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a b s t r a c t 

Hybrid metaheuristics are of the most interesting recent trends in optimization and memetic algorithms. 

In this paper, two hybridization models are used to design different feature selection techniques based on 

Whale Optimization Algorithm (WOA). In the first model, Simulated Annealing (SA) algorithm is embed- 

ded in WOA algorithm, while it is used to improve the best solution found after each iteration of WOA 

algorithm in the second model. The goal of using SA here is to enhance the exploitation by searching 

the most promising regions located by WOA algorithm. The performance of the proposed approaches is 

evaluated on 18 standard benchmark datasets from UCI repository and compared with three well-known 

wrapper feature selection methods in the literature. The experimental results confirm the efficiency of 

the proposed approaches in improving the classification accuracy compared to other wrapper-based algo- 

rithms, which insures the ability of WOA algorithm in searching the feature space and selecting the most 

informative attributes for classification tasks. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Data mining is one of the fastest growing research topics in the

nformation industry in recent years due to the wide availability of

he huge amounts of data and the crucial need to transform such

ata to useful information [1] . Data mining is an essential part in

nowledge discovery (KDD) process that consists of a set of itera-

ive sequence of tasks data preprocessing (data cleaning, data inte-

ration, data reduction, data transformation), data mining, pattern

valuation and finally knowledge presentation [1] . The preprocess-

ng step, that precedes the data mining step in the Knowledge Dis-

overy (KDD) process, has a large impact on the performance of

he data mining techniques ( e.g., classification) [2] on either the

uality of the extracted patterns or the running time required to

nalyze the complete dataset. Feature selection is one of the major

reprocessing steps since it aims to eliminate the redundant, irrel-

vant variables within a dataset. Feature selection methods are cat-

gorized as wrappers and filters [3] . While the filter model tries to

valuate the features subsets depending on data itself using desig-

ated methods ( e.g., information gain (IG) and principal component

nalysis (PCA) [4] ), wrappers utilize a learning algorithm ( e.g., clas-

ification algorithm) to evaluate the selected feature subset during
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he search process [5] . Filters usually perform faster than wrap-

ers since they measure the information gain, distance between

eatures, features dependency, which are computationally cheaper

han measuring a classifier accuracy [3] . However, wrappers have

een widely investigated for classification accuracy since they are

roved to be beneficial in finding feature subsets that suite a pre-

etermined classifier [6] . Generally, three factors should be deter-

ined when using a wrapper feature selection model: classifier

 KNN, SVM, DT, etc .), feature subset evaluation criteria (accuracy,

alse-positive elimination rate, area under the ROC), and a search-

ng technique to find the best combination of features [7] . 

It is worth mentioning here that there are also feature selec-

ion techniques based on matrix computations in the literature.

ome of the recent and promising ones the column-subset selec-

ion problem [8–10] are known to do feature selection with prov-

ble theoretical bounds. These methods have been used to perform

eature selection on k -means [11] , SVM [12,13] , Ridge Regression

14] , which provide provable performance guarantees. These meth-

ds are known to outperform existing methods like mutual infor-

ation, recursive feature elimination, etc . 

Searching a (near) optimal subset from the original set is a chal-

enging problem. In the last two decades, metaheuristics have been

ery reliable when solving diverse optimization problems such

s engineering design, machine learning, data mining schedul-

ng and production problems, and so on [15] . Feature selection is

ne of the domains where metaheuristics have been investigated.
ization Algorithm with simulated annealing for feature selection, 
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Metaheuristics show superior performance when compared to the

exact search mechanisms since the complete search tends to gen-

erate all possible solutions for the problem. For instance, if a

dataset contains N features, then 2 N solutions should be generated

and evaluated which requires high computational cost [16] . Ran-

dom search is another search strategy for selecting features which

searches the next set randomly [17] . Metaheuristics are considered

better than the random search too, since they may perform as a

complete search in the worst case [ 3 , 15 ]. Although the strategy

metaheuristic does not guarantee finding the best solution in every

run, it may determine an acceptable solution in a reasonable time

[15] . Various metaheuristics including Tabu Search (TS) [18] , Simu-

lated Annealing (SA) [19] , Record-to-Record Travel Algorithm (RRT)

[20,21] , Genetic Algorithm (GA) [22] , Particle swarm optimization

(PSO) [23] , Ant Colony Optimization (ACO) [24] , Differential Evo-

lution (DE) [25] , and Artificial Bee Colony (ABC) [26] have been

used in the literature to search feature subset space for selecting

(sub)optimal feature set [25] . 

Exploration of the search space (diversification) and ex-

ploitation of the best solutions found (intensification) are two

contradictory criteria that must be taken into account when

designing or using a metaheuristic [15] . According to these 

criteria, metaheuristics algorithms can be classified into two

families; population-based ( e.g. , swarm intelligence, evolution-

ary algorithms) algorithms that are exploration oriented and

single-solution based ( e.g. , local search and simulated annealing)

algorithms that are exploitation oriented. A good balance between

these two goals will enhance the performance of the searching

algorithm. One choice to achieve this balance is to use a hybrid

model where at least two techniques are combined to enhance the

performance of each technique. The resulting algorithm is called

memetic algorithm . In this study, our aim is to use the recently pro-

posed Whale Optimization Algorithm (WOA) and SA to build a new

hybrid (memetic) wrapper method to improve the performance of

general classification tasks [27] . 

According to Talbi [15] , one of the metaheuristic hybridization

models is to combine a metaheuristic with a complementary meta-

heuristic. In this manner, two levels of hybridizations can be dis-

tinguished: low-level and high-level. On one hand, in the low-level

hybridization, a given function in a metaheuristic ( e.g., crossover

or mutation in GA) is replaced with another metaheuristic ( e.g.,

local search). In this model, the local optimization has the re-

sponsibility of the local search algorithm, while the global opti-

mization is carried by the population-based algorithm [27] . On the

other hand, in high-level hybrid algorithms, self-contained meta-

heuristics are executed in a sequence. In each level two hybridiza-

tion mechanisms are possible; relay and teamwork hybridization.

While in relay hybridization a set of metaheuristics is acting in a

pipeline fashion where each metaheuristic uses the output of the

previous algorithm, in the teamwork hybridization, many cooper-

ating agents evolve in parallel; each agent carries out a search in

a solution space [27] . In this paper, we aim to use the low-level

teamwork hybrid (LTH) and the high-level relay hybrid (HRH) mod-

els for feature selection problems, where a population-based algo-

rithm (WOA) will be hybridized with another single-solution based

algorithm (SA). In other words, SA will be enhancing the exploita-

tion in WOA algorithm. In literature, different forms of hybridiza-

tion of heuristic algorithms were developed for feature selection

problem, but to the best of the authors’ knowledge this is the first

time that a hybrid model using WOA and SA algorithms is applied

to feature selection problems. 

SA [28] is a single solution based metaheuristic algorithm, in-

troduced by Kirkpatrick et al., and can be considered as a hill-

climbing based method that iteratively try to improve a candi-

date solution with respect to the objective function. The improving

move will be accepted, while the worse move is accepted with a
Please cite this article as: M.M. Mafarja, S. Mirjalili, Hybrid Whale Optim
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ertain probability to help the algorithm escape from the local op-

ima. The probability of accepting a worse solution is determined

y the Boltzmann probability, P = e −θ / T , where θ is the difference

f the evaluation of the objective function between the best so-

ution ( Sol best ) and the trial solution ( Sol trial ), and T is a parame-

er (called the temperature) that periodically decreases during the

earch process according to some cooling schedule. 

WOA [29] , proposed by Mirjalili and Lewis, is a recent optimiza-

ion algorithm that mimics the intelligent foraging behavior of the

umpback whales. WOA has good properties such as fewer num-

er of parameters to control since it includes only two main in-

ernal parameters to be adjusted, easy implementation, and high

exibility. WOA algorithm smoothly transit between exploration

nd exploitation depending on only one parameter . In the explo-

ation phase the position of the search agents (solutions) are up-

ated according to a randomly selected search agent instead of the

est search agent find so far. Due to the simplicity of WOA al-

orithm in implementation and the less dependency on parame-

ers in addition to using a logarithmic spiral function which makes

he algorithm cover the border area in the search space, many re-

earchers in many fields become motivated to use this algorithm in

olving variant optimization problems like the economic dispatch

roblem on IEEE 30-Bus [30] , sizing optimization problems of truss

nd frame structures [31] and unit commitment problem solution

32] . The powerful properties of WOA and SA algorithms can be

ombined to produce a hybrid model to obtain better results than

sing each one separately. This hybridization is to enhance the

xploitation property of the WOA algorithm. To enhance the ex-

loration in the same algorithm, tournament selection mechanism

s used instead the random selection. 

This paper proposes a hybrid WOA and SA algorithms in a

rapper feature selection method. The proposed approach aims to

nhance the exploitation of the WOA algorithm. To enhance the

xploitation, SA algorithm is employed in two hybridization mod-

ls; namely low-level teamwork hybrid (LTH) and high-level relay

ybrid (HRH). In LTH model, simulated annealing is used as a com-

onent in the WOA algorithm. It is used to search the neighbor-

ood of the best search agent so far to insure that it’s the local

ptima. In the second model, SA is employed in a pipeline mode

fter the WOA terminates to enhance the best found solution. To

reserve the diversity of the algorithm, tournament selection is

mployed to select search agents from the population because it

ives the chance to all individuals to be selected. 

The rest of this paper is organized as follows: Section 2 presents

he related works. The basics of the WOA algorithm and SA are

resented in Section 3 . Section 4 presents the details of the pro-

osed approach. In Section 5 , the experimental results are pre-

ented and result are analysed. Finally, in Section 6 , conclusions

nd future work are given. 

. Related works 

In recent years, hybrid metaheuristics have been used by many

esearchers in the field of optimization [15] . Hybrid algorithms

howed superior performance in solving many practical or aca-

emic problems [27] . In 2004, the first hybrid metaheuristic algo-

ithm for feature selection was proposed [33] . In this approach, lo-

al search techniques were embedded into GA algorithm to control

he search process. 

In [34] , Martin and Otto introduced a hybrid algorithm between

arkov chain and simulated annealing, in which the Markov chain

s only dedicated to explore local optima. The algorithm was de-

igned to solve the travel salesman problem. Recently, TS and SA

lgorithms have been proposed to solve reactive power problem

35] and Symmetrical Traveling Salesman Problem [36] . In addi-

ion, SA has been hybridized with genetic algorithm in [37–40] .
ization Algorithm with simulated annealing for feature selection, 
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hese studies evidence that the hybrid models shown a better per-

ormance when compared with other local or global search algo-

ithms. 

In feature selection domain, many hybrid metaheuristic

lgorithms have been proposed with much success. Mafarja and

bdullah proposed a filter feature selection hybrid algorithm that

sed SA to enhance the local search capability of genetic algorithm

n [41] . The algorithm was tested on eight UCI datasets and showed

 good performance in terms of the number of selected attributes

hen compared with the state-of-the-art approaches. In [42] , a hy-

rid GA and SA has been proposed and tested on the hand-printed

arsi characters. Another wrapper feature selection hybrid algo-

ithm was proposed in [43] , by incorporating the metropolis ac-

eptance criterion of simulated annealing into crossover operator

f GA. Again, GA was hybridized with SA to produce a hybrid wrap-

er feature selection algorithm to classify the power disturbance in

he Power Quality (PQ) problem, and to optimize the SVM param-

ters for the same problem [44] . Olabiyisi et al. in 2012 [45] pro-

osed a novel hybrid GA–SA metaheuristic algorithm for feature

xtraction in timetabling problem, where the GA selection process

eplaced by the one in SA to avoid stacking at the local optima. GA

as hybridized with TS in a wrapper feature selection which used

he FUZZY ARTMAP NN classifier as an evaluator [46] . Two filter

eature selection memetic algorithms were proposed by Mafarja et

l. [47] . In these approaches, the fuzzy logic was employed to con-

rol the main parameters in two local search algorithms (record to

ecord and great deluge) who combined with GA later. 

Moradi and Gholampour [48] proposed a local search algorithm

o guide the search process in PSO algorithm to select the minimal

educts based on their correlation information. Moreover, in [49] ,

A and PSO algorithms were proposed in a hybridized method

ith SVM classifier called GPSO and were applied to microarray

ata classification. A multi objective PSO with a hybrid mutation

perator is proposed in the same field in [50] . In [51] , a new com-

ination between GA and PSO was proposed to optimize the fea-

ure set for Digital Mammogram datasets. Two hybrid wrapper fea-

ure selection algorithm based on the combination between ACO

nd GA [52 , 53] . In the same manner, ACO was combined with

uckoo Search (CS) algorithm in [54] . Also, a new combination

etween Harmony Search Algorithm (HSA) and a Stochastic Local

earch (SLS) was proposed for a wrapper feature selection method

n [55] . Artificial Bee Colony (ABC) has been recently combined

ith differential evolution algorithm (DE) to propose a new wrap-

er feature selection method [25] . For further reading about meta-

euristics and feature selection, interested readers are referred to

he survey papers in [56,57] . 

Despite the merits of the above-mentioned memetic algorithms

or feature selection, one might ask if we need any other new

emetic. There is a theorem in the field of optimization called No-

ree-Lunch (NFL) that logically proves: there is no algorithm for

olving all optimization problems. In the scope of this work, this

an be stated as: none of the heuristic wrapper feature selection is

ble to solve all feature selection problems. In other words, there

s always room for the improvements of the current techniques to

etter solve the current of new feature selection problems. This

otivated our attempts to propose yet another memetic algorithm

or feature selection in the next section. 

. Methods 

.1. Whale optimization algorithm 

WOA is a new metaheuristic algorithm proposed by Mirjalili

nd Lewis [29] and mimics the foraging of humpback whales. The

umpback whales hunt school of krill or small fishes close to the

urface by swimming around them within a shrinking circle and
Please cite this article as: M.M. Mafarja, S. Mirjalili, Hybrid Whale Optim
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reating distinctive bubbles along a circle or ‘ 9’-shaped path (see

ig. 1 ). Encircling prey and spiral bubble-net attacking method

ere represented in the first phase of the algorithm; exploitation

hase, the second phase where search randomly for a prey (explo-

ation phase). The following subsections discuss the mathematical

odel of each phase in details. Note that in the equations, a uni-

orm distribution will be used to generate random numbers. 

.1.1. Exploitation phase ( encircling prey/bubble-net attacking 

ethod) 

To hunt a prey, humpback whales first encircle it. Eqs. (1) and

2) can be used to mathematically model this behavior [29] . 

 = 

∣∣∣C · −→ 

X 

∗( t ) − −→ 

X (t) 

∣∣∣ (1) 

 

X (t + 1) = 

−→ 

X 

∗(t) − −→ 

A .D (2)

here t indicates the current iteration, X 

∗ represents the best so-

ution obtained so far, X is the position vector, | | is the absolute

alue, and · is an element-by-element multiplication. In addition, A

nd C are coefficient vectors that are calculated as in Eqs. (3) and

4) , respectively: 

 

A = 2 

−→ 

a · −→ 

r − −→ 

a (3) 

 

C = 2 · −→ 

r (4) 

here a decreases linearly from 2 to 0 over the course of iterations

in both exploration and exploitation phases) and r is a random

ector generated with uniform distribution in the interval of [0,1].

ccording to Eq. (2) the search agents (whales) update their posi-

ions according to the position of the best known solution (prey).

he adjustment of the values of A and C vectors control the areas

here a whale can be located in the neighborhood of the prey. 

The Shrinking encircling behavior is achieved by decreasing the

alue of a in Eq. (3) according to Eq. (5) . 

 = 2 − t 
2 

MaxIter 
(5) 

here t is the iteration number and MaxIter is the maximum num-

er of allowed iterations. To simulate the spiral-shaped path, the

istance between a search agent ( X ) and the best known search

gent so far ( X 

∗) is calculated (see Fig. 1 ), then a spiral equation

s used to create the position of the neighbor search agent as in

q. (6) . 

 

X ( t + 1 ) = D 

′ · e bl · cos ( 2 π l ) + 

−→ 

X ∗( t ) (6) 

here D 

′ = | −→ 

X ∗(t) − −→ 

X (t) | and indicates the distance of the i th

hale and the prey (best solution obtained so far), b is a constant

or defining the shape of the logarithmic spiral, and l is a random

umber in [ −1,1]. 

To model the two mechanisms, shrinking encircling and the

piral-shaped path , a probability of 50% is assumed to choose be-

ween them during the optimization process as in Eq. (7) . 

 

X (t + 1) = 

{
Shrinking Encircling ( Eq. (2) ) if ( p < 0 . 5 ) 
spiral −s haped path ( Eq. (6) ) if ( p ≥ 0 . 5 ) 

(7) 

here p is a random number in [0,1]. 

.1.2. Exploration phase (search for prey) 

In order to enhance the exploration in WOA, instead of updat-

ng the positions of the search agents according to the position of

he best one so far, a random search agent is selected to guide the

earch. So, a vector A with the random values greater than 1 or less

han −1 is used to force search agent to move far away from the
ization Algorithm with simulated annealing for feature selection, 
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Fig. 1. Unique bubble-net feeding methods of humpback whales and the mathematical model. 

Algorithm 1 

Pseudo-code of the native WOA algorithm. 

Generate Initial Population X i (i = 1, 2, …, n) 

Calculate the fitness of each solution 

X ∗ = the best search agent 

while (t < Max_Iteration) 

for each solution 

Update a, A, C, l, and p 

if 1 (p < 0.5) 

if 2 (|A| < + 1) 

Update the position of the current solution by Eq. (2) 

else if 2 (|A| > + 1) 

Select a random search agent () 

Update the position of the current search agent by the Eq. (9) 

end if 2 

else if 1 (p ≥ 0.5) 

Update the position of the current search by the Eq. (6) 

end if 1 

end for 

Check if any solution goes beyond the search space and amend it 

Calculate the fitness of each solution 

Update X ∗ if there is a better solution t = t + 1 

end while 

return X ∗
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best known search agent. This mechanism can be mathematically

modeled as in Eqs. (8) and ( 9 ). 

−→ 

D = 

∣∣∣−→ 

C . 
−−→ 

X rand −
−→ 

X 

∣∣∣ (8)

−→ 

X (t + 1) = 

−−→ 

X rand −
−→ 

A . 
−→ 

D (9)

where 
−−−→ 

X rand is a random whale chosen from the current popula-

tion. 

Algorithm 1 shows the pseudo code of WOA algorithm. It may

be seen that WOA creates a random, initial population and evalu-

ates it using a fitness function once the optimization process starts.

After finding the best solution, the algorithm repeatedly executes

the following steps until the satisfaction of an end criterion. Firstly,

the main coefficients are updated. Secondly, a random value is gen-

erated. Based on this random value, the algorithm updates the po-

sition of a solution using either Eqs. (2) / (9) or Eq. (6) . Thirdly, the

solutions are prevented from going outside the search landscape.

Finally, the algorithm returns the best solution obtained as an ap-

proximation of the global optimum. 

WOA is a population-based stochastic algorithm as mentioned

above. What guarantees the convergence of this algorithm is the

use of the best solution obtained so far to update the position
Please cite this article as: M.M. Mafarja, S. Mirjalili, Hybrid Whale Optim
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f the rest of solutions. However, this mechanism might lead so-

utions to local optima. This is the reason of using random vari-

bles to switch between three equations to update the position

f solutions. The balance between local optima avoidance (explo-

ation) and convergence (exploitation) is done with the adaptive

arameter a . This parameter smoothly reduces the magnitude of

hanges in the solutions and promotes convergence/exploitation

roportional to the number of iterations. 

.2. Simulated annealing 

Simulated annealing, proposed by Kirkpatrick et al. [28] , is a

ingle-solution metaheuristic algorithm based on the hill climbing

ethod that. To overcome the problem of stagnating in local op-

ima, SA utilizes a certain probability to accept a worse solution.

he algorithm starts with a randomly generated solution ( initial so-

ution ); in each iteration, a neighbor solution to the best one so far

s generated according to a predefined neighborhood structure and

valuated using a fitness function. The improving move (the neigh-

or is fitter than the original solution) is always accepted, whilst

orse neighbor is accepted with a certain probability determined

y the Boltzmann probability, P = e −θ / T where θ is the difference

etween the fitness of the best solution ( BestSol ) and the generated

eighbor ( TrialSol ). Moreover, T is a parameter (called the temper-

ture) which periodically decreases during the search process ac-

ording to some cooling schedule. In this work, the initial temper-

ture is set to 2 ∗|N| , where |N| represents the number of attributes

or each dataset, and the cooling schedule is calculated as T = 0.93

T (as adopted in [58] ). Algorithm 2 shows the pseudo code of SA

lgorithm. 

.3. Tournament selection 

Tournament selection is a simple and easy to implement selec-

ion mechanism that was stated by Goldberg et al. [59] . It is one of

he most well-regarded selection mechanisms used in evolutionary

lgorithms [60] . In tournament selection, n solutions are to be se-

ected randomly from the population, these solutions are compared

gainst each other and a tournament will be placed to determine

he winner. The tournament involves generating a random number

etween 0 and 1, then it is compared with a selection probability

hat provides a convenient mechanism for adjusting the selection

ressure (usually set to 0.5), if the random is greater, then the so-

ution with the highest fitness value will be selected and, other-

ise, the weak solution is selected. This property in tournament
ization Algorithm with simulated annealing for feature selection, 
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Algorithm 2 

Pseudocode of SA algorithm. 

T 0 = 2 ∗| N | where | N | is the number of attributes for each dataset 

BestSol ← S i ’ 

δ ( BestSol ) ← δ ( S i ) // δ indicates the quality of the solution 

while T > T 0 
generate at random a new solution TrialSol in the neighbor of S i ’ 

calculate δ( TrialSol ) 

if ( δ( TrialSol ) > δ( BestSol )) 

S i ’ ← TrialSol ; 

BestSol ← TrialSol ; 

δ( S i ’ ) ← δ( TrialSol ); 

δ( BestSol ) ← δ( TrialSol ); 

else if (( δ( TrialSol ) = δ( BestSol )) 

Calculate | TrialSol | and | BestSol |; 

if (| TrialSol | < | BestSol |) 

S i ’ ← TrialSol ; 

BestSol ← TrialSol ; 

δ( S i ’ ) ← δ( TrialSol ); 

δ( BestSol ) ← δ( TrialSol ); 

end if 

else // accepting the worse solution 

Calculate θ = δ( TrialSol ) – δ( BestSol )) 

Generate a random number, P = [0,1]; 

if ( P ≤ e −θ / T ) 

S i ’ ← TrialSol; δ( S i ) ← δ( TrialSol ); 

end if 

end if 

T = 0.93 ∗ T ; // update temperature 

end while 

Output BestSol 
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election gives the chance to most solutions to be selected which

reserves the diversity of the selected solutions [60] . 

. The proposed approach 

Feature selection is a binary optimization problem, where solu-

ions are restricted to the binary {0, 1} values. For the WOA algo-

ithm to be used with the feature selection problem, a binary ver-

ion should be developed. In this work, a solution is represented

n one dimensional vector, where the length of the vector is based

n the number of attributes of the original dataset. Each value in

he vector (cell) is represented by “1 ˮ or “0 ˮ. Value “1 ˮ shows that

he corresponding attribute is selected; otherwise the value is set

o “0 ˮ. 

Feature selection can be considered as a multi-objective opti-

ization problem where two contradictory objectives are to be

chieved; minimal number of selected features and higher classifi-

ation accuracy. The smaller is the number of features in the solu-

ion and the higher the classification accuracy, the better the solu-

ion is. Each solution is evaluated according to the proposed fitness

unction, which depends on the KNN classifier [61] to get the clas-

ification accuracy of the solution and on the number of selected

eatures in the solution. In order to balance between the number

f selected features in each solution (minimum) and the classifica-

ion accuracy (maximum), the fitness function in Eq. (10) is used

n both WOA and SA algorithms to evaluate search agents. 

 itness = αγR ( D ) + β
| R | 
| N | , (10)

here γ R ( D ) represents the classification error rate of a given

lassier (the K -nearest neighbor (KNN) classifier is used here). Fur-

hermore, | R| is the cardinality of the selected subset and | N | is the

otal number of features in the dataset, α and β are two param-

ters corresponding to the importance of classification quality and

ubset length, α ∈ [0, 1] and β = (1 – α) adopted from [62] . 

As can be noted in the WOA algorithm, exploitation (as in

qs. (2) and (6) ) depends on calculating the distance between the

earch agent and the best known whale so far. We believe that
Please cite this article as: M.M. Mafarja, S. Mirjalili, Hybrid Whale Optim
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mploying an efficient local search algorithm to search the neigh-

orhood around the best known solution will improve the results.

oreover, since the exploration in the native WOA algorithm (as

n Eq. (9) ) depends on changing the position of each search agent

ccording to a randomly selected solution we believe that using a

ifferent selection mechanism like tournament selection may im-

rove the exploration ability within the algorithm. This is simply

ecause the tournament selection gives more chance to the weak

olutions to be selected during the search process depending on

he selection pressure which improves the diversity capability of

OA algorithm. 

.1. Hybrid WOA–SA methods 

WOA algorithm is a recent optimization algorithm that shows

uperior results in many optimization problems. The native algo-

ithm uses a blind operator to play the role of exploitation re-

ardless of the fitness value of the current solution and the op-

rated one. We replaced this operator with a local search which

onsiders a solution as its initial state, work on it, and replace the

riginal solution by the enhanced one. This approach represents

 hybridization between global search (WOA) and local search al-

orithm (SA). In the proposed approach, two hybridization models

etween the two algorithms are considered, ( 1 ) Low-Level Team-

ork Hybrid (LTH) and ( 2 ) High-Level Relay Hybrid (HRH). On one

and, in LTH, SA algorithm is embedded in WOA algorithm to

earch for the best solution in the neighbour of both the randomly

elected solution (to replace Eq. (9) ) and the neighbour of the best

nown solution (to replace Eq. (2) ) and replace the original one.

his approach is called WOASA-1. This process improves the ex-

loitation ability of WOA algorithm. SA algorithm in this approach

cts as an operator in WOA algorithm. On the other hand, HRH

odel uses SA algorithm after applying WOA algorithm and find-

ng the best solution, then SA is used to enhance that final so-

ution. This approach is called WOASA-2. In both WOASA-1 and

OASA-2, WOA uses random selection mechanism to select the

andom solution that enables the algorithm to explore the fea-

ure space. Moreover, the two approaches are tested when WOA

ses the Tournament Selection mechanism. The two techniques are

amed WOASAT-1 and WOASAT-2 respectively. 

. Experiments 

.1. Datasets 

The implementation of the proposed algorithm is done using

atlab. In order to assess the performance of the proposed ap-

roaches, the experiments are performed on 18 FS benchmark

atasets from the UCI data repository [63] . Table 1 shows the de-

ails of the used datasets such as number of attributes and in-

tances in each dataset. 

.2. Parameter settings 

A wrapper approach-based on the KNN classifier (where K = 5

62] ) with the Euclidean distance matric is used to generate the

est reduct. In the proposed approach, each dataset is divided in

ross validation in a same manner to that in [64] for evaluation.

n K -fold cross-validation, K – 1 folds are used for training and vali-

ation and the remaining fold is used for testing. This process is

epeated M times. Hence, individual optimizer is evaluated K 

∗M

imes for each data set. The data for training, validation are equally

ized. In all experiments in this section, the parameters are set as

ollows. The maximum number of iterations is 100 and the popu-

ation size is 10. Furthermore, each algorithm is run 5 times with

andom seed on an Intel Core i5 machine, 2.2 GHz CPU and 4GB of
ization Algorithm with simulated annealing for feature selection, 
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Table 1 

List of Datasets datasets Used used in the Experimentsexperi- 

ments. 

Dataset No. of attributes No. of objects 

1. Breastcancer 9 699 

2. BreastEW 30 569 

3. CongressEW 16 435 

4. Exactly 13 10 0 0 

5. Exactly2 13 10 0 0 

6. HeartEW 13 270 

7. IonosphereEW 34 351 

8. KrvskpEW 36 3196 

9. Lymphography 18 148 

10. M-of-n 13 10 0 0 

11. PenglungEW 325 73 

12. SonarEW 60 208 

13. SpectEW 22 267 

14. Tic-tac-toe 9 958 

15. Vote 16 300 

16. WaveformEW 40 50 0 0 

17. WineEW 13 178 

18. Zoo 16 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

o  

d  

w  

a  

e

 

m  

t  

r  

t  

t  

e  

i  

r  

o  

t  

W  

t  

r  

i  

d  

i  

p  

p  

a  

fi  

b  

d  

s

 

p  

f  

w  

n  

t  

p  

s  

p  

b  

t

RAM. Please note that the parameters of SA are identical to those

used in the previous subsection. 

5.3. Results and discussion 

All results obtained from the proposed approaches are reported

in this section. The native WOA, WOASA-1 and WOASA-2 are com-

pared to assess the effect of hybridizing SA algorithm with the na-

tive WOA. Then the three approaches that use the Tournament Se-

lection (WOAT, WOASAT-1, and WOASA-2) are compared to assess

the effect of using Tournament selection instead of the random

mechanism. To find out the best approach among the proposed ap-

proaches, all approaches are compared together in one table. The

proposed approaches are also compared to state-of-the-art feature

selection methods including Ant Lion Optimizer (ALO), PSO and GA

[62 , 65] based on the following criteria: 

• Classification accuracy by using the selected features on the test

dataset. The average accuracy gained from 5 runs is calculated. 
• The average selection size is the second comparison that is pre-

sented in this section. 
• Then the fitness values obtained from each approach is re-
ported, the mean, min and max fitness values are compared. 

Table 2 

Classification accuracy and average selected attr

WOASA-2. 

Dataset Accuracy 

WOA WOASA-1 WOAS

Breastcancer 0.96 0.97 0.96 

BreastEW 0.93 0.96 0.97 

CongressEW 0.93 0.97 0.97 

Exactly 0.77 1.00 1.00 

Exactly2 0.74 0.73 0.72 

HeartEW 0.79 0.79 0.84 

IonosphereEW 0.87 0.92 0.96 

KrvskpEW 0.93 0.98 0.98 

Lymphography 0.78 0.90 0.87 

M-of-n 0.91 1.00 1.00 

PenglungEW 0.84 0.85 0.91 

SonarEW 0.86 0.94 0.95 

SpectEW 0.81 0.82 0.84 

Tic-tac-toe 0.76 0.79 0.76 

Vote 0.92 0.97 0.96 

WaveformEW 0.71 0.69 0.68 

WineEW 0.95 0.99 0.99 

Zoo 0.96 0.99 0.97 
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.3.1. Comparison of WOA, WOASA-1 and WOASA-2 

The performance of WOA, WOASA-1 and WOASA-2 over the two

bjectives (average selection size and classification accuracy) in ad-

ition to the computational time is outlined in this section. It is

orth to remind that WOASA-1 embedded SA algorithms in WOA

lgorithm to act as an internal operator, while in WOASA-2, SA is

mployed on the final solution after WOA algorithm terminated. 

Inspecting Table 2 , it is evident that the hybrid algorithms are

uch better than the native one for both objective: classifica-

ion accuracy and number of selected attributes. The native algo-

ithm does not outperform any hybrid approach over all datasets in

erms of number of selected attributes, whereas it performs bet-

er than others on only two datasets with an insignificant differ-

nce. WOASA-1 outperforms all approaches in 8 and 10 datasets

n both classification accuracy and number of selected attributes

espectively. For the classification accuracy, it outperforms WOA

ver sixteen datasets and the difference between the results of

he two approaches varies from 0.03% to 23%. In Exactly dataset,

OASA-1 provides 100% accuracy by using 6 attributes only, at

he same time WOA show 77.2% accuracy and 9.2 attributes. The

est of results in Table 2 show that WOASA-1 outperforms WOA

n both classification accuracy and selected attributes for the same

ataset. A similar pattern can be seen in the results of WOASA-2,

t performs better than WOA on almost all datasets. When com-

aring WOASA-1 and WOASA-2, it may be seen that WOASA-2

erforms better than WOASA-1 over 8 datasets for classification

ccuracy. At the same time WOASA-1 obtained better higher classi-

cation accuracy than WOASA-2 over 9 datasets. In terms of num-

er of selected attributes, WOASA-2 outperforms WOASA-1 over 8

atasets. By contrast, WOASA-1 performs better than WOASA-2 on

ix datasets. 

Generally speaking, the performance of both proposed ap-

roaches is very close over both objectives and both of them per-

orm better than the native algorithm. From the reported results

e can conclude that the two hybrid models (LTH and HRH) sig-

ificantly enhanced the performance of the native algorithm, but

here is no significant discrepancy between the two models pro-

osed. This motivated us to keep the proposed approaches and

tudy the influence of enhancing the exploration property by em-

loying tournament selection mechanism to make more balance

etween exploitation and exploration. The results of employing

ournament selection are represented in Table 3 . 
ibutes obtained from WOA, WOASA-1 and 

Attributes 

A-2 WOA WOASA-1 WOASA-2 

6.4 5.6 5.2 

23.8 13.6 12.6 

10 4.4 5.2 

9.2 6 6 

4.8 1 1.4 

9.4 6.2 7.2 

22.4 11.4 11.8 

24.2 19.4 17 

10.8 6.8 7.6 

8.6 6 6 

188.4 138 128.8 

46.4 26.6 26.4 

9.4 9.6 9.4 

8.4 5.8 5.8 

9.4 3.8 5.8 

33.6 21.6 19.4 

7.4 6.8 6.8 

8.8 5.8 5.4 

ization Algorithm with simulated annealing for feature selection, 
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Table 3 

Classification accuracy and average selected attributes obtained from WOAT, WOASAT-1 and 

WOASAT-2. 

Dataset Accuracy Attributes 

WOA WOASAT-1 WOASAT-2 WOA WOASAT-1 WOASAT-2 

Breastcancer 0.96 0.96 0.97 6.4 4.0 4.2 

BreastEW 0.95 0.97 0.98 21.2 11.2 11.6 

CongressEW 0.94 0.98 0.98 7.2 4.0 6.4 

Exactly 0.78 1.00 1.00 10.2 6.0 6.0 

Exactly2 0.70 0.72 0.75 5.4 1.8 2.8 

HeartEW 0.80 0.80 0.85 9.2 5.8 5.4 

IonosphereEW 0.88 0.90 0.96 17.6 10.2 12.8 

KrvskpEW 0.93 0.98 0.98 28.0 16.8 18.4 

Lymphography 0.79 0.85 0.89 13.6 8.0 7.2 

M-of-n 0.88 1.00 1.00 10.4 6.0 6.0 

PenglungEW 0.83 0.90 0.94 173.8 144.8 127.4 

SonarEW 0.87 0.95 0.97 43.0 28.8 26.4 

SpectEW 0.79 0.83 0.88 12.8 8.0 9.4 

Tic-tac-toe 0.75 0.77 0.79 6.8 6.0 6.0 

Vote 0.93 0.96 0.97 9.8 6.0 5.2 

WaveformEW 0.72 0.67 0.76 34.6 21.2 20.6 

WineEW 0.97 0.99 0.99 9.6 6.0 6.4 

Zoo 0.94 0.95 0.97 9.2 5.0 5.6 

Table 4 

Average computational time (in seconds) for random selection based approaches and the tournament 

selection based approaches. 

Random selection based approaches Tournament selection based approaches 

Dataset WOA WOASA-1 WOASA-2 WOAT WOASAT-1 WOASAT-2 

Breastcancer 2.77 15.10 43.24 2.80 14.06 41.74 

BreastEW 3.26 14.04 43.18 3.22 15.54 44.30 

CongressEW 2.24 14.10 37.34 2.25 14.10 35.67 

Exactly 4.50 25.30 57.39 4.67 20.52 51.79 

Exactly2 4.25 24.90 55.85 3.67 20.41 54.88 

HeartEW 1.87 10.85 28.67 1.86 11.15 29.79 

IonosphereEW 2.23 12.86 30.79 2.10 11.51 30.84 

KrvskpEW 57.53 235.37 641.01 60.49 209.67 589.56 

Lymphography 1.68 10.48 27.15 1.66 10.87 26.17 

M-of-n 4.43 20.62 52.32 4.64 20.51 51.54 

PenglungEW 2.24 11.07 28.47 2.10 10.12 30.49 

SonarEW 2.02 10.00 28.02 1.98 10.80 27.76 

SpectEW 1.86 12.52 30.34 1.86 10.58 31.38 

Tic-tac-toe 5.08 19.16 51.93 4.25 23.65 56.89 

Vote 1.90 10.72 30.63 1.96 12.76 30.79 

WaveformEW 180.89 615.35 1770.48 173.72 617.10 1633.27 

WineEW 1.77 10.33 29.59 1.77 10.86 26.33 

Zoo 1.75 9.56 27.55 1.71 11.52 27.02 

Table 5 

Comparison between the proposed approaches and the state-of- 

the-art approaches in terms of classification accuracy. 

Dataset WOASAT-2 ALO GA PSO Full 

Breastcancer 0.97 0.96 0.96 0.95 0.94 

BreastEW 0.98 0.93 0.94 0.94 0.96 

CongressEW 0.98 0.93 0.94 0.94 0.92 

Exactly 1.00 0.66 0.67 0.68 0.67 

Exactly2 0.75 0.75 0.76 0.75 0.74 

HeartEW 0.85 0.83 0.82 0.78 0.82 

IonosphereEW 0.96 0.87 0.83 0.84 0.87 

KrvskpEW 0.98 0.96 0.92 0.94 0.92 

Lymphography 0.89 0.79 0.71 0.69 0.68 

M-of-n 1.00 0.86 0.93 0.86 0.85 

PenglungEW 0.94 0.63 0.70 0.72 0.66 

SonarEW 0.97 0.74 0.73 0.74 0.62 

SpectEW 0.88 0.80 0.78 0.77 0.83 

Tic-tac-toe 0.79 0.73 0.71 0.73 0.72 

Vote 0.97 0.92 0.89 0.89 0.88 

WaveformEW 0.76 0.77 0.77 0.76 0.77 

WineEW 0.99 0.91 0.93 0.95 0.93 

Zoo 0.97 0.91 0.88 0.83 0.79 

Average 0.92 0.83 0.83 0.82 0.81 
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.3.2. Comparison of WOAT, WOASAT-1 and WOASAT-2 

The performance of the TS-based approaches is presented in

able 3 . In terms of classification accuracy, one can easily observe

hat WOASAT-2 shows superior performance since it provides the

ighest classification accuracy on all datasets. At the same time,

ts performance for the second objective, number of selected at-

ributes, is competitive on some datasets. In addition, it is worth

oting that the WOA algorithm does not outperform the hybrid ap-

roaches over any dataset. 

.3.3. Comparison between all proposed approaches 

This subsection compares the six proposed approaches to

nalyze the impact of enhancing the exploration, exploitation and

oth of them combined. By analyzing the results in Tables 2 and 3 ,

e can say that using TS plays a complementary role in enhanc-

ng exploration in WOA algorithm besides SA which enhances

xploitation. The performance of the proposed approaches

s enhanced gradually: WOA < WOAT < WOASA-1 < WOASAT-

 < WOASA-2 < WOASAT-2. It can be stated thatWOA is a robust

lgorithm that balances exploration and exploitation when search-

ng for the global optimum, and SA enhances the exploitation in

OA algorithm Then Tournament Selection employment enhanced
ization Algorithm with simulated annealing for feature selection, 
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Table 6 

Comparison between the proposed approaches and the state-of-the-art approaches in 

terms of average number of selected attributes. 

Dataset Attributes Instances WOASAT-2 ALO GA PSO 

Breastcancer 9 699 4.20 6.28 5.09 5.72 

BreastEW 30 569 11.60 16.08 16.35 16.56 

CongressEW 16 435 6.40 6.98 6.62 6.83 

Exactly 13 10 0 0 6.00 6.62 10.82 9.75 

Exactly2 13 10 0 0 2.80 10.70 6.18 6.18 

HeartEW 13 270 5.40 10.31 9.49 7.94 

IonosphereEW 34 351 12.80 9.42 17.31 19.18 

KrvskpEW 36 3196 18.40 24.70 22.43 20.81 

Lymphography 18 148 7.20 11.05 11.05 8.98 

M-of-n 13 10 0 0 6.00 11.08 6.83 9.04 

PenglungEW 325 73 127.40 164.13 177.13 178.75 

SonarEW 60 208 26.40 37.92 33.30 31.20 

SpectEW 22 267 9.40 16.15 11.75 12.50 

Tic-tac-toe 9 958 6.00 6.99 6.85 6.61 

Vote 16 300 5.20 9.52 6.62 8.80 

WaveformEW 40 50 0 0 20.60 35.72 25.28 22.72 

WineEW 13 178 6.40 10.70 8.63 8.36 

Zoo 16 101 5.60 13.97 10.11 9.74 

Average 15.99 22.68 21.77 21.65 
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the exploration in WOA algorithm which complemented the role

of SA, so we observed that WOASAT approaches outperformed

all other approaches on almost all datasets in classification accu-

racy and produced better results in terms of number of selected

attributes on many datasets. These findings prove that WOASAT

properly and efficiently balances exploration and exploitation,

which is due to the employed local search and selection mecha-

nism. 

It seems that using SA after WOA algorithm performs better

than embedding SA in WOA. This shows the capability of WOA

in locating the high-performance regions in the feature space of

the problem in hand. It can also be stated that a sequential hybrid

WOA and SA does not damage the exploration of WOA, which is

essential when solving challenging problems. 

Table 4 presents the average computational time (in seconds)

required by each approach to get (near) optimal solution. All ap-

proaches use the same parameter settings and are tested on the

same datasets, so we used the computational time to compare be-

tween the performances of the proposed approaches. As can be

seen in Table 4 , WOAT has the best computational time in compar-

ison to other approaches on twelve datasets. WOA also performs

better than other approaches on six datasets. When comparing the

two hybrid models (LTH and HRH), we found that HRH based ap-

proaches (WOASA-1 and WOASAT-1) require nearly 38% of the total

time required by LTH based approaches (WOASA-2 and WOASAT-

2) to find the best results. This can be interpreted easily since the

number of times of running the embedded SA algorithm in LTH

approaches is much higher than that for the HRH approaches. Al-

though HRH-based approaches require only one third of the time

of LTH-based approaches, they significantly outperform that ap-

proaches in terms of classification accuracy and minimal reducts. 

5.3.4. Comparison with the state-of-the-art approaches 

In the previous section, after analysing the results we found

that WOASAT-2 approach outperforms other approaches in terms

on classification accuracy on all datasets and has competitive per-

formance compared to other approaches in terms of number of

selected attributes. In this section, we compare the performance

of the best approach among the proposed approaches against

the most related approaches in the feature selection literature.

Table 5 presents the results of WOASAT-2, ALO, GA, and PSO. To

show the importance of using feature selection in classification

problem, the classification accuracy using full feature set is re-

ported as well. 
Please cite this article as: M.M. Mafarja, S. Mirjalili, Hybrid Whale Optim
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As per the results in Table 5 , the accuracy of using full feature

et is worse than selecting features using the wrapper approaches

roposed. Moreover, WOASAT-2 outperforms all approaches on all

atasets, except for two datasets where GA performs better than

ther approaches with a slight difference from WOASAT-2, and

OASAT-2 comes in the second place. In Table 6 , the average of

elected attributes using WOASAT-2 and other approaches are re-

orted. WOASAT-2 shows much better performance than other ap-

roaches on 90% of the datasets where WOASAT-2 produces aver-

ge accuracy of 92.2%, while the closest approach produces accu-

acy of 82.9%. This can be interpreted by the enhanced exploration

nd exploitation capability of WOASAT-2 searches intensively the

igh-performance regions of the feature space. 

Table 6 shows the average number of selected attributes.

OASAT-2 performs better than other optimizers employed in this

aper. Inspecting the results in Tables 5 and 6 , a substantial dis-

repancy might be seen in the classification accuracy and the num-

er of the elected attributes when comparing WOASAT-2 and other

pproaches. For example, in exactly dataset, WOASAT-2 is bet-

er than other approaches with nearly 34% in classification accu-

acy and only 6 selected features. The significant superiority of

OASAT-2 in selecting less number of attributes is justifiable since

t uses the TS mechanism that gives more chances to the weak

olutions to be selected, which decreases the probability of trap-

ing in local optima. This mechanism allows the algorithm to ex-

ensively explore regions in the feature space and use SA to inten-

ify these regions. This approach leverages the strengths of using

 global search algorithm, which is efficient in exploration, and a

ocal search, which is efficient in exploitation, to solve feature se-

ection problems. Selecting less number of attributes means elimi-

ating the irrelevant/redundant attributes in a dataset and reduces

he search space. 

The obtained statistical measures on the different runs of the

ptimizers on all the data sets are summarized in Table 7 . Here,

OASAT-2 approach is used in comparison with other approaches.

s may be observed in this table, we can see that WOASAT-2 out-

erforms ALO, PSO and GA in Mean and Best Fitness criteria on

fteen datasets, and it is not worse than any other approach on fif-

een datasets. The high-performance of the enhanced WOA based

pproaches improves its capability. 

This high performance of the WOA algorithm proves its capabil-

ty to balance between the exploration and exploitation throughout

terations of the optimization. As per the results obtained, the per-

ormance of the WOA algorithm is proved on the large datasets
ization Algorithm with simulated annealing for feature selection, 
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Table 7 

Mean, best and worst fitness values obtained from the different optimizers. 

Dataset Mean Best Worst 

WOASAT-2 ALO GA PSO WOASAT-2 ALO GA PSO WOASAT-2 ALO GA PSO 

Breastcancer 0.04 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.04 0.03 0.04 0.03 

BreastEW 0.03 0.03 0.04 0.03 0.02 0.03 0.02 0.02 0.04 0.04 0.05 0.05 

CongressEW 0.03 0.05 0.04 0.04 0.02 0.03 0.03 0.03 0.05 0.06 0.06 0.04 

Exactly 0.01 0.29 0.28 0.28 0.01 0.28 0.27 0.21 0.01 0.29 0.31 0.32 

Exactly2 0.25 0.24 0.25 0.25 0.23 0.23 0.22 0.22 0.27 0.25 0.30 0.31 

HeartEW 0.16 0.12 0.14 0.15 0.13 0.11 0.12 0.13 0.18 0.13 0.14 0.18 

IonosphereEW 0.04 0.11 0.13 0.14 0.03 0.10 0.09 0.12 0.05 0.12 0.16 0.17 

KrvskpEW 0.02 0.05 0.07 0.05 0.02 0.03 0.03 0.03 0.02 0.07 0.13 0.07 

Lymphography 0.11 0.14 0.17 0.19 0.09 0.08 0.12 0.14 0.14 0.16 0.27 0.27 

M-of-n 0.01 0.11 0.08 0.11 0.01 0.09 0.02 0.06 0.01 0.12 0.15 0.16 

PenglungEW 0.06 0.14 0.22 0.22 0.03 0.00 0.13 0.13 0.11 0.21 0.29 0.29 

SonarEW 0.03 0.18 0.13 0.13 0.01 0.13 0.07 0.07 0.05 0.26 0.23 0.22 

SpectEW 0.13 0.12 0.14 0.13 0.11 0.09 0.12 0.10 0.15 0.15 0.15 0.16 

Tic-tac-toe 0.21 0.22 0.24 0.24 0.20 0.20 0.21 0.21 0.23 0.24 0.26 0.27 

Vote 0.04 0.04 0.05 0.05 0.02 0.03 0.03 0.03 0.04 0.05 0.08 0.08 

WaveformEW 0.25 0.21 0.20 0.22 0.23 0.19 0.19 0.21 0.26 0.22 0.21 0.23 

WineEW 0.01 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03 

Zoo 0.04 0.07 0.08 0.10 0.00 0.04 0.00 0.03 0.10 0.12 0.18 0.21 

Total 1.83 2.15 2.30 2.39 1.57 1.70 1.69 1.77 2.14 2.54 3.03 3.08 
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s well as small size data sets. The three datasets; penglungEW,

rvskpEW and ionosphereEW are relatively large datasets and the

tness value of the proposed approach is clearly less than all other

pproaches. We can also see that WOA performs better than ALO,

SO and GA in terms of the best and worst obtained solution. 

. Conclusion 

Feature selection is one of the key factors in enhancing the

lassifier abilities in the classification problem. In this paper

our variant hybrid metaheuristic algorithms based on WOA al-

orithm were proposed. The proposed approaches integrate SA

lgorithm with the global search of WOA. SA was employed

n the proposed approaches following two hybrid models; low-

evel teamwork hybrid model (LTH), and high-level relay hybrid

odel (HRH). 

In LTH, SA was used as a local search operator around the se-

ected search agents in two approaches (WOASA-1 and WOASAT-1).

y contrast, SA was used to search the neighborhood of the best

ound solution after each iteration of WOA in HRH (WOASA-2 and

OASAT-2). To give more chances to the weak solutions to be se-

ected in order to enhance the diversity of WOA, Tournament Se-

ection mechanism was used to selected the search agents instead

f random selection mechanism (WOASAT-1 and WOASAT-2). 

The performances of the proposed approaches were assessed

nd compared against three recent wrapper feature selection

ethods including ALO, PSO, and GA. Two criteria were reported

o evaluate each approach: classification accuracy, average selec-

ion size. The proposed approaches were compared against each

ther and the native WOA algorithm. We found that WOASAT-2,

hich used SA to intensify the neighboring region of the best so-

ution found in each iteration of WOA, and the tournament se-

ection to select the search agents show the best performance

mong all proposed approaches in terms of classification accu-

acy They also show competitive results over the second objec-

ive; selecting the minimal reducts. Since the performance of the

roposed approaches follows this order: WOA < WOAT < WOASA-

 < WOASAT-1 < WOASA-2 < WOASAT-2, we can conclude that the

roposed approaches managed to successfully balance the main

wo objectives of a metaheuristic algorithm: exploration and

xploitation. 

For future studies, it would be interesting to hybridize WOA

lgorithm with another population-based metaheuristic algorithm
Please cite this article as: M.M. Mafarja, S. Mirjalili, Hybrid Whale Optim

Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom.2017.04.053
ike ALO. In addition, employing a hybrid WOA algorithm for solv-

ng real world problem like medical data is another possible future

ork. 
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