174.77 15.460 178.33 15.486 

SonarEW 28.57 3.191 36.37 3.157 36.03 3.489 35.73 2.778 36.77 4.240 

SpectEW 9.93 1.856 14.13 1.995 12.83 2.437 11.93 2.463 11.10 3.044 

CongressEW 4.33 1.322 7.67 1.729 6.53 2.145 5.50 1.592 5.77 2.012 

IonosphereEW 13.43 3.115 18.93 3.269 17.93 2.420 17.77 3.785 16.40 3.701 

KrvskpEW 19.90 3.010 22.33 3.010 22.10 2.551 22.43 2.417 21.67 2.496 

Tic-tac-toe 6.83 0.379 5.03 0.183 6.00 0.0 0 0 6.10 0.305 5.00 0.0 0 0 

Vote 5.27 2.083 6.73 1.015 6.57 1.995 6.07 1.617 5.43 1.223 

WaveformEW 21.20 2.952 25.53 3.082 25.80 3.295 24.93 2.876 26.23 3.451 

WineEW 6.33 1.348 7.27 0.944 7.23 0.817 6.83 1.147 8.80 1.472 

Zoo 8.13 1.167 7.97 1.426 7.93 1.230 7.77 0.774 9.17 1.967 

clean1 82.93 5.948 103.80 6.880 105.20 6.206 96.00 9.127 92.60 7.802 

Semeion 134.90 7.662 169.63 11.137 171.50 7.361 159.87 9.885 157.03 11.485 

Colon 967.87 23.882 1194.33 89.430 1198.33 97.070 1050.83 70.247 1063.67 64.618 

Leukemia 3495.23 48.699 4138.27 373.767 4366.87 288.129 3896.63 292.866 3768.80 224.842 
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verage classification accuracy (Acc), selection size, and fitness val-

es, computational times, P-values of the Wilcoxon ranksum test

nd convergence rates over all runs of each technique. The Acc

s measured via the nominated features on the used dataset. The

tandard deviation (StdDev) of all proposed versions is also pro-

ided for all metrics, datasets and algorithms. 

Table 3 exposes the attained Acc and related StdDev results for

he BGOA_S algorithm versus other designed versions. Tables 4–6

lso reflect the average selected attributes, fitness, and CPU time

alues along with the related StdDev for the proposed techniques. 

From Table 3 , it can be detected that the hybrid

GOA_EPD_Tour can relatively outperform other competitors

n terms of Acc and StdDev metrics in dealing with 10 and 11

atasets, respectively. The simple binary BGOA_S cannot reveal

igher accuracies than any hybrid variant over all 22 datasets.

or the M-of-n dataset, the BGOA_EPD_Tour has classified with
Please cite this article as: M. Mafarja et al., Evolutionary Population 
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00% Acc and 0 StdDev using only 6.47 attributes. From Table 3 ,

t is observed that the BGOA_EPD_RWS can provide superior

cc rates compared to other varieties in tackling the BreastEW,

ongressEW, SonarEW, and Zoo datasets. The BGOA_EPD_RWS

as attained the Acc of 100% in solving the Zoo test case. The

GOA_EPD_CM outperform others in terms of Acc in dealing with

he 6 datasets: IonosphereEW, SpectEW, WaveformEW, Clean1,

emeion, and Leukemia problems. The BGOA_EPD has outper-

ormed competitors in realizing the HeartEW, Lymphography,

nd WineEW. In tackling the CongressEW, both BGOA_EPD and

GOA_EPD_RWS have reached to a same Acc rate 98.3%, while

ased on selected attributes in Table 4 , the BGOA_EPD_RWS with

.5 selected attributes has outperformed the BGOA_EPD. 

Regarding the Acc rates, the BGOA_EPD_Tour can outperform

he BGOA_S over 19 problems and there is a marked shift in the

ates for the BGOA_EPD_Tour and improvement varies from 1%
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Table 5 

Average fitness values for proposed versions. 

Dataset BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour 

Fitness StdDev Fitness StdDev Fitness StdDev Fitness StdDev Fitness StdDev 

Breastcancer 0.036 0.0 0 0 0.040 0.0 0 0 0.036 0.0 0 0 0.028 0.001 0.026 0.001 

BreastEW 0.045 0.005 0.044 0.002 0.043 0.003 0.041 0.003 0.058 0.004 

Exactly 0.059 0.036 0.008 0.006 0.012 0.010 0.006 0.008 0.006 0.006 

Exactly2 0.239 0.0 0 0 0.269 0.005 0.257 0.015 0.237 0.0 0 0 0.219 0.0 0 0 

HeartEW 0.178 0.009 0.161 0.006 0.162 0.012 0.188 0.008 0.171 0.004 

Lymphography 0.187 0.012 0.110 0.013 0.161 0.012 0.127 0.009 0.137 0.011 

M-of-n 0.027 0.030 0.008 0.007 0.006 0.004 0.006 0.004 0.005 0.0 0 0 

PenglungEW 0.142 0.015 0.136 0.008 0.166 0.020 0.253 0.012 0.078 0.012 

SonarEW 0.109 0.010 0.084 0.007 0.122 0.006 0.083 0.008 0.094 0.008 

SpectEW 0.152 0.011 0.155 0.007 0.123 0.006 0.152 0.006 0.177 0.010 

Tic-tac-toe 0.203 0.007 0.206 0.001 0.215 0.0 0 0 0.220 0.0 0 0 0.196 0.0 0 0 

CongressEW 0.049 0.004 0.022 0.003 0.030 0.004 0.020 0.005 0.039 0.005 

IonosphereEW 0.120 0.008 0.098 0.004 0.082 0.007 0.094 0.005 0.105 0.007 

KrvskpEW 0.049 0.008 0.046 0.006 0.047 0.006 0.043 0.004 0.038 0.003 

Vote 0.052 0.004 0.055 0.006 0.050 0.005 0.044 0.003 0.037 0.003 

WaveformEW 0.274 0.009 0.265 0.006 0.261 0.004 0.263 0.005 0.267 0.003 

WineEW 0.025 0.004 0.012 0.005 0.013 0.005 0.017 0.003 0.018 0.001 

Zoo 0.015 0.010 0.028 0.007 0.044 0.004 0.005 0.0 0 0 0.012 0.008 

Clean1 0.121 0.008 0.120 0.004 0.112 0.005 0.120 0.006 0.141 0.004 

Semeion 0.030 0.002 0.027 0.001 0.020 0.001 0.031 0.001 0.030 0.001 

Colon 0.257 0.010 0.192 0.012 0.291 0.008 0.194 0.010 0.134 0.006 

Leukemia 0.076 0.014 0.116 0.001 0.074 0.014 0.149 0.012 0.073 0.014 

Table 6 

Average CPU time (seconds) of proposed techniques. 

Dataset BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour 

Time StdDev Time StdDev Time StdDev Time StdDev Time StdDev 

Breastcancer 3.537 0.248 4.053 0.232 4.370 0.222 4.131 0.214 4.146 0.191 

BreastEW 3.780 0.199 5.256 0.221 5.761 0.237 5.427 0.249 5.404 0.241 

Exactly 4.874 0.238 6.166 0.301 6.881 0.313 6.155 0.262 6.014 0.277 

Exactly2 5.223 0.344 6.204 0.285 6.882 0.351 5.934 0.265 5.942 0.257 

HeartEW 2.803 0.164 3.276 0.183 3.667 0.165 3.484 0.190 3.505 0.178 

Lymphography 2.540 0.148 3.145 0.144 3.547 0.169 3.413 0.161 3.427 0.162 

M-of-n 4.792 0.234 5.641 0.220 6.406 0.288 5.812 0.279 6.173 0.271 

penglungEW 2.836 0.164 18.597 0.784 21.038 0.920 19.494 0.756 19.560 0.822 

SonarEW 2.713 0.160 5.469 0.263 6.113 0.262 5.774 0.240 5.801 0.245 

SpectEW 2.705 0.154 3.465 0.147 3.916 0.189 3.746 0.183 3.775 0.164 

Tic-tac-toe 4.226 0.210 4.961 0.210 5.227 0.255 5.214 0.250 5.097 0.222 

CongressEW 3.248 0.160 3.835 0.186 4.273 0.207 4.093 0.211 4.109 0.205 

IonosphereEW 2.899 0.152 4.441 0.205 4.988 0.207 4.717 0.201 4.735 0.199 

KrvskpEW 49.520 1.668 58.357 1.773 62.814 3.055 56.831 1.871 57.043 1.743 

Vote 2.799 0.158 3.364 0.164 3.491 0.154 3.618 0.187 3.640 0.179 

WaveformEW 123.546 4.381 152.292 4.186 157.271 5.641 145.890 4.420 152.167 4.812 

WineEW 2.492 0.151 3.054 0.152 3.176 0.152 3.281 0.176 3.766 0.301 

Zoo 2.485 0.145 3.076 0.137 3.182 0.156 3.371 0.186 3.614 0.240 

clean1 7.204 0.225 16.423 0.542 16.988 0.566 16.904 0.600 17.220 0.608 

Semeion 88.934 1.514 129.229 2.182 130.251 2.154 120.308 2.480 123.254 2.147 

Colon 4.964 0.338 100.832 3.628 106.310 4.461 107.901 4.333 112.236 4.364 

Leukemia 15.322 0.884 383.067 19.075 379.074 15.501 381.100 15.244 394.688 15.418 
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to 12.5%.A comparable pattern can be detected from the results

of BGOA_EPD_RWS, it outperform the BGOA_S technique on 17

datasets, whereas the BGOA_EPD_CM and BGOA_EPD outperform

the basic optimizer on 15 problems. 

According to the selected attributes (Atts) in Table 4 , it is

seen that the simple BGOA_S is better than the BGOA_EPD_Tour

on 19 datasets. It also is superior to the BGOA_EPD_RWS and

BGOA_EPD_CM in dealing with 17 problems. 

Inspecting the fitness measures (Fitness) in Table 5 , the best op-

timizer is the BGOA_EPD_Tour. It shows the lowest values for the

objective function in tackling the 10 datasets: Breastcancer, Exactly,

Exactly2, KrvskpEW, M-of-n, PenglungEW, Tic-tac-toe, Vote, Colon,

and Leukemia. The BGOA_EPD_RWS has shown a relatively good

performance in dealing with 4 test cases: BreastEW, CongressEW,

SonarEW, and Zoo. The BGOA_EPD_CM has provided a lower fit-
T  
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ess for IonosphereEW, SpectEW, WaveformEW, Clean1, and Se-

eion datasets. 

From Table 6 , it can be observed that the BGOA_S is the

astest approach in a same computational environment with

ther optimizers. When comparing the algorithms with the TS-

ased and RWS-based selection operators, it is seen that for

9 datasets, BGOA_EPD_RWS outperforms the BGOA_EPD_Tour.

or only BreastEW, Exactly, and Tic-tac-toe, the BGOA_EPD_Tour

as a slightly better run speed. In addition, from Table 7 ,

GOA_EPD_RWS and BGOA_EPD_Tour are confirmed that the ob-

erved differences are statistically significant for majority of

atasets according to p-values of Wilcoxon ranksum test with 5%

ignificance. 

The average ranking of the proposed binary and hybrid versions

n terms of Acc, Att, and fitness metrics is presented in Table 8 . In

able 8 , the rank of each method on a dataset is calculated, then,
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Table 7 

P-values of the Wilcoxon test the classification accuracy results of the proposed approaches (p ≥ 0.05 are 

underlined, and N/A means not applicable). 

BGOA_S BGOA_EPD BGOA_EPD-CM BGOA_EPD_RWS BGOA_EPD_Tour 

Breast Cancer 2.71E −14 2.71E −14 2.71E −14 1.22E −12 N/A 

BreastEW 1.42E −04 1.32E −02 2.25E-01 N/A 1.88E −11 

Exactly 2.04E −10 9.53E −06 1.21E −04 1.0 0E + 0 0 N/A 

Exactly2 1.69E −14 1.01E −12 5.37E −13 1.69E −14 N/A 

HeartEW 7.62E −09 N/A 2.15E-01 1.29E −11 7.19E −08 

Lymphography 1.98E −11 N/A 1.79E −11 6.41E −06 1.89E −11 

M-of-n 8.60E −07 4.19E −02 8.15E-02 3.34E-01 N/A 

penglungEW 3.75E −12 8.38E −13 5.90E −12 2.63E −12 N/A 

SonarEW 4.77E −11 7.19E-01 7.57E −12 N/A 2.11E −05 

SpectEW 2.46E −11 1.56E −11 N/A 1.29E −11 1.79E −11 

CongressEW 1.35E −11 6.58E-01 3.87E −09 N/A 1.54E −11 

IonosphereEW 1.82E −11 2.68E −10 N/A 2.95E −08 5.21E −11 

KrvskpEW 3.14E −09 4.23E −06 1.48E −08 3.29E −06 N/A 

Tic-tac-toe 1.19E −13 2.71E −14 2.71E −14 1.69E −14 N/A 

Vote 9.06E −12 7.00E −12 1.64E −11 2.11E −08 N/A 

WaveformEW 3.04E −08 3.16E −03 N/A 3.13E −02 3.73E −07 

WineEW 1.07E −10 N/A 4.35E-01 2.50E −05 5.59E −05 

Zoo 3.80E −06 1.55E −13 2.71E −14 N/A 6.18E −04 

Clean1 1.09E −06 4.81E −07 N/A 2.15E −06 1.94E −11 

semeion 1.77E −11 1.80E −11 N/A 1.83E −11 1.96E −11 

Colon 9.45E −14 2.39E −13 6.50E −14 1.13E −13 N/A 

Leukemia 3.09E-01 4.63E −13 N/A 3.31E −12 N/A 

Table 8 

Overall ranking results. 

Algorithm BGOA_S BGOA_EPD BGOA_EPD_CM BGOA_EPD_RWS BGOA_EPD_Tour 

Metric Acc Att Fit Acc Att Fit Acc Att Fit Acc Att Fit Acc Att Fit 

Breastcancer 3 1 3 5 5 5 3 2 3 2 3 2 1 4 1 

BreastEW 4 1 4 3 5 3 2 4 2 1 2 1 5 3 5 

Exactly 5 5 5 3 4 3 4 3 4 1 1 1 1 2 1 

Exactly2 3 1 3 5 5 5 4 4 4 2 2 2 1 3 1 

HeartEW 4 4 4 1 3 1 2 1 2 5 2 5 3 5 3 

Lymphography 5 1 5 1 2 1 4 2 4 2 5 2 3 4 3 

M-of-n 5 5 5 4 2 4 2 3 2 2 3 2 1 1 1 

PenglungEW 3 1 3 2 2 2 4 5 4 5 3 5 1 4 1 

SonarEW 4 1 4 2 4 2 5 3 5 1 2 1 3 5 3 

SpectEW 3 1 2 4 5 4 1 4 1 2 3 2 5 2 5 

CongressEW 5 1 5 1 5 2 3 4 3 1 2 1 4 3 4 

IonosphereEW 5 1 5 3 5 3 1 4 1 2 3 2 4 2 4 

KrvskpEW 5 1 5 3 4 3 4 3 4 2 5 2 1 2 1 

Tic-tac-toe 2 5 2 3 2 3 4 3 4 5 4 5 1 1 1 

Vote 4 1 4 5 5 5 3 4 3 2 3 2 1 2 1 

WaveformEW 5 1 5 3 3 3 1 4 1 2 2 2 4 5 4 

WineEW 5 1 5 1 4 1 2 3 2 4 2 3 3 5 4 

Zoo 3 4 3 4 3 4 5 2 5 1 1 1 2 5 2 

Clean1 4 1 4 2 4 2 1 5 1 2 3 2 5 2 5 

Semeion 4 1 3 2 4 2 1 5 1 5 3 5 3 2 3 

Colon 4 1 4 2 4 2 5 5 5 3 2 3 1 3 1 

Leukemia 3 1 3 4 4 4 1 5 2 5 3 5 1 2 1 

Sum of the ranks 88 40 86 63 84 64 62 78 63 57 59 56 54 67 55 

Overall rank 5 1 5 3 5 4 3 4 3 2 2 2 1 3 1 

Total sum 214 211 203 172 176 

Final ranks 5 4 3 1 2 
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he sum of the ranks based on each metric is obtained. The total

um shows the sum of the ranks of each optimizer based on all

etrics. The final rank shows the final average place of each algo-

ithm in handling all 22 datasets. The utilized ranking system gives

 lower place to those items that have better value according to a

pecific metric. The overall and final ranks are inside [1, 5] interval.

Table 8 divulges that the BGOA_EPD_RWS and BGOA_EPD_Tour

as achieved to the best places. Regarding the Acc metric, the

GOA_EPD_Tour won the competition and BGOA_EPD_RWS was

he second winner, while the BGOA_EPD_CM and BGOA_EPD were

oth the third front-runners and BGOA_S gained the last stage.

ased on the orders for the Fit measure, the best solvers can be

potted as the BGOA_EPD_Tour, BGOA_EPD_RWS, BGOA_EPD_CM, 

GOA_EPD, and BGOA_S, respectively. Regarding the Att mea-
Please cite this article as: M. Mafarja et al., Evolutionary Population 
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ure, the best is the BGOA_S, while the BGOA_EPD_Tour and

GOA_EPD_RWS have acquired the second and third places. 

Based on the final ranks, the best two algorithms

BGOA_EPD_RWS and BGOA_EPD_Tour) have demonstrated very 

ompetitive performances and the ranks are 172 and 176, respec-

ively. There is a notable gap between the ranks of top winners

aving the RWS and TS selection schemes and the third front-

unner, the BGOA_EPD_CM that runs the mutation and crossover

o relocate the feeble grasshoppers based on top front-runners of

he population. 

The reason might be that the BGOA_EPD_CM and BGOA_EPD

ave utilized the best grasshoppers of the population, and this can

ias the exploration phase, which has instigated premature conver-

ence and a loss of diversity in the population. This effect of best
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Table 9 

The parameter settings. 

Algorithm Parameter Value 

GSA G 0 100 

α 20 

BA Q min Frequency minimum 0 

Q max Frequency maximum 2 

A Loudness 0.5 

r Pulse rate 0.5 

GWO a [2 0] 

p  

s  

s  

c  

B  

t  

d  

a  

t  

l  

s  

a

 

o  

t  

s  

B  

e  

d

4

 

B  

r  

p  

[  

c  

t

 

d  

s  

m  

s

 

t  

a  

v  

T  

t  

n  

p

 

e  

a  

c  

t  

s  

i  

B

 

i  

M  

w  
solutions has decreased the quality of the outcomes, and conse-

quently, the grades of the BGOA_EPD_CM and BGOA_EPD in the

ranking system have dropped compared to the BGOA_EPD_Tour

and BGOA_EPD_RWS. From the other side, BGOA_EPD_Tour inherits

the advantage of TS, which can preserve the diversity of grasshop-

pers and consequently, the BGOA_EPD_Tour has an advanced po-

tential to retain and recover a stable balance between the explo-

ration and exploitation inclinations. In addition, BGOA_EPD_Tour

applies the mutation scheme to the selected grasshopper hoping

to find a better solution in the neighbor of the selected solution

and to avoid the LO. For these reasons, the BGOA_EPD_Tour can

outperform all based on Acc and fitness measures. 

Based on final ranks, the best version is the BGOA_EPD_RWS.

The reason is that this version does not ignore any grasshopper

in the population, so it is capable of preserving the diversity of

the agents, which can help the BGOA_EPD_RWS to perform deeper

exploration levels. This fact has enabled the BGOA_EPD_RWS to

avoid LO and discover better results. In addition, after selecting

an agent with the RWS operator, it is mutated to explore more

areas of the feature space, then; the resulted solution is used

again to reposition a solution from the second half by applying the

crossover operator. these operators also improve the efficacy of the

BGOA_EPD_RWS in balancing the exploration and exploitation as

compared to other developed versions. 

The convergence trends for the all proposed variants according

to the fitness measure on all 22 datasets are also compared and

demonstrated in Figs. 9 and 10 . 

From Fig. 9 , it can be observed that the BGOA_EPD_RWS has

exposed the best curves compared to other versions in tackling

the BreastEW, CongressEW, Lymphography, and SonarEW prob-

lems. The BGOA_EPD_Tour can reveal a quicker tendency than oth-

ers in treating the Breastcancer, Exactly2, HeartEW, KrvskpEW, M-

of-n, and penglungEW datasets, while the BGOA_EPD has stag-

nated to LO in early steps of the exploration phase, for exam-

ple when solving the Breastcancer, CongressEW, Exactly, HeartEW,

IonosphereEW, KrvskpEW, Lymphography, and penglungEW tasks.

From the curves on Fig. 9 , it can be inferred that the approaches

utilizing the TS and RWS schemes have a head-to-head conver-

gence proclivity. 

It seems that the TS and RWS-embedded variants perform bet-

ter than versions employing random selection and top solutions for

rearranging of the worst grasshoppers. This reveals that enhanc-

ing the median of all population using only top solutions and a

random grasshopper may increase the chance of BGOA_EPD to be

easily captivated in LO when penetrating the fruitless regions of

the feature space. The trends of the BGOA_EPD_CM also support

that the crossover and mutation schemes has heightened the in-

clusive leaning of the BGOA_EPD in balancing the exploration and

exploitation traits. Therefore, it is seen that the BGOA_EPD_CM

can converge faster to better results than the BGOA_EPD in ba-

sically all cases. And yet, the BGOA_EPD_CM cannot surpass both

BGOA_EPD_Tour and BGOA_EPD_RWS in terms of convergence re-

sults, except in solving the IonosphereEW. Therefore, it is seen that

using selection mechanisms has alleviated the unripe convergence

shortcoming of the BGOA_EPD. In RWS-based version, the door is

open for the weak solution in the first half of the population to be

selected but the better solutions have more chance. In this regard,

the BGOA_EPD_Tour attains better results than BGOA_EPD_RWS. 

According to Fig. 10 , the convergence shortcomings of the

BGOA_EPD can still be detected. However, it converged to im-

proved results for the Clean1. The BGOA_S can be better than the

BGOA_EPD regarding the convergence and it shows competitive

trends for all cases. 

The BGOA_EPD_CM has revealed enriched tendencies com-

pared to the BGOA_EPD and BGOA_S, mainly on SpectEW, Wave-

formEW, WineEW, and Semeion problems, which has slightly out-
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erformed other methods. It shows that the extra operators as-

ist the BGOA_EPD in fleeing from the LO. When the TS-based

election theme has met the BGOA_EPD, it has shown best

urves on the Tic-tac-toe, Vote, Colon, and Leukemia, whereas the

GOA_EPD_RWS has not exposed the excellent curves, except on

he Zoo. The reason is that the TS can enhance and preserve the

iversity of the solutions, which can encourage more stable bal-

nce between the local and global search trends. Then, it helps

he BGOA_EPD_Tour to uncover superior trends on harder cases

ike the Leukemia with 7129 and Colon with 20 0 0 features. It is

een that the tendencies of BGOA_EPD_Tour and BGOA_EPD_RWS

re very competitive on the WineEW and WaveformEW. 

Considering all results, convergence curves and final rankings

f algorithms, it can be recognized that two best versions are

he BGOA_EPD_RWS and BGOA_EPD_Tour algorithms. In the next

ection, the BGOA_EPD_Tour, which is the best hybrid variant of

GOA_EPD ,is considered to be further compared to other well-

stablished optimizers with regard to the efficacy, performance on

ifferent metrics and convergence behaviors. 

.2. Comparison with other metaheuristics 

In this section, the efficacy and qualitative results of the

GOA_EPD_Tour techniques is compared to the several well-

egarded and related optimizers in the FS field from different as-

ects. The binary versions of the GWO (bGWO) [74] , GSA (BGSA)

95] , and BA (BBA) [96] are utilized here to deeply investigate the

omparative efficiency of these well-established methods against

he developed BGOA-based version. 

All trials have completed during a same condition and all con-

itions were similar to the described information in preceding

ection. The parameters of optimizers are sensibly selected using

any trial and error processes to comprehend the finest feasible

ettings. Table 9 shows the used parameters. 

Table 10 exposes the attained Acc and related StdDev results for

he proposed algorithms versus other metaheuristics. Tables 11–13

lso reflect the average selected attributes, fitness, and CPU time

alues along with the related StdDev for the compared techniques.

able 14 shows the results of Wilcoxon ranksum statistical test for

he accuracy results in Table 10 . For the used test, the best tech-

ique for each dataset is considered as the base method to be com-

ared with other peers, independently. 

From Table 10 , it is seen that the hybrid BGOA_EPD_Tour can

vidently outperform all contestants on 20 datasets. The bGWO

lso outperform others on 2 problems: BreastEW and Clean1. In

omparison with the BGSA, the BGOA_EPD_Tour can provide bet-

er rates on a11 problems. In dealing with 21 datasets, the clas-

ification accuracies of the BGOA_EPD_Tour have improved in the

nterval of 0.5% (Semeion) to 30% (Exactly) in comparison with the

GSA. It can also outperform the BBA on all 22 datasets. 

The best and worst average Acc that the bGWO have reached

s 97.45% and 66.13% on Zoo and Colon datasets, respectively. For

-of-n case, the BGOA_EPD_Tour have reached to 100% accuracy,

hile bGWO has the accuracy of 89.41%, which shows the su-
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Fig. 9. Convergence curves of the proposed approaches for Breastcancer, BreastEW, Exactly, Exactly2, HeartEW, Lymphography, M-of-n, penglungEW, and SonarEW, SpectEW, 

CongressEW, and IonosphereEW datasets. 
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erior efficacy of the proposed EPD-based optimizer. Based on

he overall ranks, the BGOA_EPD_Tour has achieved to the first

lace and bGWO, BGSA, and BBA are the next choices, respec-

ively. several substantial improvements in the StdDev index can

lso be detected. The main reason for improved efficacy of the

GOA_EPD_Tour is that the poor solutions are repositioned around
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he better ones in the BGOA_EPD_Tour using the EPD, and during

his process, the selection mechanisms has assisted the proposed

pproach to maintain the diversity of swarm, and then, recover a

ne balance between the exploration and exploitation. Therefore,

n the case of stagnation to LO, they can escape from them using

he random nature behind the utilized operators. 
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Fig. 10. Convergence curves of the proposed approaches for KrvskpEW, Tic-tac-toe, Vote, WaveformEW, WineEW, Zoo, Clean1, Semeion, Colon, and Leukemia datasets. 
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From the results reflected in Table 11 , it is evident that the

BBA algorithm is better than other algorithms on 19 datasets.

The BGOA_EPD_Tour and BGSA algorithms have attained the

next ranks. For CongressEW and Vote, is observed that the

BGOA_EPD_Tour can show the best results. 
d  
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Inspecting the results in Table 12 , it is observed that the pro-

osed BGOA_EPD_Tour is capable of outperforming all algorithms

nd revealing the best costs in realizing 20 datasets. 

The BGOA_EPD_Tour shows superior costs compared to the BBA,

GSA, and bGWO algorithms on 90.9%, 95.45%, and 90.9% of the

atasets, respectively. The reason is that the TS-based selection op-
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Table 10 

Classification accuracy results of the BGOA_EPD_Tour compared to other metaheuristics. 

Dataset BGOA_EPD_Tour bGWO BGSA BBA 

Acc StdDev Acc StdDev Acc StdDev Acc StdDev 

Breastcancer 0.980 0.001 0.968 0.002 0.957 0.004 0.937 0.031 

BreastEW 0.947 0.005 0.954 0.007 0.942 0.006 0.931 0.014 

Exactly 0.999 0.005 0.809 0.076 0.697 0.060 0.610 0.065 

Exactly2 0.780 0.0 0 0 0.743 0.017 0.706 0.023 0.628 0.057 

HeartEW 0.833 0.004 0.792 0.017 0.777 0.022 0.754 0.033 

Lymphography 0.868 0.011 0.813 0.028 0.781 0.022 0.701 0.069 

M-of-n 1.0 0 0 0.0 0 0 0.894 0.041 0.835 0.063 0.722 0.080 

penglungEW 0.927 0.013 0.850 0.014 0.919 0.0 0 0 0.795 0.029 

SonarEW 0.912 0.009 0.836 0.016 0.888 0.015 0.844 0.036 

SpectEW 0.826 0.010 0.810 0.014 0.783 0.024 0.800 0.027 

CongressEW 0.964 0.005 0.948 0.011 0.951 0.008 0.872 0.075 

IonosphereEW 0.899 0.007 0.885 0.009 0.881 0.010 0.877 0.019 

KrvskpEW 0.968 0.003 0.934 0.015 0.908 0.048 0.816 0.081 

Tic-tac-toe 0.808 0.0 0 0 0.754 0.032 0.753 0.024 0.665 0.063 

Vote 0.966 0.003 0.944 0.010 0.931 0.011 0.851 0.096 

WaveformEW 0.737 0.003 0.723 0.007 0.695 0.014 0.669 0.033 

WineEW 0.989 0.0 0 0 0.960 0.012 0.951 0.015 0.919 0.052 

Zoo 0.993 0.009 0.975 0.009 0.939 0.008 0.874 0.095 

clean1 0.863 0.004 0.908 0.006 0.898 0.011 0.826 0.021 

semeion 0.976 0.002 0.972 0.003 0.971 0.002 0.962 0.006 

Colon 0.870 0.006 0.661 0.022 0.766 0.015 0.682 0.038 

Leukemia 0.931 0.014 0.884 0.016 0.844 0.014 0.877 0.029 

Table 11 

Average number of selected attributes results of the BGOA_EPD_Tour and BGOA_EPD_RWS compared to other meta- 

heuristics . 

Dataset BGOA_EPD_Tour bGWO BGSA BBA 

Att StdDev Att StdDev Att StdDev Att StdDev 

Breastcancer 5.0 0 0 0.0 0 0 7.100 1.447 6.067 1.143 3.667 1.373 

BreastEW 17.333 2.440 19.0 0 0 4.307 16.567 2.979 12.400 2.762 

Exactly 6.533 0.571 10.233 1.654 8.733 1.048 5.733 1.893 

Exactly2 1.533 0.507 7.333 4.155 5.100 2.107 6.067 2.333 

HeartEW 8.400 1.037 8.167 2.001 6.833 1.315 5.900 1.647 

Lymphography 10.633 1.217 11.100 1.971 9.167 1.895 7.800 2.203 

M-of-n 6.467 0.507 9.633 0.964 8.467 1.432 6.167 2.086 

penglungEW 178.333 15.486 166.333 28.232 157.167 7.729 126.167 15.601 

SonarEW 36.767 4.240 36.233 8.613 30.033 3.700 24.700 5.377 

SpectEW 11.100 3.044 12.633 2.442 9.533 2.300 7.967 2.282 

CongressEW 5.767 2.012 7.300 2.136 6.767 2.402 6.233 2.063 

IonosphereEW 16.400 3.701 19.233 5.015 15.400 2.513 13.400 2.594 

KrvskpEW 21.667 2.496 27.367 3.388 19.967 2.125 15.0 0 0 2.853 

Tic-tac-toe 5.0 0 0 0.0 0 0 6.700 1.343 5.867 1.137 4.700 1.489 

Vote 5.433 1.223 7.400 2.222 8.167 1.821 6.133 2.177 

WaveformEW 26.233 3.451 31.967 4.612 19.900 2.917 16.667 3.304 

WineEW 8.800 1.472 8.600 1.754 7.367 1.098 6.067 1.741 

Zoo 9.167 1.967 10.367 2.484 8.167 1.177 6.567 2.501 

clean1 92.600 7.802 121.267 20.691 83.700 5.421 64.767 10.016 

semeion 157.033 11.485 20 0.10 0 31.022 133.533 7.422 107.033 10.947 

Colon 1063.667 64.618 1042.100 126.721 995.833 20.021 827.500 55.371 

Leukemia 3768.800 224.842 3663.767 294.872 3555.133 39.713 2860.0 0 0 247.642 
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rator assists the algorithm to maintain the diversity of grasshop-

ers. It also utilizes top solutions to guide the poor ones and this

trategy improves the exploitative behavior of algorithm. Hence,

he BGOA_EPD_Tour an enriched potential to retain and recover a

table balance between the exploration and exploitation phases in

ealing with difficult feature spaces. The effect of selection opera-

ors are seen in the background of the improved results. 

The proposed BGOA_EPD_Tour has also attained an acceptable

tdDev values. Regarding the fitness, the bGWO show a good effi-

acy on 2 datasets. The penglungEW, Colon, Tic-tac-toe, krvskpEW

ases can be considered as relatively large datasets and the fitness

alues of the developed EPD-based version is relatively less than

ther optimizers. 

Based on Table 13 , the BGSA is the fastest approach and the

inary BBA is placed at the next rank. 
B  
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Table 14 shows all datasets that the proposed method provides

he best results (20 cases), the improvements are meaningful and

ccuracy of classification results has significantly increased com-

ared to the other competitors. 

The convergence curves for the compared algorithms on all

atasets are demonstrated in Figs. 11 and 12 . It can be seen that

he BGOA_EPD_Tour has an accelerated behavior on all 22 prob-

ems. Based on the last found solutions, which can be seen from

he ending points of the curves, it can outperform all techniques

n tackling 20 problems except the BreastEW and Clean1 datasets,

hich no stagnation behavior occurs but the concluding marks

re not better than the bGWO algorithm. Premature convergence

ehaviors can be detected in the curves of the bGWO, BBA and

GSA in dealing with several cases including the Exactly, Vote,

ic-tac-toe, SpectEW, and Zoo cases. For 20 datasets, the curves

GOA_EPD_Tour are superior to those of other competitors. Based
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Table 12 

Average fitness results of the BGOA_EPD_Tour and BGOA_EPD_RWS compared to other metaheuristics. 

Dataset BGOA_EPD_Tour bGWO BGSA BBA 

Fitness StdDev Fitness StdDev Fitness StdDev Fitness StdDev 

Breastcancer 0.026 0.001 0.039 0.003 0.049 0.003 0.044 0.005 

BreastEW 0.058 0.004 0.051 0.007 0.063 0.006 0.056 0.006 

Exactly 0.006 0.006 0.197 0.077 0.307 0.059 0.323 0.074 

Exactly2 0.219 0.0 0 0 0.260 0.019 0.295 0.024 0.326 0.017 

HeartEW 0.171 0.004 0.213 0.017 0.226 0.021 0.208 0.015 

Lymphography 0.137 0.011 0.191 0.028 0.222 0.022 0.226 0.024 

M-of-n 0.005 0.0 0 0 0.112 0.041 0.170 0.063 0.171 0.056 

penglungEW 0.078 0.012 0.154 0.013 0.085 0.0 0 0 0.168 0.017 

SonarEW 0.094 0.008 0.169 0.016 0.116 0.015 0.110 0.021 

SpectEW 0.177 0.010 0.194 0.014 0.220 0.024 0.172 0.012 

CongressEW 0.039 0.005 0.056 0.011 0.053 0.008 0.064 0.015 

IonosphereEW 0.105 0.007 0.120 0.009 0.122 0.010 0.108 0.012 

KrvskpEW 0.038 0.003 0.073 0.015 0.097 0.047 0.117 0.047 

Tic-tac-toe 0.196 0.0 0 0 0.251 0.032 0.251 0.024 0.257 0.024 

Vote 0.037 0.003 0.060 0.010 0.073 0.011 0.071 0.013 

WaveformEW 0.267 0.003 0.283 0.007 0.307 0.014 0.304 0.014 

WineEW 0.018 0.001 0.047 0.012 0.054 0.015 0.036 0.013 

Zoo 0.012 0.008 0.032 0.009 0.065 0.008 0.042 0.015 

clean1 0.141 0.004 0.099 0.006 0.106 0.010 0.156 0.013 

semeion 0.030 0.001 0.036 0.003 0.034 0.002 0.033 0.003 

Colon 0.134 0.006 0.341 0.022 0.237 0.014 0.279 0.035 

Leukemia 0.073 0.014 0.120 0.016 0.160 0.013 0.085 0.023 

Table 13 

Average CPU time (seconds) results of the BGOA_EPD_Tour and BGOA_EPD_RWS compared to other meta- 

heuristics. 

Dataset BGOA_EPD_Tour bGWO BGSA BBA 

Time StdDev Time StdDev Time StdDev Time StdDev 

Breastcancer 4.146 0.191 3.879 0.236 3.461 0.194 3.456 0.184 

BreastEW 5.404 0.241 4.602 0.234 3.748 0.173 3.862 0.196 

Exactly 6.014 0.277 6.154 0.275 4.876 0.311 4.956 0.272 

Exactly2 5.942 0.257 6.050 0.380 5.033 0.374 5.224 0.394 

HeartEW 3.505 0.178 2.739 0.174 2.812 0.182 2.767 0.201 

Lymphography 3.427 0.162 2.602 0.161 2.589 0.150 2.634 0.145 

M-of-n 6.173 0.271 6.157 0.241 5.138 0.293 4.892 0.361 

penglungEW 19.560 0.822 7.717 0.432 3.060 0.171 4.166 0.238 

SonarEW 5.801 0.245 3.677 0.193 2.703 0.146 2.850 0.191 

SpectEW 3.775 0.164 2.869 0.176 2.723 0.162 2.809 0.161 

CongressEW 4.109 0.205 3.309 0.172 3.217 0.188 3.244 0.158 

IonosphereEW 4.735 4.735 3.564 0.184 2.921 0.145 3.018 0.148 

KrvskpEW 57.043 1.743 78.113 4.606 49.534 2.527 47.923 2.576 

Tic-tac-toe 5.097 0.222 6.208 0.622 4.344 0.278 4.237 0.278 

Vote 3.640 0.179 2.851 0.154 2.824 0.152 2.834 0.178 

WaveformEW 152.167 4.812 213.955 13.607 125.804 6.770 119.990 8.169 

WineEW 3.766 0.301 2.628 0.173 2.585 0.171 2.624 0.141 

Zoo 3.614 0.240 2.623 0.136 2.547 0.158 2.777 0.192 

clean1 17.220 0.608 13.683 0.647 7.397 0.288 7.589 0.467 

semeion 123.254 2.147 169.538 9.191 90.601 2.212 82.776 5.579 

Colon 112.236 4.364 36.694 1.998 5.154 0.242 12.176 0.774 

Leukemia 394.688 15.418 130.878 6.366 16.441 0.683 39.379 2.418 
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on the aforementioned remarks, it can be recognized that the

novel EPD-based operators have strengthened the overall tradeoff

between the exploratory and exploitative steps. Consequently, it al-

leviates the immature convergence drawbacks of the BGOA in deal-

ing with FS problems. 

4.3. Comparison with other meta-heuristics in the literature 

In this part, the classification rates of the proposed EPD-based

approach are compared to some reported results from the past lit-

erature. Table 15 compares the average classification results of the

BGOA_EPD_Tour with other algorithms obtained from the previ-

ous specialized works. The BGOA_EPD_Tour is compared to the re-

ported classification results of GA and PSO from [97] and results

of the bGWO1, bGWO2, GA, and PSO from [98] . Note that the first
Please cite this article as: M. Mafarja et al., Evolutionary Population 

selection problems, Knowledge-Based Systems (2018), https://doi.org/10
ersions of GA and PSO were executed with exact settings in the

mplementation of the authors in [97] . While the results of other

our approaches (bGWO1, bGWO2, GA, and PSO) in the table were

btained by the authors with the same datasets in [98] . 

From the results in Table 15 , it is evident that the attained

lassification rates by the developed EPD-based approach in this

ork are higher than other optimizers on 21 datasets and have a

ubstantial superiority compared to those of GWO, GA, and PSO

lgorithms. The rates of the BGOA_EPD_Tour are better than the

esults of GA and PSO in [97] for all 22 datasets. In compari-

on with the revealed results in [98] , the BGOA-based algorithm

rovides better classification rates than the PSO, GA, and bGWO1

n all 18 available datasets and it can provide better than the

GWO2 on 17 datasets. These results also affirm that the pro-

osed EPD-based and selection operators in the BGOA_EPD_Tour
Dynamics and Grasshopper Optimization approaches for feature 
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Fig. 11. Convergence curves for BGOA_EPD_Tour and other state-of-art methods for Breastcancer, BreastEW, Exactly, Exactly2, HeartEW, Lymphography, M-of-n, penglungEW, 

and SonarEW, SpectEW, CongressEW, and IonosphereEW datasets. 
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Fig. 12. Convergence curves for BGOA_EPD_Tour and other state-of-art methods for KrvskpEW, Tic-tac-toe, Vote, WaveformEW, WineEW, Zoo, Clean1, Semeion, Colon, and 

Leukemia datasets. 

 

 

 

4

 

o  
not only enriched its exploitation and exploitation capabilities and

alleviated its stagnation problems but also enhanced the quality of

the attained solutions for 22 datasets with various dimensions and

characteristics. 
[  

b  
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.4. Comparison with filter-based techniques 

In this subsection, the classification of the EPD-embedded BGOA

ptimizer is compared to five well-known filter-based techniques

99] : correlation-based feature selection (CFS) [7] , fast correlation-

ased filter (FCBF) [10] , fisher score (F-score) [100] , IG [101] , and
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Table 14 

P-values of the Wilcoxon test the classification accuracy results of 

BGOA_EPD_Tour and other meta heurstics algorithms (p ≥ 0.05 are un- 

derlined, and N/A means not applicable). 

BGOA_EPD_Tour bGWO BGSA BBA 

Breast Cancer N/A 9.46E −13 1.40E −12 1.69E −12 

BreastEW 1.04E −05 N/A 2.89E −08 1.46E −09 

Exactly N/A 2.13E −12 1.70E −12 1.71E −12 

Exactly2 N/A 1.02E −12 1.18E −12 1.21E −12 

HeartEW N/A 2.77E −11 1.27E −10 1.44E −11 

Lymphography N/A 6.90E −10 1.89E −11 2.11E −11 

M-of-n N/A 1.20E −12 4.54E −12 1.21E −12 

penglungEW N/A 4.38E −12 1.31E −03 7.45E −12 

SonarEW N/A 1.74E −11 1.38E −08 8.57E −10 

SpectEW N/A 3.51E −06 4.25E −09 1.73E −05 

CongressEW N/A 1.32E −08 3.56E −08 2.30E −11 

IonosphereEW N/A 2.50E −07 1.65E −08 3.82E −07 

KrvskpEW N/A 3.69E −11 4.21E −10 2.88E −11 

Tic-tac-toe N/A 1.13E −12 1.17E −12 1.21E −12 

Vote N/A 4.12E −11 6.44E −12 7.66E −12 

WaveformEW N/A 1.06E −09 2.98E −11 2.99E −11 

WineEW N/A 7.91E −13 9.49E −13 4.39E −12 

Zoo N/A 1.93E −08 1.66E −12 1.71E −11 

Clean1 2.05E −11 N/A 3.08E −05 2.61E −11 

semeion N/A 2.00E −07 1.99E −09 2.77E −10 

Colon N/A 8.62E −13 3.60E −13 1.25E −12 

Leukemia N/A 4.43E −11 5.63E −12 7.69E −10 
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ent FS tasks. 
avelet power spectrum (Spectrum) [11] . These filter-based tech-

iques have carefully selected from two main classes: univariate

nd multivariate approaches. The IG, Spectrum, and F-Score are

rom the univariate strategies, which do not reflect the dependen-

ies of the features in the assessment measure. In addition, CFS

nd FCBF are from the other category, which can employ the de-

endencies of the features. These approaches are investigated here

ecause they have different mechanisms for utilizing the class la-

els of the training info to realize the relevance of analyzed fea-

ures. The supervised approaches such as CFS, FCBF, F-Score and IG

an utilize class labels whereas the unsupervised techniques such

s Spectrum cannot handle labels for assessing the features. The

esults for the filter-based techniques after 20 runs are compared

ith the rates of the BGOA_EPD_Tour in Table 16 . 

Inspecting the comparative results in Table 16 , it is seen that

he EPD-based approach can outperform other algorithms on 17
Table 15 

Classification accuracies of the BGOA_EPD_Tour versus other m

BGOA_EPD_Tour GA [97] PSO [97] 

Breastcancer 0.980 0.957 0.949 

BreastEW 0.947 0.923 0.933 

Exactly 0.999 0.822 0.973 

Exactly2 0.780 0.677 0.666 

HeartEW 0.833 0.732 0.745 

Lymphography 0.868 0.758 0.759 

M-of-n 1.0 0 0 0.916 0.996 

penglungEW 0.927 0.672 0.879 

SonarEW 0.912 0.833 0.804 

SpectEW 0.826 0.756 0.738 

CongressEW 0.964 0.898 0.937 

IonosphereEW 0.899 0.863 0.876 

KrvskpEW 0.968 0.940 0.949 

Tic-tac-toe 0.808 0.764 0.750 

Vote 0.966 0.808 0.888 

WaveformEW 0.737 0.712 0.732 

WineEW 0.989 0.947 0.937 

Zoo 0.993 0.946 0.963 

clean1 0.863 0.862 0.845 

semeion 0.976 0.963 0.967 

Colon 0.870 0.682 0.624 

Leukemia 0.931 0.705 0.862 

- The results of this dataset are not available. 
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atasets, while the IG and F-Score methods have obtained the best

esults for 2 datasets. It surpassed the supervised univariate ap-

roaches such as F-Score and IG, and the supervised multivariate

ypes such as CFS and FCBF, and the unsupervised Spectrum tech-

ique. Furthermore, the results indicate that the wrapper-based

S procedures can provide superior rates in comparison with the

lter-based versions since they can utilize both labels and de-

endencies during the selection of associated subsets. It can be

oncluded that the proposed algorithm has merits among other

ell-regarded optimizers and outperforms some well-known filter-

ased approaches. 

Taken together, the results and discussions showed that the bi-

ary operators integrated into the BGOA algorithm were benefi-

ial. The proposed operators slightly change the solutions that ac-

elerates local search and convergence of the proposed algorithm.

he EPD operator randomly changes the worst solutions, which

romotes diversity and global search of the proposed algorithm.

n feature selection problems, the shape of search space changes

or every new dataset. Feature selection is normally considered for

roblems with medium or large number of features as well. To

andle these difficulties, therefore, we need an efficient optimiza-

ion algorithm that shows less local optima stagnation and high

ccuracy. Both operators proposed in the method assist BGOA_EPD

n handling these difficulties. 

. Conclusion and future directions 

In this study, an efficient GOA-based optimizer with EPD and

election operators was proposed to improve the efficacy of the

asic GOA in dealing with FS tasks. The proposed GOA_EPD

pproaches were utilized extensively to tackle 22 benchmark

atasets. The overall classification accuracy, selected features, fit-

ess, consumed CPU time, and convergence behaviors of all hy-

rid versions were compared in detail to select the best version of

he BGOA_EPD. The BGOA_EPD_Tour and BGOA_EPD_RWS has ob-

ained the best place among four developed hybrid variants. The

GOA_EPD_Tour technique was utilized and compared in detail to

arious well-known metaheuristic-based and filter-based FS meth-

ds. The comprehensive comparative results and analysis revealed

he improved efficacy of the proposed algorithm for solving differ-
eta-heuristics from the specialized literature. 

bGWO1 [98] bGWO2 [98] GA [98] PSO [98] 

0.976 0.975 0.968 0.967 

0.924 0.935 0.939 0.933 

0.708 0.776 0.674 0.688 

0.745 0.750 0.746 0.730 

0.776 0.776 0.780 0.787 

0.744 0.700 0.696 0.744 

0.908 0.963 0.861 0.921 

0.600 0.584 0.584 0.584 

0.731 0.729 0.754 0.737 

0.820 0.822 0.793 0.822 

0.935 0.938 0.932 0.928 

0.807 0.834 0.814 0.819 

0.944 0.956 0.920 0.941 

0.728 0.727 0.719 0.735 

0.912 0.920 0.904 0.904 

0.786 0.789 0.773 0.762 

0.930 0.920 0.937 0.933 

0.879 0.879 0.855 0.861 

– – – –

– – – –

– – – –

– – – –
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Table 16 

Classification accuracy results of all filter-based methods versus the BGOA_EPD_Tour algo- 

rithm. 

Dataset CFS FCBF F-Score IG Spectrum BGOA_EPD_Tour 

Breastcancer 0.957 0.986 0.979 0.957 0.957 0.980 

BreastEW 0.825 0.798 0.930 0.930 0.772 0.947 

Exactly 0.670 0.440 0.600 0.615 0.575 0.999 

Exactly2 0.705 0.545 0.680 0.620 0.660 0.780 

HeartEW 0.648 0.648 0.759 0.759 0.796 0.833 

Lymphography 0.500 0.567 0.667 0.667 0.767 0.868 

M-of-n 0.785 0.815 0.815 0.815 0.580 1.0 0 0 

PenglungEW 0.600 0.667 0.800 0.667 0.400 0.927 

SonarEW 0.310 0.214 0.048 0.191 0.048 0.912 

SpectEW 0.736 0.774 0.793 0.793 0.736 0.826 

CongressEW 0.793 0.793 0.908 0.828 0.828 0.964 

IonosphereEW 0.857 0.857 0.729 0.800 0.829 0.899 

KrvskpEW 0.768 0.934 0.959 0.934 0.377 0.968 

Tic-tac-toe 0.0 0 0 0.0 0 0 0.010 0.010 0.167 0.808 

Vote 0.950 0.950 0.933 0.967 0.850 0.966 

WaveformEW 0.620 0.710 0.662 0.662 0.292 0.737 

WineEW 0.778 0.889 0.861 0.889 0.889 0.989 

Zoo 0.800 0.900 0.650 0.850 0.600 0.993 

clean1 0.716 0.642 0.632 0.547 0.611 0.863 

semeion 0.875 0.875 0.875 0.868 0.875 0.976 

Colon 0.750 0.667 0.667 0.667 0.500 0.870 

Leukemia 0.929 0.857 0.980 0.980 0.357 0.931 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Future studies can focus on the application of the EPD strat-

egy to other population-based optimizers. The efficacy of the pro-

posed binary GOA and EPD-based algorithms can also be employed

to tackle other data mining problems. For future works, we in-

tended to compare the proposed GOA-EPD with different classes

of FS methods in the field. 
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