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Abstract. Resorting to the dichotomous decision model, where in-
dividuals can make alternative decisions, we study two geometric ap-
proaches to construct all possible decisions tilings. Each decision tiling
indicates the way the Nash equilibria co-exist and change with the rel-
ative decision preferences of the individuals. We find the Nash domains
for the pure and mixed strategies and characterize the space of all pa-
rameters where the pure Nash equilibria are either cohesive or disparate.
We show how the coordinates of the influence matrix together with the
total number of individuals affect significantly the occurrence of bifur-
cations with and without overlaps between the pure strategies.

1. Introduction

The dichotomous decision model is a recent game theoretical model in-
troduced by Mousa et al. in 2014 (see [11]). In this model, there are just
two possible decisions that individuals can make. For instance, they have
to choose between yes or no, i.e. d ∈ D = {Y es,No}. The individuals
will have to make decisions according to their preferences. The preferences
have the interesting feature of taking into account not only how much the
individuals like or dislike a certain decision but also the other individuals’
decisions. This decision model has a wide applications in real life and can
be used to understand better the social interaction (see [10, 15]), tourism
industry (see [5, 6]) and economical and political revolutions (see [3, 9, 14]).

The dichotomous decision model is a modified version of the game theoret-
ical model introduced by Pinto et al. (see [2]) who developed a psychological
game model for reasoned action theories inspired by the works of J. Cown-
ley and M. Wooders (see [7]). They studied the way saturation, boredom
and frustration can lead to desperate strategies (if the individuals of same
group will make different decisions), and no saturation situations can lead
to cohesive strategies (if all the individuals belonging to a same group will
make the same decision). Ajzen (see [1]) and Baker (see [4]) predict the way
individuals turn intentions into behaviors and this prediction is the main
goal in Planned Behavior or Reasoned Action theories.

Mousa et al. [15] show that groups are formed by individuals with the
same utility, and a group is cohesive if every individual has a gain in his
utility when other individuals of the same group make the same decision
as his. Furthermore, they show that individuals in a same group can make
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different decisions at certain Nash equilibria. In a dynamical version of the
decision model (see [11]), the authors exhibit solutions that are periodic
attracting cycles and so the individuals can keep changing the probabilities
that they use to make a decision or another around some thresholds. These
thresholds show the appearance of hysteretic-like behavior in the decision
models. As in dynamics [8, 16], small changes in the parameters might imply
the appearance and disappearance of the pure Nash equilibria.

The dichotomous decision model has been extended to a general model in
[8], and other future extension formulation for the decision model would be
to include some kind of stochastic pattern in the model parameters. A recent
research articles that handel a stochastic decision problems for individuals
introduced by Mousa et al. (see [12, 13]).

In this paper, we study two geometric approaches to construct all possi-
ble Nash eqilibria for the decisions tilings. We characterize the space of all
parameters for the dichotomous decision model where the pure and mixed
strategies are Nash equilibria and we find the corresponding Nash domains.
We will see how the coordinates of the influence matrix together with the
total number of individuals encode all the relevant information for the ex-
istence of Nash equilibria strategies. The existence of these equilibria are
related also to size effect of the relative decision preferences for the individ-
uals. The two approaches rises in making 289 different combinatorial classes
of decision tilings by capturing the information that rises from the crowding
type of individuals, reflecting the complexity of the yes-no decision model
(see [10]).

This paper is organized as follow. In Section 2 we review the dichoto-
mous decision model and some main results introduced in [11]. In Section
3 we study two different strategic approaches to construct geometrically all
possible tilings and determine the Nash domains for the pure and mixed
strategies. We conclude in Section 5.

2. The Dichotomous Decision Model

In this section, we review the dichotomous decision model introduced in
[11] with some main results. In section 2.1 we introduce the decision model.
In section 2.2 we study the pure Nash equilibria and in section 2.3 we study
the mixed Nash equilibria.

2.1. Model set up. The model has two types T = {t1, t2} of individuals.
Let I1 = {1, . . . , n1} be the set of all individuals with type t1, and let
I2 = {1, . . . , n2} be the set of all individuals with type t2. Let I = I1t I2 be
the disjoint union. The individual i ∈ I has to make one decision d ∈ D =
{Y,N}1.

Let L be the preference decision matrix whose coordinates ωd
p indicate

how much an individual with type tp likes or dislikes, to make decision
d ∈ D

L =

(
ωY
1 ωN

1

ωY
2 ωN

2

)
.

1Similarly, we can consider that there is a single individual with type tp that has to
make np decisions, or we can also consider a mixed model using these two possibilities.
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The coordinates of the preference decision matrix indicates for each type of
individuals the decision that the individuals prefer, i.e. the taste type of the
individuals (see [10, 11, 15]).

Let Nd be the preference neighbors matrix whose coordinates αd
pq indicate

how much an individual with type tp who decides d likes or dislikes that an
individual with type tq also makes decision d

Nd =

(
αd
11 αd

12

αd
21 αd

22

)
.

The coordinates of the preference neighbors matrix indicate, for each type
of individuals whose decision is d, whom they prefer, or do not prefer, to be
with in each decision, i.e. the crowding type of the individuals (see [5, 7, 11]).

Definition 2.1 ([11]). The (pure) decision of the individuals is a (pure)
strategy map S : I → D that associates to each individual i ∈ I its decision
S(i) ∈ D.

Let S be the space of all strategies S. For a given a strategy S ∈ S, let
OS be the strategic decision matrix whose coordinates ldp = ldp(S) indicate
the number of individuals with type tp, who make decision d

OS =

(
lY1 lN1
lY2 lN2

)
.

Definition 2.2 ([11]). Let S ∈ S. The strategic decision vector associated
to a strategy S is the vector

(l1, l2) = (ly1(S), ly2(S)),

where l1 (resp. n1 − l1) is the number of individuals with type t1 who make
the decision Y (resp. N), and l2 (resp. n2− l2) is the number of individuals
with type t2 who make the decision Y (resp. N). Furthermore, the set O of
all possible strategic decision vectors is defined by

O = {0, . . . , n1} × {0, . . . , n2} .

The utility function U1 : D × O → R of an individual with type t1 is
defined by

U1(Y ; l1, l2) = ωY
1 + αY

11(l1 − 1) + αY
12l2;

U1(N ; l1, l2) = ωN
1 + αN

11(n1 − l1 − 1) + αN
12(n2 − l2)

and the utility function U2 : D × O → R of an individual with type t2 is
defined by

U2(Y ; l1, l2) = ωY
2 + αY

22(l2 − 1) + αY
21l1;

U2(N ; l1, l2) = ωN
2 + αN

22(n2 − l2 − 1) + αN
21(n1 − l1).

Given a strategy S ∈ S, the utility Ui(S) of an individual i with type tp(i)
is given by Up(i)(S(i); ly1(S), ly2(S)).

Definition 2.3 ([11]). The horizontal relative decision preference of the
individuals with type t1 is define by

x = ωY
1 − ωN

1
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and the vertical relative decision preference of the individuals with type t2 is
defined by

y = ωY
2 − ωN

2 .

If x > 0, the individuals with type t1 prefer to decide Y , without taking
into account the influence of the others. If x = 0, the individuals with
type t1 are indifferent to decide Y or N , without taking into account the
influence of the others. If x < 0, the individuals with type t1 prefer to decide
N , without taking into account the influence of the others.

Definition 2.4 ([11]). For i, j ∈ {1, 2}, we define the coordinates of the
influence matrix by

Aij = αY
ij + αN

ij .

If Aij > 0, the individuals with type tj have a positive influence over the
utility of the individuals with type ti. If Aij = 0, the individuals with type
tj are indifferent for the utility of the individuals with type ti. If Aij < 0,
the individuals with type tj have a negative influence over the utility of the
individuals with type ti.

Definition 2.5 ([11]). A strategy S∗ : I → D is a Nash equilibrium if,
for every individual i ∈ I and for every strategy S, with the property that
S∗(j) = S(j) for every individual j ∈ I \ {i}, we have

Ui(S
∗) ≥ Ui(S) .

Furthermore, the Nash equilibrium domain E(S) of a strategy S is the set
of all pairs (x, y) for which S is a Nash Equilibrium.

2.2. Pure Nash equilibria. The pure strategies are either cohesive strate-
gies or disparate strategies.

Definition 2.6 ([11]). A cohesive strategy is a pure strategy in which all
individuals with the same type prefer to make the same decision. A disparate
strategy is a pure strategy that is not cohesive, i.e. a pure strategy in which
there are some individuals with the same type who prefer to make different
decisions.

Lemma 2.7 ([11]). The Nash domain N(Y, Y ) of the cohesive strategy
(Y, Y ) is given by

N(Y, Y ) = {(x, y) : x ≥ H(Y, Y ) and y ≥ V (Y, Y )} ,

where the horizontal H(Y, Y ) and vertical V (Y, Y ) strategic thresholds of
the (Y, Y ) strategy are given by

H(Y, Y ) = −αY
11(n1 − 1)− αY

12n2 and V (Y, Y ) = −αY
22(n2 − 1)− αY

21n1 .

Hence, the cohesive strategy (Y, Y ) is a Nash equilibrium if, and only
if, (x, y) ∈ N(Y, Y ). Moreover, the Nash domain N(Y, Y ) is a right-upper
quadrant in the xy-plane (see Figure 1).

Lemma 2.8 ([11]). The Nash domain N(Y,N) of the cohesive strategy
(Y,N) is given by

N(Y,N) = {(x, y) : x ≥ H(Y,N) and y ≤ V (Y,N)} ,
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x 

y 

H(Y,Y) 

V(Y,Y) 

N(Y,Y) 

Figure 1. Cohesive Nash equilibria domain N(Y, Y ).

where the horizontal H(Y,N) and vertical V (Y,N) strategic thresholds of
the (Y,N) strategy are given by

H(Y,N) = −αY
11(n1 − 1) + αN

12n2 and V (Y,N) = αN
22(n2 − 1)− αY

21n1 .

Hence, the cohesive strategy (Y,N) is a Nash equilibrium if, and only
if, (x, y) ∈ N(Y,N). Moreover, the Nash domain N(Y,N) is a right-lower
quadrant in the xy-plane (see Figure 2).

 

 

 

x 

y 

H(Y,N) 

V(Y,N) N(Y,N) 

Figure 2. Cohesive Nash equilibria domain N(Y,N).

Lemma 2.9 ([11]). The Nash domain N(N,Y ) of the cohesive strategy
(N,Y ) is given by

N(N,Y ) = {(x, y) : x ≤ H(N,Y ) and y ≥ V (N,Y )} ,

where the horizontal H(N,Y ) and vertical V (N,Y ) strategic thresholds of
the (N,Y ) strategy are

H(N,Y ) = αN
11(n1 − 1)− αY

12n2 and V (N,Y ) = −αY
22(n2 − 1) + αN

21n1 .

Hence, the cohesive strategy (N,Y ) is a Nash equilibrium if, and only
if, (x, y) ∈ N(N,Y ). Moreover, the Nash domain N(N,Y ) is a left-upper
quadrant in the xy-plane (see Figure 3).
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H(N,Y) 

V(N,Y) 

N(N,Y) 

Figure 3. Cohesive Nash equilibria domain N(N,Y ).

Lemma 2.10 ([11]). The Nash domain N(N,N) of the cohesive strategy
(N,N) is given by

N(N,N) = {(x, y) : x ≤ H(N,N) and y ≤ V (N,N)} ,
where the horizontal H(N,N) and vertical V (N,N) strategic thresholds of
the (N,N) strategy are

H(N,N) = αN
11(n1 − 1) + αN

12n2 and V (N,N) = αN
22(n2 − 1) + αN

21n1 .

Hence, the cohesive strategy (N,N) is a Nash equilibrium if, and only
if, (x, y) ∈ N(N,N). Moreover, the Nash domain N(N,N) is a left-lower
quadrant in the xy-plane (see Figure 4).

 

 

 

x 

y 

H(N,N) 

V(N,N) 

N(N,N) 

Figure 4. Cohesive Nash equilibria domain N(N,N).

2.3. Mixed Nash equilibria. Let I = I1 t I2 be the disjoint union. We
describe the (mixed) decision of the individuals by a (mixed) strategy map
S : I → [0,1] that associates to each individual i ∈ I1 the probability
pi = S(i) to decide Y ∈ D and to each individual j ∈ I2 the probability
qj = S(j) to decide Y ∈ D. Hence, each individual i ∈ I1 decides N ∈ D
with probability 1− pi = 1−S(i) and each individual j ∈ I2 decides N ∈ D
with probability 1 − qj = 1 − S(j). We assume that the decisions of the
individuals are independent.
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Define P =
∑n1

i=1 pi, Q =
∑n2

j=1 qj , Pi = P−pi and Qj = Q−qj . For every

individual i ∈ I1, the Y-fitness function fY,1 : [0, 1]× [0, n1]× [0, n2] → R+

is given by

fY,1(pi;P,Q) = ωY
1 + αY

11Pi + αY
12Q ;

and the N-fitness function fN,1 : [0, 1]× [0, n1]× [0, n2]→ R+ is given by

fN,1(pi;P,Q) = ωN
1 + αN

11(n1 − 1− Pi) + αN
12(n2 −Q) .

For every individual j ∈ I2, the Y-fitness function fY,2 : [0, 1] × [0, n1] ×
[0, n2]→ R+ is given by

fY,2(qj ;P,Q) = ωY
2 + αY

22Qj + αY
21P ;

and the N-fitness function fN,2 : [0, 1]× [0, n1]× [0, n2]→ R+ is given by

fN,2(qj ;P,Q) = ωN
2 + αN

22(n2 − 1−Qj) + αN
21(n1 − P ) .

Lemma 2.11 ([11]). Let S : I → [0,1] be a mixed strategy. For every
individual i ∈ I1, the utility function U1 : [0, 1] × [0, n1] × [0, n2] → R+ is
given by

U1(pi;P,Q) = pi fY,1(pi;P,Q) + (1− pi) fN,1(pi;P,Q) .

For every individual j ∈ I2, the utility function U2 : [0, 1]× [0, n1]× [0, n2]→
R+ is given by

U2(qj , P,Q) = qj fY,2(qj ;P,Q) + (1− qj) fN,2(qj ;P,Q) .

Definition 2.12 ([11]). A strategy S∗ : I → [0,1] is a (mixed) Nash equi-
librium, if

Ui(S
∗) ≥ Ui(S)

for every individual i ∈ I and for every strategy S ∈ S with the property that
S∗(j) = S(j), for every individual j ∈ I \ {i}.

Lemma 2.13 ([11]). Let S : I→ [0,1] be a mixed Nash equilibrium.

(i) If 0 < pi < 1, then x = −A11(P − pi)−A12Q+H(N,N).
(ii) If 0 < qj < 1, then y = −A21P −A22(Q− qj) + V (N,N).

Hence, if A11 6= 0, then there is not a mixed Nash equilibrium with the
property that 0 < pi1 6= pi2 < 1. Furthermore, if A22 6= 0, then there is not
a mixed Nash equilibrium with the property that 0 < qj1 6= qj2 < 1.

Definition 2.14 ([11]). The (l1, k1, p; l2, k2, q) mixed strategic set is the set
of all strategies S : I→ [0,1] with the following properties:

(i) l1 = #{i ∈ I1 : pi = 1} and k1 = #{i ∈ I1 : pi = p};
(ii) l2 = #{j ∈ I2 : qj = 1} and k2 = #{j ∈ I2 : qj = q};
(iii) n1 − (l1 + k1) = #{i ∈ I1 : pi = 0} and n2 − (l2 + k2) = #{j ∈ I2 :

qj = 0}.

For p, q ∈ {0, 1}, we observe that the (l1, k1, p; l2, k2, q) mixed strategic
set is equal to the (l1 + pk1, l2 + qk2) pure strategic set.

Remark 2.15 ([11]). By Lemma 2.13, supposing that A11 6= 0 and A22 6=
0, a mixed strategy S is a Nash equilibrium, if S is contained in some
(l1, k1, p; l2, k2, q) mixed strategic set.
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Since individuals with the same type are identical, if a mixed strategy
contained in the (l1, k1, p; l2, k2, q) mixed strategic set is a Nash equilibrium,
then all the strategies in the (l1, k1, p; l2, k2, q) mixed strategic set are Nash
equilibria.

Definition 2.16 ([11]). An (l1, k1, p; l2, k2, q) mixed Nash equilibrium (set)
is an
(l1, k1, p; l2, k2, q) strategic set whose strategies are Nash equilibria. The
(mixed) Nash domain N(l1, k1, p; l2, k2, q) is the set of all pairs (x, y) for
which the
(l1, k1, p; l2, k2, q) strategic set is a mixed Nash equilibrium set.

An (l1, k1, p; l2, k2, q) strict mixed Nash equilibrium set is a mixed Nash
equilibrium set that does not contain pure strategies, i.e. (p, q) ∈ [0, 1]2 \
{0, 1}2. A strict mixed Nash domain N(l1, k1, p; l2, k2, q) is the mixed Nash
domain of a strict mixed Nash equilibrium set.

3. Geometric approaches in constructing Tilings

In this section, we study two strategic approaches to construct Nash do-
mains. The two approaches are the global approach and the local approach.
In the global approach, we will construct all possible tilings using the coor-
dinates of the influence matrix. In the local approach, we will characterize
all possible orders for the domains of the pure and mixed Nash equilibria in
tilings using the coordinates of the influence matrix too.

In order to proceed, we need to introduce some auxiliary and generalized
results.

Theorem 3.1. The (l1, l2) strategy is a Nash Equilibrium if and only if
(x, y) ∈ N(l1, l2), where

N(l1, l2) = {(x, y) : HL(l1, l2) ≤ x ≤ HR(l1, l2) and VD(l1, l2) ≤ y ≤ VU (l1, l2)},
the left horizontal threshold HL(l1, l2) and the right horizontal threshold
HR(l1, l2) of the (l1, l2) strategy are given by

HL(l1, l2) = αN
11n1 + αN

12n2 + αY
11 − (αY

12 + αN
12)l2 − (αY

11 + αN
11)l1

HR(l1, l2) = αN
11n1 + αN

12n2 − αN
11 − (αY

12 + αN
12)l2 − (αY

11 + αN
11)l1 ,

the down vertical threshold VD(l1, l2) and the the upper vertical threshold
VU (l1, l2) of the (l1, l2) strategy are given by

VD(l1, l2) = αN
22n2 + αN

21n1 + αY
22 − (αY

21 + αN
21)l1 − (αY

22 + αN
22)l2

VU (l1, l2) = αN
22n2 + αN

21n1 − αN
22 − (αY

21 + αN
21)l1 − (αY

22 + αN
22)l2 .

Proof. The (l1, l2) strategy is a Nash equilibrium if, and only if, the following
four inequalities hold

U1(Y ; l1, l2) ≥ U1(N ; l1 − 1, l2) , U1(N ; l1, l2) ≥ U1(Y ; l1 + 1, l2)

and

U2(Y ; l1, l2) ≥ U2(N ; l1, l2 − 1) , U2(N ; l1, l2) ≥ U2(Y ; l1, l2 + 1) .

Hence, the proof of Theorem 3.1 follows by rearranging the terms in the
previous inequalities. �
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Hence, N(l1, l2) is the Nash Equilibrium domain of the (l1, l2) strategy
(see Figure 5).
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Figure 5. Disparate Nash equilibria when n1 = 4 and n2 =
3. Left : A11 < 0, A12 < 0, A21 < 0 and A22 < 0. The yellow
rectangles include two pure Nash equilibria and a mixed Nash
equilibrium. Right : A11 < 0, A12 > 0, A21 < 0 and A22 < 0.
The yellow rectangles have no pure Nash equilibrium but
include a mixed Nash equilibrium.

Each geometric graph in Figure 5 is called a tilings results by joining the
four quadrants described in Figures 1, 2, 3 and 4 in one geometric graph. The
horizontal preferences x for individuals of type t1 is being the x-axis and the
vertical preferences y for individuals of type t2 is being the y-axis. Each tiling
indicates the way the horizontal thresholds H(Y, Y ), H(Y,N), H(N,Y ),
H(N,N) are ordered along the horizontal x-axis and the way the way the
vertical thresholds V (Y, Y ), V (Y,N), V (N,Y ), V (N,N) are ordered along
the vertical y-axis. The order of these horizontal thresholds and vertical
thresholds give rise to the Nash equilibria location. Thus, determining the
Nash domain for each strategy. More detailed about the construction of
these tilings will be discussed in the coming section.

The following thresholds determine the domains of the (l1, l2) disparate
Nash equilibria.

HR(l1, l2) = HL(l1 + 1, l2), HL(l1, l2) = HL(l1, l2 + 1) +A12,

VU (l1, l2) = VD(l1, l2 + 1), HR(l1, l2) = HR(l1, l2 + 1) +A12,

VU (l1, l2) = VD(l1, l2)−A22, VD(l1, l2) = VD(l1 + 1, l2) +A21,

HR(l1, l2) = HL(l1, l2)−A11, VU (l1, l2) = VU (l1 + 1, l2) +A21 .

We observe that (see Figure 5) if A11 > 0 or A22 > 0, then there are no
(l1, l2) Nash Equilibria, for every l1 ∈ {1, . . . , n1−1} and l2 ∈ {1, . . . , n2−1}.
However, if A11 ≤ 0 and A22 ≤ 0, then there are (l1, l2) Nash Equilibria, for
every l1 ∈ {1, . . . , n1 − 1} and l2 ∈ {1, . . . , n2 − 1}.

Lemma 3.2. The Nash domains satisfy the following properties: N(n1, n2) =
N(Y, Y ), N(n1, 0) = N(Y,N), N(0, n2) = N(N,Y ), N(0, 0) = N(N,N) .
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Proof. We prove N(n1, n2) = N(Y, Y ) and the proof for the other Nash
domains follows similarly. Substituting l1 by n1 and l2 by n2 in the horizontal
and vertical thresholds stated in Theorem 3.1, we have that

HL(n1, n2) = αN
11n1 + αN

12n2 + αY
11 − (αY

12 + αN
12)n2 − (αY

11 + αN
11)n1

= −αY
11(n1 − 1)− αY

12n2

= H(Y, Y )

and

VD(n1, n2) = αN
22n2 + αN

21n1 + αY
22 − (αY

21 + αN
21)n1 − (αY

22 + αN
22)n2

= −αY
22(n2 − 1)− αY

21n1

= V (Y, Y ) .

Hence, N(n1, n2) = N(Y, Y ) and we conclude the proof. �

3.1. Global approach. We will see that the coordinates of the influence
matrix together with the total number of individuals play a significant role
to determine the Nash domains for a given strategy. We will also denote
to the Nash domains N(l1, l2) by Q(l1, l2) as being referred to the quad-
rants. We notify that a pair of thresholds (H(Y, Y ), V (Y, Y )) (respectively,
(H(Y,N), V (Y,N)), (H(N,Y ), V (N,Y )), (H(N,N), V (N,N))) form a cor-
ner for the quadrant Q(Y, Y ) (respectively, Q(Y,N), Q(N,Y ), Q(N,N)).

We summarize the global approach by the following remark which pro-
vides a strategy for constructing all possible tilings.

Remark 3.3 (Golden Tiling). Let S1 = (A12, A22) and S2 = (A11, A21).
Every tiling is determined by a corner of quadrant and a vector of stairs
(S1, S2) together with the total number of individuals.

We now emphasise Remark 3.3 by referring to the Figures 6, 7, 8 and 9
and by ordering the following steps:

• connect the losangles between the corner of the quadrants Q(Y, Y ),
Q(Y,N), Q(N,Y ) and Q(N,N);
• use the coordinates of the influence matrix (A22, A12) to construct

the left and right green ladders boundaries of the losangles (see Fig-
ures 7 and 8);
• use the coordinates of the influence matrix (A11, A21) to construct

the upper and down blue ladders boundaries of the losangles (see
Figures 6 and 9);
• we repeat the second and third items in a similar fashion, but with

different locations;
• the ladders intersect the losangles in the points upper-down

j2A12

n2

for j2 = 0, 1, . . . , n2;
• the ladders intersect the losangles in the points left-right

j1A21

n1

for j1 = 0, 1, . . . , n1.
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Q(N,Y)

Q(N,N)
Right corner

Left corner

Down blue

Upper blue

Shifts

Shifts losangle

-A₂₂

-A₁₂

Q(N,Y)

Q(N,N)

Left corner

Right corner

Down blue

Upper blue

Shifts

Shifts

-A₂₂

-A₁₂

losangle

Figure 6. Left: Left green boundaries shift 1: The
rule: Go in the boundaries in the horizontal dimension of
the right corner and come in from outside of the horizontal
boundaries in the horizontal dimension of the left corner.
Right: Left green boundaries shift 2: The rule: Go out
from the boundaries in the horizontal dimension of the left
corner and come in from inside the horizontal boundaries in
the horizontal dimension of the right corner.

Q(Y,Y)

Q(Y,N)Right corner

Left corner

Down blue

Upper blue

Shifts

Shifts
losangle

-A₂₂

-A₁₂
Q(Y,Y)

Q(Y,N)

Left corner

Right corner

Down blue

Upper blue

Shifts

Shifts

-A₂₂

-A₁₂

losangle

Figure 7. Left: Right green boundaries shift 1: The
rule: Go in the boundaries in the horizontal dimension of
the left corner and come in from outside of the horizontal
boundaries in the horizontal dimension of the right corner.
Right: Right green boundaries shift 2: The rule: Go out
from the boundaries in the horizontal dimension of the right
corner and come in from inside the horizontal boundaries in
the horizontal dimension of the left corner.



12 ABDELRAHIM .S. MOUSA AND ALBERTO A. PINTO

Q(N,Y)

Q(Y, Y)

Upper corner

Lower cornerLeft green

Shifts

Shifts

Right green

-A₂₁
-A₁₁

losangle

Q(N,Y)

Q(Y, Y)

Upper corner

Lower corner

Left green

Shifts

Shifts

Right green

-A₂₁
-A₁₁

losangle

Figure 8. Left: Down blue boundaries shift 1: The
rule: Go out of the boundaries in the vertical dimension of the
upper corner and come in from inside the vertical boundaries
in the vertical dimension of the lower corner. Right: Down
blue boundaries shift 2: The rule: Go in the boundaries in
the vertical dimension of the lower corner and come in from
outside the vertical boundaries in the vertical dimension of
the upper corner.

Q(N,N) Q(Y, N)

Upper corner

Lower corner

Left green

Shifts

Shifts
Right green

losangle

-A₂₁
-A₁₁

Q(N,N) Q(Y, N)

Upper corner

Lower corner

Left green

Shifts

Shifts

Right green

losangle

-A₂₁
-A₁₁

Figure 9. Left: Upper blue boundaries shift 1: The
rule: Go in of the boundaries in the vertical dimension of the
upper corner and come in from outside the vertical bound-
aries in the vertical dimension of the lower corner. Right:
Upper blue boundaries shift 2: The rule: Go out the
boundaries in the vertical dimension of the lower corner and
come in from inside the vertical boundaries in the vertical
dimension of the upper corner.



GEOMETRIC APPROACHES AND BIFURCATIONS 13

We remark that shifts in the left green ladders boundaries of the losangles
are different from right green ladders boundaries of the losangles; shifts in
the upper blue ladders boundaries of the losangles are different from down
blue ladders boundaries of the losangles; and down blue stars start in blue
stars and they end in the green circles, but upper blue stars start in the
green circles and end in the blue stars.

We see that there are eight different boundaries kind of shifts: left green
boundaries shift 1, left green boundaries shift 2, right green boundaries shift
1, right green boundaries shift 2, down blue boundaries shift 1, down blue
boundaries shift 2, upper blue boundaries shift 1 and upper blue boundaries
shift 2.

Recall that O is the set of all possible strategic occupation vectors. Let
the horizontal and vertical set of strategies be given, respectively, by

OH = {(0, l2)} ∪ {(n1, l2)} and OV = {(l1, 0)} ∪ {(l1, n2)}

for every l1 ∈ {0, 1, . . . , n1} and l2 ∈ {0, 1, . . . , n2}.
The following theorem determines the conditions that guarantees the ex-

istence of a strictly mixed Nash equilibria for a given tiling.

Theorem 3.4. Given an influence matrix A and a point of stairs S =
(S1, S2). The corresponding tiling T (A,S) has the following properties:

(i) if A12A21 > 0, then there is a strictly mixed strategies only in the
Nash equilibria domain N(l1, l2) for every pure strategy (l1, l2) ∈
O \ {OH ∪OV };

(ii) if A12A21 < 0, then there is a strictly mixed strategies only outside
the Nash equilibria domain N(l1, l2) for every pure strategy (l1, l2) ∈
O \ {OH ∪OV };

(iii) if A12A21 = 0, then there are no strictly mixed strategies for every
pure strategy (l1, l2) ∈ O.

Proof. By Contradiction. We proof case (i) and the proof of cases (ii)−(iii)
follow similarly. Assume that there is a strictly mixed Nash equilibrium
strategy S : I → [0,1] in the Nash equilibria domain N(l1, l2) for some
occupation vector (l1, l2) ∈ {OH ∪OV }. Note that A12A21 > 0 implies that
either A12 > 0 and A21 > 0 (individuals of a certain type affect positively
the other type of individuals to chair a particular decision) or A12 < 0
and A21 < 0 (individuals of a certain type affect negatively the other type
of individuals to chair a particular decision). If N(l1, l2) = N(0, 0), then
pi = qj = 0 for all i = 0, 1, . . . , n1 and j = 0, 1, . . . , n2 which contradicts
the fact that S : I → [0,1] is a strictly mixed Nash equilibrium strategy.
Similarly, if N(l1, l2) = N(n1, n2), then pi = qj = 1 for all i = 0, 1, . . . , n1
and j = 0, 1, . . . , n2 which contradicts the fact that S : I→ [0,1] is a strictly
mixed Nash equilibrium strategy. If N(l1, l2) = N(0, l2) (resp. N(l1, l2) =
N(l1, 0)), then pi = 0 for all i = 0, 1, . . . , n1 (resp. qj = 0 for all j =
0, 1, . . . , n2) which is a contradiction. �

In Figure 10, we show an example of two rotated tilings in which the hor-
izontal thresholds H(Y, Y ), H(Y,N), H(N,Y ), H(N,N) are ordered along
the horizontal x-axis and the vertical thresholds V (Y, Y ), V (Y,N), V (N,Y ),
V (N,N) are ordered along the vertical y-axis. The influence matrix for the
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(2,0) (1,0) 

(2,2) N(Y, Y) 

N(Y,N) 

(0,2) 

(0,0) 

(1,2) 

(0, 1) 

(2, 1) 

N(N,N) 

N(N,Y) 

(1, 1) 

 

 

 

 

 

(2,0) 

(2,1) 

(2,2) 

N(Y, Y) 

N(Y,N) 

(0,2) 

(0,0) 

(0,1) 

(1, 0) 

(1, 2) 

N(N,N) 

N(N,Y) 

(1, 1) 

Figure 10. Pure and mixed Nash equilibria.

left tiling and the influence matrix for the right tiling are, respectively, given
by

A =

−2 3

−3 −2

 and A =

−2 −3

3 −2

 .

Hence, small changes in the coordinates of the influence matrix can create a
different tiling. In [10], it was shown that there are 289 combinatorial classes
of decision tilings, described by the decision bussola, which demonstrates the
high complexity of making decision.

3.2. Local Approach. The local approach uses the signs of the coordinates
of the influence matrix to determine the domains of the pure and mixed
strategies in all tilings (see Figure 11). We observe that changing the signs
of the pairs (A11, A21) and (A12, A22) imply different orders for the pure
strategies (l1, l2). Let

Eij = −Aij

for all i, j = {1, 2}. Let us define the horizontal axis by E12 and the vertical
axis by E21. The sign of the pair (E12, E21) determines a certain order of
pure strategies (l1, l2). Note that there are four possible orders for the pure
strategies that are not located along any axis which are given by a small
white rectangles in Figure 11.

Remark 3.5 (Rotating Pure Nash Domains). Given the location of the pure
strategies in the small whit rectangles. We remark that

(i) if the signs of the coordinates (E12, E21) is (+,+), then the pure strategies
are rotated to make new ordering given by the small red rectangles that appear
in Figure 12;

(ii) if the signs of the coordinates (E12, E21) is (+,−), then the pure strategies
are rotated to make new ordering given by the small orange rectangles appear
in Figure 13;

(iii) if the signs of the coordinates (E12, E21) is (−,+), then the pure strate-
gies are rotated to make new ordering given by the small green rectangles
appear in Figure 14;
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(iv) if the signs of the coordinates (E12, E21) is (−,−), then the rotated to
make new ordering given by pure strategies are the small blue rectangles
appear in Figure 15.

E₁₂

E₂₁

l (l₁,l₂+1)(l₁,l₂)

(l₁+1,l₂+1)

(l₁-1,l₂+1)(l₁-1,l₂-1)

(l₁,l₂-1)

(l₁+1,l₂-1) (l₁+1,l₂)

(l₁-1,l₂)

(l₁,l₂+1)

( 0 , -)

(l₁,l₂-1)

( 0 , +)
(l₁,l₂-1)

( 0 , -)

(l₁,l₂+1)

( 0 , +)

(l₁-1,l₂)

( + , 0)

(l₁-1,l₂)

( - , 0)

(l₁+1,l₂)

( - , 0)

(l₁+1,l₂)

( + , 0)

(l₁+1,l₂+1)

( - , -)

(l₁+1,l₂-1)

( - , +)

(l₁-1,l₂+1)

( + , -)

(l₁-1,l₂-1)

( + , +)

(l₁+1,l₂+1)

( + , +)

(l₁+1,l₂-1)

( + , -)

(l₁-1,l₂+1)

( - , +)

(l₁-1,l₂-1)

( - , -)

(l₁-1,l₂+1)

( + , +)

(l₁-1,l₂-1)

( + , -)

(l₁+1,l₂-1)

( - , -)

(l₁+1,l₂+1)

( - , +)

(l₁-1,l₂+1)

( - , -)

(l₁-1,l₂-1)

( - , +)

(l₁+1,l₂-1)

( + , +)

(l₁+1,l₂+1)

( + , -)

Figure 11. Rotating pure Nash domains using the local ap-
proach. E12 is located along the horizontal axis E21 is located
along the vertical axis.

E₁₂

E₂₁

l (l₁,l₂+1)(l₁,l₂)

(l₁+1,l₂+1)

(l₁-1,l₂+1)(l₁-1,l₂-1)

(l₁,l₂-1)

(l₁+1,l₂-1) (l₁+1,l₂)

(l₁-1,l₂)

(l₁,l₂-1)

( 0 , +)

(l₁,l₂+1)

( 0 , +)

(l₁-1,l₂)

( + , 0)

(l₁+1,l₂)

( + , 0)

(l₁-1,l₂-1)

( + , +)

(l₁+1,l₂+1)

( + , +)

(l₁-1,l₂+1)

( + , +)

(l₁+1,l₂-1)

( + , +)

Figure 12. Rotating the pure strategies when the signs of
(E12, E21) is (+,+). The new order of the pure strategies
moves to the small red rectangles.
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E₁₂

E₂₁

l (l₁,l₂+1)(l₁,l₂)

(l₁+1,l₂+1)

(l₁-1,l₂+1)(l₁-1,l₂-1)

(l₁,l₂-1)

(l₁+1,l₂-1) (l₁+1,l₂)

(l₁-1,l₂)

(l₁,l₂-1)

( 0 , +)

(l₁,l₂+1)

( 0 , +)

(l₁-1,l₂)

( - , 0)

(l₁+1,l₂)

( - , 0)

(l₁+1,l₂-1)

( - , +)

(l₁-1,l₂+1)

( - , +)

(l₁+1,l₂+1)

( - , +)

(l₁-1,l₂-1)

( - , +)

Figure 13. Rotating the pure strategies when the signs of
(E12, E21) is (+,−). The new order of the pure strategies
moves to the small orange rectangles.

E₁₂

E₂₁

l (l₁,l₂+1)(l₁,l₂)

(l₁+1,l₂+1)

(l₁-1,l₂+1)(l₁-1,l₂-1)

(l₁,l₂-1)

(l₁+1,l₂-1) (l₁+1,l₂)

(l₁-1,l₂)(l₁-1,l₂)

( + , 0)

(l₁+1,l₂)

( + , 0)

(l₁-1,l₂+1)

( + , -)

(l₁+1,l₂-1)

( + , -)

(l₁-1,l₂-1)

( + , -)

(l₁+1,l₂+1)

( + , -)

(l₁,l₂+1)

( 0 , -)

(l₁,l₂-1)

( 0 , -)

Figure 14. Rotating the pure strategies when the signs of
(E12, E21) is (−,+). The new order of the pure strategies
moves to the small green rectangles.

4. Mixed strategies in local approach

We study geometrically two cases where mixed strategies co-exist. We
present the first case in section 4.1 where no intersection between the pure
strategies occurs. Second case will be introduced in section 4.2 where an
intersection between the pure strategies occurs.

4.1. No intersections between pure the strategies. Without loss of
generality, we will consider the case where the signs of (E12, E12) is (+,+)
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E₁₂

E₂₁

l (l₁,l₂+1)(l₁,l₂)

(l₁+1,l₂+1)

(l₁-1,l₂+1)(l₁-1,l₂-1)

(l₁,l₂-1)

(l₁+1,l₂-1) (l₁+1,l₂)

(l₁-1,l₂)

(l₁,l₂+1)

( 0 , -)

(l₁,l₂-1)

( 0 , -)

(l₁-1,l₂)

( - , 0)

(l₁+1,l₂)

( - , 0)

(l₁+1,l₂+1)

( - , -)

(l₁-1,l₂-1)

( - , -)

(l₁+1,l₂-1)

( - , -)

(l₁-1,l₂+1)

( - , -)

Figure 15. Rotating the pure strategies when the signs of
(E12, E21) is (−,−). The new order of the pure strategies
moves to the small blue rectangles.

and focus on the mixed strategies that occurs in the corresponding Figure
12. The other three cases follow in a similar way.

Recall that p ∈ [0, 1] is the probability of an individual of type t1 makes
decision Y and q ∈ [0, 1] is the probability of an individual of type t2 makes
decision Y .

Theorem 4.1. Consider the case where (E12, E21) is (+,+). Then there is
a mixed strategy (l1 + p, l2 + q) with

p =
q1√

|A21|2 + |A11|2

and

q =
q2√

|A12|2 + |A22|2

for every 1 < l1 < n1 − 1 and 1 < l2 < n2 − 1, where q1 and q2 are non-
negative real values.

Proof. Note that if the mixed strategies (l1 ± p, l2 ± q) are located along
the horizontal and vertical axes (see the black rectangles in Figure 16), then
they become pure and given by(

l1 ±
A21

|A21|
, l2 ±

A12

|A12|

)
.

Considering the case where (E12, E21) is (+,+). Thus, p and q may have now
real values instated of being natural and their values are derived by applying
the Pythagorean theorem among the three sides of a right triangles given in
Figure 16, which ends the proof. �



18 ABDELRAHIM .S. MOUSA AND ALBERTO A. PINTO

|A₁₂| 

|A₂₁| 

l 

E(l₁,l₂) 

E(l₁+1,l₂+1) 

|A₂₂| 

|A₁₁| 

q₁ 

q₂ 

E(l₁+1,l₂) 

E(l₁,l₂+1) 

E(l₁,l₂+1) 

E(l₁+1,l₂) 

E(l₁+1,l₂+1) 

|A₂₂| 

|A₁₁| 

Figure 16. (l1 + p, l2 + q) is the mixed strategy when
(E12, E21) is (+,+).

4.2. Bifurcations between pure strategies. In this section we study
geometrically the bifurcations between the pure strategies and see the signs
effect of the coordinates of the influence matrix. In Figures 17, 19, 20 and
18 we show all possible bifurcations between the pure strategies that may
occur in the corresponding Figures 12, 13, 14 and 15, respectively.

In Figure 17, we show the bifurcations between the pure strategies when
(E12, E21) = (+,+). The blue, green and yellow rectangles represent the
black rectangles (pure strategies) on the horizontal, vertical and diagonal
axis in Figure 12, respectively. The red rectangles represent the red rectan-
gles in Figure 12 and they describe the shifts in the black ones. We observe
that there are three red overlaps between, where the mixed strategies may
occur.

E₁₂

E₂₁

Figure 17. The bifurcations between the pure strategies
when (E12, E21) = (+,+).
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In Figure 18, we show the bifurcations between the pure strategies when
(E12, E21) = (−,−). The blue, green and yellow rectangles represent the
black rectangles (pure strategies) on the horizontal, vertical and diagonal
axis in Figure 15, respectively. The red rectangles represent the blue rect-
angles in Figure 15 and they describe the shifts in the black ones. We observe
that there are three red overlaps between, where the mixed strategies may
occur.

E₁₂

E₂₁

Figure 18. the bifurcations between the pure strategies
when (E12, E21) = (−,−).

E₁₂

E₂₁

Figure 19. The bifurcations between the pure strategies
when (E12, E21) = (+,−).

In Figure 19, we show the bifurcations between the pure strategies when
(E12, E21) = (+,−). The blue, green and yellow rectangles represent the
black rectangles (pure strategies) on the horizontal, vertical and diagonal
axis in Figure 15, respectively. The red rectangles represent the orange
rectangles in Figure 13 and they describe the shifts in the black ones. We
observe that there are no overlaps between.
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In Figure 20, we show the bifurcations between the pure strategies when
(E12, E21) = (−,+). The blue, green and yellow rectangles represent the
black rectangles (pure strategies) on the horizontal, vertical and diagonal
axis in Figure 14, respectively. The red rectangles represent the green rect-
angles in Figure 14 and they describe the shifts in the black ones. We observe
that there are no overlaps between.

E₁₂

E₂₁

Figure 20. The bifurcations between the pure strategies
when (E12, E21) = (−,+).

5. Conclusions

Resorting to the dichotomous decision model presented in [11], two geo-
metric approaches have been studied to construct all possible decisions
tilings in which pure and mixed Nash equilibria co-exist and change with
the relative decision preferences of the individuals. We have characterized
all possible Nash domains for pure and mixed strategies and discussed the
dependence of Nash equilibria on the parameters of the model. We have
seen how the coordinates of the influence matrix and the total number of in-
dividuals can alter the order of the horizontal and vertical thresholds which
allow the occurrence of bifurcations with and without overlaps between the
pure strategies.
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