
Abdalkarim Awad

Efficient Data Management in Wireless Sensor
Networks using Peer-to-Peer Techniques

Dissertation im Fach Informatik

University of Erlangen ∙ Dept. of Computer Science 7
Martensstr. 3 ∙ 91058 Erlangen ∙ Germany
www7.informatik.uni-erlangen.de

Lehrstuhl für Informatik 7
Rechnernetze und Kommunikationssysteme

Efficient Data Management in Wireless Sensor
Networks using Peer-to-Peer Techniques

—

Effizientes Datenmanagement in drahtlosen
Sensornetzen durch Peer-to-Peer Methoden

Der Technischen Fakultät der

Universität Erlangen-Nürnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Abdalkarim Awad

Erlangen, den 6. Juli 2009

Als Dissertation genehmigt von

der Technischen Fakultät der

Universität Erlangen-Nürnberg

Tag der Einreichung: 6. Juli 2009

Tag der Promotion: 30. November 2009

Dekan: Prof. Dr.-Ing. Reinhard German

Berichterstatter: PD Dr.-Ing. Falko Dressler

Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

I dedicate this work to my mother, to my wife
and

to my sons Isaac, Adam and Elias

Acknowledgments

I’m indebted to many individuals who helped me during my doctoral studies. With-

out them, this dissertation would not have come into existence!

Firstly, I would like to express my appreciation to Prof. Reinhard German for giving

me the opportunity to pursue my post graduate studies in the Computer Networks and

Communication Systems group. I benefited tremendously from his wise counsel and

indispensable advice. Thanks for continuous encouragement, support, and insightful

comments. You have been a great supervisor.

Words cannot express my gratitude to Dr. Falko Dressler, the coordinator of our

research group, for his patience and guidance. He has been infinitely patient and

extremely supportive. I am blessed to have had him as my adviser. My first instinct

in writing this was to say that Falko has been so much more than just an advisor. On

second thought, an advisor is exactly what Falko has been -an incredible one- fulfilling

each of the many roles required of an advisor to perfection. Falko is an outstanding

teacher and a source of inspiration for me.

I am grateful to the other members of my thesis committee, especially to Prof.

Wolfgang Schröder-Preikschat for his effort and the time he invested in supporting my

research work.

I would also like to express my cordial thanks my fellow postgraduate students,

Christoph Sommer, Isabel Dietrich and Tobias Limmer. They provided me constant

encouragement and invaluable suggestions on my research, especially during the writing

phase of my PhD thesis. I would like also to thank Ulrich Klehmet and Armin Heindl.

Appreciation is also extended to all the staff members in the Computer Networks

and Communication Systems group, for their efforts in providing a friendly research

environment. Special grateful thanks go to the active secretaries of the department

Erika Hladky and Gerti Pastore for their willingness to help in any situation. Of course,

I cannot forget Chris Moog for her help in developing electronic boards.

Particular acknowledgment is due to DAAD (German Academic Exchange Service)

for the financial support during the study period in Germany.

Abstract

The data-centric nature of Wireless Sensor Networks (WSNs) and the severe resource

constraints of the sensor nodes distinguish sensor data management from other commu-

nication networks. Both the client-server approach as well as the end-to-end communi-

cation principle that have been proposed in the for Mobile Ad Hoc Networks (MANETs)

do not suit the characteristics of WSNs. Efficient lookup and routing of sensor data are

of great significance for WSNs, especially as the size of these networks continues to

grow. On an abstract level, structured peer-to-peer protocols, which rely on Distributed

Hash Tables (DHTs) provide O(1) complexity for storing and retrieving data in the net-

work, seem overcome these restrictions. However, the fact that they rely on underlayer

routing techniques leads to inefficient resource usage in the context of sensor networks.

The combination of DHTs and underlayer routing led to the establishment of so called

virtual coordinate routing techniques. Most of these algorithms are quite complicated

and do not guarantee packet delivery on the shortest path. Additionally, only few of

them are implemented in real sensor nodes. In this dissertation, we present the Virtual

Cord Protocol (VCP), a virtual position based routing protocol that also provides means

for data management such as identifying, storing, and retrieving data items. The key

contributions of this protocol are independence of real location information by relying

on virtual relative positions of neighboring nodes, the simplicity of obtaining the virtual

positions, near optimal routing paths, and high scalability because only information

about direct neighbors is needed for routing. Furthermore, VCP provides a unique

position for each node and inherently prevents dead-ends. We extensively evaluated

VCP in a number of simulation experiments. The simulation results show that VCP

consistently provides high throughput and low overhead for a wide range of application

scenarios. We compared VCP with Dynamic MANET on Demand (DYMO), a typical

MANET protocol, and with Virtual Ring Routing (VRR), another virtual coordinate

vii

viii Abstract

based approach. In static networks, both VCP and VRR clearly outperform DYMO. In

the case of frequent node failures, however, VCP benefits from its light-weight design.

Our protocol is more failure tolerant compared to VRR. We finally integrated data

replication techniques that support high success rates even in very unreliable sensor

networks. A prototype implementation on real sensor nodes outlines the feasibility of

our approach in a proof-of-concept study.

Kurzfassung

Die datenzentrische Arbeitsweise von drahtlosen Sensornetzen sowie die kritischen

Ressourcenbeschränkungen von Sensorknoten unterscheiden die Datenverarbeitung

in diesem Bereich von klassischen Kommunikationsnetzen. Sowohl der Client-Server-

Ansatz als auch die Ende-zu-Ende Kommunikationsparadigmen, welche u.a. auch für

mobile ad-hoc Netze erfolgreich eingesetzt werden, sind nur bedingt für Sensornetze

nutzbar. Von besonderer Bedeutung in Sensornetzen sind effiziente Identifikations-

und Routingmethoden. Dies betrifft vor allem die Skalierbarkeit für größer werdende

Netze. Auf einer abstrakten Ebene scheinen strukturierte Peer-to-Peer-Ansätze eine

Alternative darzustellen, da durch den Einsatz verteilter Hash-Tabellen eine O(1) Kom-

plexität für die Identifikation von Daten erreicht werden kann. Allerdings bedürfen

diese Verfahren einer stabilen Routing-Infrastruktur auf den unteren Schichten. Die

Kombination von verteilten Hash-Tabellen und Routingverfahren führte zur Entwicklung

sogenannter Virtuelle-Coordinaten-Algorithmen. Viele dieser Methoden sind allerdings

sehr kompliziert und geben keine Garantie für den Datenversand auf einem kürzesten

Weg. Weiterhin sind nur wenige in einer realen Sensorumgebung implementiert. In

dieser Dissertation wird das Virtual Cord Protocol (VCP) vorgestellt, welches virtuelle

Knotenpositionen für das Datenmanagement und den Datentransport einsetzt. Die

wesentlichen Beiträge können wie folgt zusammengefasst werden: Unabhängigkeit des

Protokolls von realen Knotenpositionen, einfache Definition und Verwaltung der virtu-

ellen Koordinaten, kurze Routingpfade nahe dem kürzesten Weg, hohe Skalierbarkeit

durch die Beschränkung auf lokal verfügbare Nachbarschaftsinformationen. Weiterhin

verwaltet VCP eindeutige Knotenadressen und vermeidet konzeptuell mögliche Sack-

gassen. VCP wurde im Rahmen der Arbeit in umfangreichen Simulationsexperimenten

bewertet. Die Ergebnisse zeigen, dass VCP hohen Durchsatz und geringe Kosten für

einen breiten Einsatzbereich ermöglicht. In einem direkten Vergleich mit Dynamic

ix

x Kurzfassung

MANET on Demand (DYMO), einem typischen ad-hoc Routing Protokoll, sowie Virtual

Ring Routing (VRR), einem kompetitiven Ansatz basierend auf virtuellen Koordinaten,

zeigte sich, dass VCP und VRR in statischen klassischen ad-hoc Verfahren überlegen

sind. Für dynamische Netze mit häufig ausfallenden Knoten dominiert allerdings VCP

durch sein leichtgewichtiges Design. Das Protokoll ist stärker fehlertolerant als VRR.

Weiterhin wurden Replikationsmethoden integriert, die hervorragende Erfolgsraten

auch in sehr unzuverlässigen Sensornetzen ermöglichen. Ein implementierter Prototyp

zeigt die Fähigkeiten des neuen Ansatzes in einer Proof-of-Concept Studie.

Contents

Abstract vii

Kurzfassung ix

1 Introduction 1

1.1 Motivation . 3

1.2 Contribution . 5

1.3 Organization of the Dissertation . 6

2 Data Management in Wireless Sensor Networks 9

2.1 Wireless Sensor Networks . 10

2.1.1 General Characteristics of Sensor Nodes 11

2.1.2 Applications . 13

2.2 Data Transmission . 13

2.3 Data Naming and Indexing . 16

2.4 Data Storage . 16

2.4.1 Local Storage . 17

2.4.2 External Storage . 18

2.4.3 In-Network Storage . 18

2.4.4 Analytical Comparison . 20

2.5 Data Processing . 25

2.5.1 Local Processing . 26

2.5.2 In-Network Processing . 26

2.5.3 External Processing . 27

2.6 Peer-To-Peer Technology . 27

2.6.1 Unstructured Peer-To-Peer . 28

2.6.2 Structured Peer-To-Peer . 29

xi

xii Contents

2.7 Summary . 30

3 Related Work 33

3.1 Chord . 33

3.2 Dynamic MANET on Demand . 35

3.3 Virtual Ring Routing . 37

3.4 Geographic Hash Tables . 40

3.5 Geographic Routing Without Location Information 42

3.6 Hop ID . 43

3.7 Summary . 44

4 Virtual Cord Protocol 45

4.1 Overview . 45

4.2 Setting up the Cord . 47

4.3 Routing on the Cord . 56

4.3.1 Greedy Routing . 57

4.3.2 Failure management . 58

4.4 Data Replication . 61

4.4.1 Local Replication . 62

4.4.2 Global Replication . 64

4.5 Further Extensions . 65

4.5.1 Refinement of the Cord . 66

4.5.2 Reactive Implementation . 68

4.5.3 Cooperative Storage with Virtual Cord Protocol (VCP) 68

4.6 Summary . 69

5 Simulation and Evaluation 71

5.1 Simulation Environment . 71

5.2 Evaluation Metrics and Scenarios . 73

5.3 Performance Evaluation of VCP . 77

5.3.1 Join Overhead and Join Duration . 77

5.3.2 Quality of Routing Paths . 78

5.3.3 Influence of the Network Size . 79

5.3.4 Influence of the Traffic Load . 80

5.3.5 Cord Refinement . 82

Contents xiii

5.4 Comparison with Other Protocols . 83

5.4.1 Path Length . 83

5.4.2 Delay . 84

5.4.3 MAC Layer Collisions . 87

5.4.4 Network Load . 87

5.5 Failure Performance . 90

5.5.1 Success Rate with Node Failures . 91

5.5.2 Communication Overhead with Node Failures 92

5.5.3 Collision with Node Failures . 93

5.5.4 Delay with Node Failures . 94

5.5.5 Path Length with Node Failures . 94

5.6 Replication Performance . 95

5.6.1 Local Replication on Neighbors . 95

5.6.2 Local Replication on Adjacent Nodes 98

5.6.3 Global Replication . 102

5.7 Summary . 103

6 Implementation in a Lab Environment 105

6.1 The BTnode Sensor Node . 105

6.2 Sensors and Actuator Boards . 106

6.3 Pimoto . 107

6.4 Implementation . 108

6.5 Prototype and Demo . 109

6.6 Summary . 110

7 Conclusion 111

List of Acronyms 113

Bibliography 115

xiv Contents

Chapter 1

Introduction

The Semiconductor technology has made dramatic advances in the last decades. The

raw cost of fabricating a given logic element (processor, memory, peripheral) has

been always decreasing over the last four decades. Another way of looking at the

technology advances is to compare the memory sizes which can be achieved on a

single chip: from a few kByte in early 1970s sizes have increased to some GByte in late

2000s. In particular, the development of new technologies in the last decade, such as

the widely used System-on-a-Chip approach, has produced small, embedded devices

which offer several capabilities within one compact device. An important example

of these embedded devices is the sensor node, which has sensing and communicating

capabilities in addition to the traditional computing capabilities. Sensor nodes represent

consequential improvement over traditional sensors [1]. Sensor nodes are capable of

not only to measure physical phenomena, but also to process, store and disseminate

these measurements. Wireless Sensor Networks (WSNs) are composed of cooperating

sensor nodes that build an ad hoc network using wireless radio communication. Sensor

Nodes can observe the environment to monitor physical phenomena and events of

interest [2,3]. Usually sensor nodes are deployed randomly inside an area of interest

or in close proximity. These sensor nodes will perform significant signal processing,

computation, and network self-configuration to achieve scalable, robust and long-lived

networks.

Earlier generations of sensor networks which were deployed over a regular topo-

graphic mesh, like the radar network used in air-traffic control and nationwide weather

stations, use special computers and communication protocols, which make them very

expensive. For some application scenarios a network of sensors and actuators can be

1

2 1 Introduction

built using the existing wired technologies. For many other application types, however,

wiring is not practical, expensive, and can prevent the sensors from being close to

the phenomenon [4]. Therefore WSNs present a cost-effective, practical and capable

path to support many real-world applications. In spite of the fact that the capabilities

of sensor nodes are very limited, WSN application domains are diverse and they can

operate a variety of data types, including simple payload such as temperature, light

intensity, and humidity, or more complex data types such as sound and images, or even

more complicated data like video.

Specialists generally agree that WSNs will be made possible not only by the price-

performance revolution of microelectronics but also by the development of efficient

algorithms that suit the special characteristics of the sensor nodes. The advent of WSNs

is rapidly changing the way by which data is captured, processed and disseminated

for a variety of potential applications for homes, hospitals, factories, road traffic,

environmental monitoring and so on [5]. WSNs are data-centric in nature, hence they

can be treated as virtual distributed databases of continuous data streams from the

physical world. Unlike traditional data communication networks, a sensor node may not

need (and may not offer) an identity (e.g., an address) [1,6]. That is, sensor network

applications are unlikely to answer questions like “is there a bird at sensor N51 now?”

Rather, applications focus on the data collected by sensors. Data is commonly annotated

with attributes, enabling applications to request data matching certain attribute values.

So, the users are more likely to be interested in questions such as: “when was a detection

bird near the lake today?” or “how many birds were detected near the lake in the period

between 2nd and 18th of July ?”. This approach decouples data from the sensor that

produced it. This allows for more robust application design: even if sensor node N51

dies, the data it generates can be replicated in other (possibly neighboring) sensors for

later retrieval. The unique characteristics of WSNs, such as limited power sources, small

storage capacity, or limited and poor connectivity, impose several and often conflicting

design goals. A number of required characteristics when designing data management

algorithms for WSNs are listed below:

• Self-organizing: the algorithm should autonomously adapt to changes resulting

from external interventions, such as topological changes (e.g., node failure)

without the influence of a centralized entity.

1 Introduction 3

• Scalable: to provide scalability, protocols designed for WSNs have to be distributed

and operate only on local information.

• Minimal administration: the algorithm should adjust its operational parameters

according to the design requirements.

• Energy-efficient: in many scenarios sensor nodes have to rely on a battery. Re-

placing batteries is usually not practical, sometimes even impossible, hence the

lifetime of a WSNs becomes a very important figure of merit. Evidently, because

data transmission is the largest source of power consumption, employing an

energy-efficient routing protocol is necessary.

• Fault-tolerant: although sensor nodes are assumed to be stationary, WSNs should

be resilient to failures such as the physical destruction of nodes, energy depletion

or communication link errors.

• Collaborative: sometimes a single node is not able to decide if an event has

happened and only the joint data from several nodes provide enough information,

so several nodes have to collaborate to detect the event. Collaborative behavior

also allows for in-network processing of data instead of sending all raw data to

an external computer. Finally, collaborative behavior can also entail the sharing

of nodes’ resources (e.g., storage capacity).

• Lightweight: because of low storage and computing capabilities on sensor nodes,

a lightweight protocol stack is desired.

• Peer-to-Peer: the existence of a central entity in the network hinders scalability,

therefore instead of relying on a client-server architecture, peer-to-peer communi-

cation is preferable.

Of course the challenges presented above certainly do not exhaust the design space of

WSNs. Issues such as programmability and maintainability are also important, however

they are less important for data management approaches.

1.1 Motivation

Many of the lessons learned from protocols used extensively on the Internet can be

applied to the design of sensor network algorithms. Yet, they need to be adapted to

4 1.1 Motivation

the special characteristics of WSNs. Over the past ten years, an enormous number of

distributed and self-organizing Peer-To-Peer (P2P) systems have been designed and

developed. Many of these systems are very successful and their use accounts for a sizable

portion of today’s world-wide Internet traffic. Motivated by individuals’ contribution

of file sharing, the sharing of data between users (peers), which are of equal rights, is

the main application of these systems. At the beginning P2P systems have used either

a central server to locate the data, which has the drawback that the system suffers

from a single, central point of failure, or they have used a flooding technique to locate

the data, which has the drawback that the scalability of these systems was bad. Since

then, further advances have been achieved and new techniques have appeared. The

reliance on the concept of distributed indexing is the main characteristic of these new

techniques. A central idea was to use Distributed Hash Tables (DHTs) to associate nodes

to data, so finding the node that hosts a specific piece of data would be an easy task.

Because WSNs have very limited resources in terms of battery life, computational power

and communication capabilities, efficient query dissemination and routing techniques

are highly needed.

There are some commonalities between WSNs and typical P2P approaches that

motivate our research on using peer-to-peer techniques for efficient data management in

WSNs; below we list the major commonalities between WSNs and typical P2P systems,

with the term node referring to both a peer in P2P systems and a sensor node in sensor

networks:

• Sharing of resources: within a set of nodes, each utilizes its own as well as

the resources provided by other nodes. The most prominent examples for such

resources are the storage and processing capacity.

• Decentralized architectures: systems have no notion of global coordination at all.

• Transient connectivity: nodes in P2P systems frequently go off-line as a result of

poor connectivity or of users leaving the system. In WSNs nodes fail for different

reasons such as physical destruction of nodes, energy depletion or communication

link errors.

• Equal rights and duties: nodes are equal partners with symmetric functionality.

Each node is fully autonomous regarding its respective resources.

1.1 Motivation 5

• Identity management: a node’s Id typically changes so the node is not constantly

reachable at the same address. Because of the transient connectivity, nodes are

dynamically assigned a new Id every time they connect to the network.

• Routing and message forwarding: communication is handled entirely by nodes

operating at a local level. Usually network communication implies the presence of

a forwarding mechanism, i.e. nodes are forwarding messages on behalf of other

nodes.

In addition to these similarities there are also differences that must be cared for.

For example, sensor nodes usually have very limited computing, memory, and energy

resources. In contrast peers in P2P systems are capable computers which have ample

computing and memory resources and sustained power supply. Another important

difference is the separation of physical and logical networks, which complicates the use

of P2P concepts in WSNs.

1.2 Contribution

The main contribution of this thesis is VCP, a routing algorithm designed for WSNs. VCP

is a DHT-like protocol that offers in addition to standard DHT functions (put and get)

an efficient routing mechanism. Based on a pre-defined range of positions VCP derives

relative positions to the nodes without flooding the network or considering the physical

location of the nodes.VCP does not require nodes to have a global identity – in fact a

local identity is enough. Using only the physical neighbors information, VCP guarantees

packet delivery between any two joined nodes in the network. VCP is a light weight

routing algorithm that can be implemented on top of any Medium Access Control (MAC)

layer that provides a simple broadcast mode. In addition, we describe two extensions

of VCP; efficient routing in the existence of frequent node failure and data replication

schemes. Greedy forwarding guarantees packet delivery in static networks. However in

the presence of frequent node failure, it was necessary to extend the routing approach

to ensure high delivery ratios even if all nodes in the network do not have efficient

communication capabilities. Data replication is important to ensure persistence of data

in the existence of frequent node failure. We proposed two local replication schemes in

addition to a global replication one. The main advantage of the proposed schemes is

the on-demand and the locality of data copies transfer.

6 1.2 Contribution

Throughout the thesis we used the terms “physical neighbors” and “radio range

neighbors” interchangeably at which we always mean single-hop neighbors. Also when

we say “VCP guarantees packet delivery ” we mean that VCP finds a route to the

destination, however VCP does not use end-to-end acknowledgment.

1.3 Organization of the Dissertation

We will show that 1-D virtual Coordinates are enough to do efficient routing and data

lookup in WSNs and requires the propagation of virtual position information for only

a single hop: each node need only know its neighbors’ virtual positions. The relative

position of nodes is the key to efficient routing without physical positions of nodes or

a global overview of the entire network. The position of a packet’s destination and

positions of the candidate next hops are sufficient to make correct forwarding decisions,

without any other topological information.

• In Chapter 2 we describe some background on data management issues in WSNs.

We concentrate on a performance comparison between different data lookup

techniques and the requirements and implications of using each technique. We

further introduce some details of the WSNs and P2P systems.

• We provide an overview in Chapter 3 of the related and previous literature on

routing and data management in WSNs.

• The detailed design of VCP is presented in Chapter 4. We start with a detailed

introduction of the join operation in VCP. We then describe the greedy routing

approach of VCP at which point we prove that in static networks greedy forward-

ing guarantees packet delivery and is loop free. We describe also how to route

in the existence of node failure and introduce three schemes for data replication.

Finally we introduce further extensions to VCP.

• In Chapter 5, we evaluate VCP in simulations of different wireless networks

scenarios, including the simulation of the full IEEE 802.11 physical and MAC

layers. We show that VCP delivers user packets robustly, generates small routing

protocol overhead,and delivers the vast majority of packets over near optimal

paths. We simulate Dynamic MANET on Demand (DYMO) and Virtual Ring

Routing (VRR) for comparison on the same networks and show that VCP performs

1.3 Organization of the Dissertation 7

similar (or a little bit better) to VRR in static scenarios and outperforms DYMO. We

also show that in dynamic networks with frequent node failure VCP outperforms

VRR.

• In order to show the feasibility of implementing VCP in real life, in Chapter 6 we

present a prototype implementation of VCP in the lab. We implemented VCP on

sensor nodes called BTnodes, which has low-power radio channel and employed

Berkeley MAC (BMAC) at the MAC layer.

• We conclude the thesis in Chapter 7 and we give possible direction for future

research.

8 1.3 Organization of the Dissertation

Chapter 2

Data Management in Wireless Sensor
Networks

Data management in WSNs poses new challenges in comparison with the rich capabili-

ties of traditional data base systems. The challenge comes from the low capabilities of

WSNs. In most cases the challenges can be reduced to a single problem: where to store

and how to find a certain sensor reading (detected event) in a WSNs with efficient usage of

the available resources (battery, bandwidth, storage) and without centralized control or

coordination?

The lookup problem can be defined as follows: some sensor node A wants to store a

data item D in the WSN. D may be some (small) measurement, the location of some

larger content, or coordination data, e.g. the address of the base station, etc. Then we

assume that a node B wants to retrieve the data item later. The interesting questions

are now:

• Where should A store the data item D?

• How do other nodes, e.g. node B, discover the location of D?

• How can the WSN be organized to assure scalability and efficiency?

• How to use nodes’ resources efficiently?

Traditional approaches that have been used for tens of years can be adapted to the

capabilities of WSNs. In this thesis we will leverage techniques used in P2P systems,

namely the idea of DHTs to manage data efficiently in WSNs. A lot of work has been

done recently to adapt techniques, such as traditional compression algorithms, which

usually need a large amount of memory to work on few tens of kByte [7–9] in order

9

10 2 Data Management in Wireless Sensor Networks

Physical Layer

Data Link layer

Network Layer
Data Manipulation
 (processing)Sensor Layer

Data Storage

Figure 2.1: Sensor layers

to suit WSNs. There are several angles from which efficient data management can be

viewed, from the collection of raw data to the reception of the data by the end user.

Some approaches concentrate on data reduction, by compressing or aggregating the

data, other approaches concentrate on traffic reduction, i.e efficient data look up and

routing algorithms, as a key to reduce the communication cost. VCP presents a protocol

to provide efficient routing as well as efficient data lookup mechanisms. Figure 2.1

shows a typical sensor network layer stack; a sensor measures a specific phenomenon,

the resulting reading can be processed and stored locally or transmitted. In this chapter

we will go over the these blocks and concentrate exclusively on the blocks that are

related to data management in WSNs. VCP is located in the network block, but it can

also find the storage place of a specific data item efficiently. Before we start to discuss

approaches and preliminarily requirements used in the literature toward efficient data

management in WSNs, we will introduce the basics of WSNs.

2.1 Wireless Sensor Networks

Tremendous advances have been made in sensor technology and many more are on the

horizon [10]. A sensor is a device that converts a physical phenomenon into an electrical

signal. As such, sensors represent part of the interface between the physical world and

the world of electrical devices, such as computers. The other part of this interface is

represented by actuators, which convert electrical signals into physical phenomena [10].

Usually a sensor node has more than one type of sensor to sample physical phenomena.

2.1 Wireless Sensor Networks 11

tux@linux#

Figure 2.2: A typical wireless sensor network

The nature of the phenomena that have to be sensed determine the needed sensor.

In turn, the sensor type determines the produced data type. Moreover, the required

precision can have an effect on the size of the produced data for the same phenomenon.

WSNs are composed of cooperating sensor nodes that build an ad hoc network using

wireless radio communication [2,3].

The main function of these networks is to sample the surrounding environment

using the installed sensors [1]. In the early beginnings, these networks were considered

to consist of a few sensor nodes connected to a central control unit. Today, however,

WSNs are used with quite a large number of nodes. The WSNs design often employs

approaches such as energy-aware techniques, in-network processing, multi-hop commu-

nication, and density control techniques to extend the network lifetime [11]. Figure 2.2

shows a typical WSN in which nine sensor nodes are deployed. Normally when a node

detects an event it sends this event (maybe over multi-hop) to a base station, which is

usually located outside the network.

2.1.1 General Characteristics of Sensor Nodes

The attractive characteristics of sensor nodes, like their price and their compactness,

come at a price – the capabilities of sensor nodes are severely limited. Figure 2.3 depicts

the basic components of a typical sensor node. In the following an overview of the

characteristics of sensor nodes is presented.

• Computing: wireless sensor nodes usually use small, low power, low speed micro

controllers (an Atmel ATmega128, for example) which can offer basic computing

operations.

12 2.1 Wireless Sensor Networks

Power Suply
(Battery)

Transceiver

Microcontroller

S
en

so
rs

Storage

Interfaces

Figure 2.3: Sensor Node: (left) Components typically found on sensor nodes, (right)
Sensor node BTnode developed at the ETH Zurich [2]

• Storage: normally the micro controller runs on only few kByte of RAM. Programs

are stored in a few hundred kByte or a few MByte of flash memory, instead of the

hard disks used on normal computers. Sometimes it also includes a few kByte of

EEPROM which can be used for configuration.

• Communication: the communication capabilities suffer from short ranges and

poor connectivity. Usually a low power radio transceiver (for example a Chipcon

CC1000 operating in ISM band 433-915 MHz) is used. Sometimes the nodes offer

only broadcasts as a communication paradigm [1].

• Power supply: the most important characteristic of sensor nodes is their relying

on batteries. Because the power is drained mostly by communication between

nodes [12,13], this raises special concerns with regard to routing data between

nodes.

• Interfaces: usually senor nodes include different interfaces to connect sensors

and actuators. Interfaces may be serial (like UART, I2C), or parallel (like GPIO).

Most micro controllers used in sensor nodes also include analog inputs which are

connected to an internal ADC. These interfaces can be used to connect analog

sensors.

• Sensors: different low power sensors are either built-in on the sensor node or

attached using the interfaces. Sensor types include temperature, light, moisture

and pressure sensors.

2.1 Wireless Sensor Networks 13

Also, in addition to the above limitations, in some cases sensor nodes do not even

have a unique identifier [1]. Taking into consideration Moore’s Law it is possible to

produce these devices at a very low price, which makes it possible to use a large number

of nodes. However, to really benefit from these sensor networks, they have to operate

in a cooperative, distributed and self organized manner.

2.1.2 Applications

Although the first applications envisioned for WSNs were in the military field and

therefore a typical application is battlefield surveillance, there is a broad domain of

applications of WSNs in the civilian sector.

• Environmental monitoring is an appealing area for WSNs. In [14], a wireless

sensor network is deployed to monitor a bird (Storm Petrels) and its surroundings

on a small island off the coast of Maine. Some sensors have been placed inside

the burrows of the bird, other sensors were deployed in the vicinity. Examples of

other application fields in the environment that WSNs can be involved in include

Structural Health monitoring [15] and volcano monitoring [16].

• Health monitoring is a good example of applying WSNs to improve the quality

of life of the human being. In [17], a smart home scenario is presented. The

applicability of using WSNs to ease the life of elderly and handicapped people is

investigated. For example, the WSN can help the doctor to remotely monitor the

health of the inhabitant of this smart home. WSNs can also be used to optimize

the home’s energy consumption, make emergency calls and secure the home.

• Awareness of location of objects is important for business administration, trans-

portation, logistics and many other applications. In [18] an adaptive and cost-

effective approach based on the Received Signal Strength Indicator (RSSI) values

on sensor nodes was used to localize a mobile robot.

2.2 Data Transmission

Data transmission is the primary source of power consumption in a WSN [12,13]. A

lot of work has been done to optimize the data transmission on physical, data link and

network layers. Basic physical layer duties are frequency selection and modulation. An

14 2.2 Data Transmission

option for the communication channel is to use the Industrial, Scientific and Medical

(ISM) bands, which offer license-free communication in most countries [19]. The data

link layer is primarily responsible for medium access and error control. In [20], the

authors study packet delivery performance at the physical and MAC layers in dense

wireless sensor networks. They perform the experiments in three different environments:

an indoor office building, a habitat with moderate foliage, and an open parking lot.

Measurements indicate a significant asymmetry in realistic environments, and therefore

the performance in these environments is fairly pessimistic.

This thesis focuses on the network layer, which is mainly responsible for routing

strategies. The protocol proposed in this thesis, VCP, provides services for the network

(routing) as well as for the application layers. In this section, we present a general

survey of routing algorithms used in WSNs. Many topology-based ad hoc routing

algorithms have been adapted to work in wireless sensor networks. Traditionally,

routing algorithms for Mobile Ad Hoc Networks (MANETs) and WSNs can be classified

as either proactive, reactive or hybrid [21].

Proactive algorithms, also called global state algorithms, employ classical routing

strategies such as distance-vector routing (e.g. Destination-Sequenced Distance Vector

(DSDV) [22]) or link-state routing (e.g. Optimized Link State Routing (OLSR) [23],

Topology Broadcast based on Reverse Path Forwarding (TBRPF) [24]). They maintain

routing information about available paths in the network even if these paths are not

currently used. Moreover, they keep their routing tables current by flooding the network

on topology changes (e.g. Global State Routing (GSR) [25]). Reactive algorithms on

the other hand were developed as a response to this observation (e.g. Dynamic Source

Routing (DSR) [26], Ad Hoc on Demand Distance Vector (AODV) [27], Temporally-

Ordered Routing Algorithm (TORA) [28,29]).

Reactive routing protocols are on-demand route acquisition systems wherein a node

sends a route request (RREQ) whenever it needs to send a message to a node for which

a route does not already exist. Reactive routing protocols are generally more scalable,

since they generate less network traffic, and are thus suitable for highly dynamic ad hoc

networks [30]. However, maintaining routes only while in use leads to a delay for the

first packet to be transmitted.

Hybrid algorithms, such as Zone Routing Protocol (ZRP) [31,32] combine features

of the two mentioned categories. They maintain a global view only for a certain number

2.2 Data Transmission 15

of hops for each node.

Geographic or location based routing algorithms eliminate some limitations of

topology based routing by using the position of nodes. Geographic routing algorithms

can be divided mainly into two types: real location based and virtual location based. In

the first type it is necessary that each node knows its own physical location. Commonly,

it is assumed that each node determines its own position through the use of Global

Positioning System (GPS) [33] or some other type of positioning service [18,34,35]. In

the second type, a virtual location is allocated for each node. Earlier geographic routing

algorithms proposed only simple greedy forwarding [36,37]. Due to local minima (i.e.

dead ends) greedy forwarding cannot guarantee packet delivery.

Therefore several recovery algorithms have been suggested. For example, in [38],

the authors propose to forward to the node with least backward (negative) progress

when reaching a dead end. However, this raises the problem of routing loops. Other

researchers proposed to drop the packet when reaching a dead end. Based on planar

graph traversal, several routing algorithms, like Greedy Face Greedy (GFG) [39] or

Greedy Perimeter Stateless Routing (GPSR) [40], appear to guarantee packet delivery.

A packet enters the recovery mode when reaching a dead-end. Planar graphs are graphs

with no intersecting edges.

GSpring [41] tries to improve the performance of greedy forwarding. In a first

phase, each node assigns itself an initial coordinate. Subsequently, nodes adjust their

coordinates by simulating a system of springs and repulsion forces. Based on this, greedy

routing is performed with only about 15 % overhead compared to using real addresses.

Landmark based routing algorithms are presented in Virtual Coordinate assignment

protocol (VCap) [42], Beacon Vector Routing (BVR) [43], Gradient Landmark-Based

Distributed Routing (GLIDER) [44], and HopID [45]. Coordinates are assigned to

nodes based on their hop count distances to some landmark nodes called beacons.

Routing is done by trying greedy forwarding based on a distance function. When greedy

forwarding fails to reach the destination, they resort to scoped flooding. The major

drawback of this approach, in addition to the dead-end problem, is that it is not easy to

find the optimal number of beacons. Thus they usually use a large number of landmarks.

The special case of unidirectional links has been investigated in [46]. The devel-

oped virtual coordinate assignment protocol (ABVCap_Uni) supports routing in sensor

networks with unidirectional links. Based on available unique network IDs of all nodes,

16 2.2 Data Transmission

the protocol tries to assign nodes with unidirectional links into rings and to treat a ring

as an extended node. Routing is performed on virtual addresses assigned to real nodes

and extended nodes. In Chapter 3 we present several directly related protocols in more

detail.

2.3 Data Naming and Indexing

There are two ways to make use of the data produced by the sensors: either pushing the

data to a base station in real-time or pulling the data on demand by means of queries.

Especially for the later solution, it is required to associate names with the produced

data items. The nature of data in WSNs is different from those on the Internet. The

users on the Internet are normally concerned about the data itself rather than when

and where the data was created. On the other side, in WSNs, these attributes can have

the same importance as the data itself. The second difference is that the data (files) on

the Internet are usually named by manually. On the other hand, sensor nodes have to

name produced data automatically. This lead to a large space domain for names on the

Internet in comparison to a very limited naming space in WSNs. [47] discusses research

challenges related to naming and indexing sensor data. The authors present provenance

as a base for naming and addressing sensor data. Due to infeasibility of indexing

every sensor reading, an indexing based on tuple sets is suggested. Furthermore the

provenance are likely to be application specific.

2.4 Data Storage

Storage approaches in wireless sensor networks can be divided mainly into three

categories. The first class is called local storage, in which the data is stored on the same

node that produced it without placing a reference to the data. The second approach is

to push the data to a base station in real-time. The last approach is store the data on a

node that is not necessarily the one that produced it by distributing the data across a

number of nodes and implementing a routing scheme which allows one to efficiently

lookup the node on which a specific data item is located. In the next sections, the

principle and implications of each approach are discussed.

2.4 Data Storage 17

Data

DataData

Data
Storage

Storage

Storage

StorageStorage

Data

Figure 2.4: Local storage: the collected data is stored on the locally

2.4.1 Local Storage

Storing the data locally (Figure 2.4) is cost-effective in terms of communication needed

for storing. Nevertheless to retrieve data from the network, the only chance is to ask as

many participating nodes as necessary, whether or not they presently have the required

data item or not. Although the complexity for storing is only O(1), the complexity to

retrieve data from the network is O(N). The local storage approach has the advantage

that there is no need for proactive efforts to maintain a routing table. Because of

the limited storage space in the nodes, the storage capacity of nodes can get quickly

exhausted. Hence, a special concern must be taken in the consideration when storing

data locally on the nodes. Several approaches can be used to retrieve data from the

network. An obvious approach is flooding the network with the query to find the answer.

Flooding returns the answer very quickly, and is therefore highly tolerant of changing

network dynamics, but it requires an excessive number of messages, which exhausts

the node batteries and can congest the network, especially in dense networks.

A well-known example of the flooding technique used as a query algorithm in

wireless sensor networks is directed diffusion [48, 49]. In directed diffusion, a sink

announces its interest for a particular data item by flooding a query into the network

containing attributes for the required event. The query is used to establish a gradient

toward the sink. When the sink receives a response it can reinforce paths that have

better quality. As a result of this high overhead several algorithms based on random or

biased walk have been developed, including ACQUIRE [50], Rumor Routing [51], and

biased Random Walk [52].

18 2.4 Data Storage

Storage

Storage

Storage

StorageStorage

12 23 12 23
12 23

Figure 2.5: External storage: the collected data is transmitted to a base station

2.4.2 External Storage

The external storage approach (Figure 2.5) is analog to the traditional client-server

approach. Each sensor reading should be transmitted to a base station in real time.

In contrast to local storage, external storage does not impose communication cost to

retrieve the data. Actually this storage strategy could be useful when all sensor readings

are important, for example in habitat monitoring [14]. Typical systems employing

external storage require efficient routing algorithms to ensure low communication cost

for storing data. Hence the complexity for storing data is O(
p

N). Since all the gathered

data are stored in an external server, there is no cost for data retrieval. However,

the communication channel at the base station may encounter a large traffic load,

consequently it represents a bottleneck in the whole system. Overall, the external

storage approach is best for simple and small networks, since the cost for data retrieval

is optimal and the amount of network load in the proximity of the base station is high.

But the scalability is a vital property and this approach requires the availability of a

path all the time from each node in the network to the storage element.

2.4.3 In-Network Storage

Both external and local storage exhibit bottlenecks that can affect the scalability and

efficiency of a WSN. Indeed, external storage disqualifies itself with a linear complexity

for communication at the base station. Local storage approaches avoid the management

of references on other nodes and, therefore, they require a costly breadth-first search

which leads to scalability problems in terms of communication overhead and energy

consumption. A better solution for the lookup problem should avoid these drawbacks

and should enable scalability by finding the golden path between the two approaches.

2.4 Data Storage 19

In this case the scalability is defined as follows: the search and storage complexity

per node should not increase significantly even if the system grows by some orders

of magnitude. Distributed Indexing, in the realm of P2P systems often implemented

as a DHT, promises to be suitable method for this purpose. In Section 2.6 we will

present P2P and hence DHTs in details. Distributed hash tables possess the following

characteristics:

• By mapping nodes and data items into a common address space, routing to a

node leads to the data items for which a node is responsible.

• Each node manages only a small number of references to other nodes

• By distributing the identifier of nodes and data items nearly equally throughout

the system, the load for retrieving items should be balanced equally among all

nodes.

• Because no node plays a distinct role within the system, the formation of hot

spots or bottlenecks can be avoided.

• A distributed index provides a definitive answer about results. If a data item is

stored in the system, the DHT guarantees that the data is found.

Like in the local storage approach, the collected data are stored on nodes inside the

network. However, it is not necessarily on the node that gathered the data. Instead

the data could be stored on any node in the network. This means that the sensed data

are sent to a node(s) in the network so that all queries goes to this node(s). In a data-

centric approach (Figure 2.6), sensed data names are associated with specific nodes

that should host these data items, usually by using a mapping function. Thus queries

are sent directly to the corresponding node. Geographic Hash Table (GHT) [53–55]

is a typical in-network storage for WSNs. It hashes keys into geographic locations, so

the data items are stored on the sensor node geographically nearest the hash of its key.

Distributed Index for Features in Sensor Networks (DIFS) [56] and DIMENSIONS [57]

are other examples of in-network storage schemes in WSNs. DIFS is another instance

of GHT, it is built upon GHT and considers high-level events with multiple attributes.

A multiple-rooted hierarchical index tree structure is constructed in DIFS to facilitate

range query forwarding. [58] considers storage node placement in WSNs aiming to

20 2.4 Data Storage

Storage

Storage

Storage

StorageStorage

Data

DataData

Data
Storage

Storage

Storage

StorageStorage

Data

Data

Data

Storage

Data

Data

Data

Data
Data

StorageStorage

StorageStorage

Figure 2.6: In-network storage: the collected data is stored on nodes associated with
the data item within the network

minimize the total energy cost for gathering data to the storage nodes. The complexity

for storing data as well as querying the data is O(
p

N).

There are two possibilities for storing data items in a DHT. In the first method,

which is called direct storage, the data is copied upon insertion to the node responsible

for it. The other possibility, called indirect storage, is to store references to the data.

The inserting node only places a pointer to the data into the responsible node for this

data. The data itself remains on this node. The first method incurs larger traffic in the

insertion, but the query message will find its final destination faster than in the second

method. Which method is adequate to WSNs depends on the size of the data. Direct

storage is preferable for small data, while indirect storage is more convenient for large

data sizes.

2.4.4 Analytical Comparison

To compare between the three storage schemes, we now derive analytical expressions

for the energy costs of each approach. We did the analysis from a network layer point of

view and concentrated on the average case. For simplicity we consider a wireless sensor

network with n nodes deployed in a rectangle of area A. We consider a grid deployment

in which each node can communicate only with its direct neighbors that are aligned

either horizontally or vertically but not on the diagonal. This means that we have a

connected network with a minimum node degree of 2 and a maximum of 4, while the

average node degree depends on the size of the network and equals 4− 4/
p

n, where

n is the number of nodes in the network. Figure 2.7 depicts a network of size 9. The

2.4 Data Storage 21

Figure 2.7: Example: network of 9 nodes deployed in a grid. Notice that the max
routing path occurs when routing between end corners, traversing in either on the sides
or diagonal leads to the same result (4hops)

maximum length of routing paths lmax in the grid occurs when routing between end

corners. To find a mathematical solution we inspect simple networks. For a network

with only one node, lmax is 0, for four nodes it is 2, for nine nodes it is 4, and so on.

Assume m =
p

n Thus, lmax can be calculated recursively as shown in Equation 2.2. The

closed form solution is given in Equation 2.3.

lmax(1) = 0 (2.1)

lmax(m) = lmax(m− 1) + 2 (2.2)

So, the closed form solution is:

lmax = 2
p

n− 2 (2.3)

Equation 2.6 depicts the average length of routing paths to communicate with a node

at the corner lavg−c depending on the number of nodes n in the network. For simplified

analysis, we still consider only nodes deployed in a grid network in a rectangular area.

lavg−c(1) = 0 (2.4)

lavg−c(m) = lavg−c(m− 1) + 1 (2.5)

So, the closed form solution is:

lavg−c =
p

n− 1 (2.6)

22 2.4 Data Storage

Following the same approach we can find the average length of a routing path

between one random node and another within the network lavg :

lavg(1) = 0 (2.7)

lavg(m) = (m− 1)−
lavg(m− 1)× (m− 1)2

2m2 (2.8)

So, the closed form solution is:

lavg = (
p

n− 1)− (
p

n

3
+

2

3×
p

n
− 1)

=
2×
p

n

3
−

2

3×
p

n
(2.9)

Although the big-O complexity for the communication overhead for sending data to

a node at the border of the network and to a node the inside the network is O(
p

n), it

is important to notice that average communication with a node outside the network

consumes about 30% more than with nodes inside the network.

Before computing communication costs for the storage schemes, it is important

to mention that sometimes it is more accurate to relate the path lengths to the area

and the communication range of the nodes, rather than to the number of nodes. In

fact sometimes it is misleading to use only the number of nodes in the network in the

analysis of algorithms. For example if we have a network of size 100 in which all the

nodes are in the communication range of each other (single-hop network), then the

average as well as the maximum paths in the network are one hop. The maximum path

length can be written as 2×
p

A
r

and the average is
p

A
r

where A is the area and r is the

communication range. Figure 2.8(left) shows the shortest path between two nodes at

the corners in two networks (maximum shortest path in the network). Notice that if

there are no nodes at the diagonal in Figure 2.8(left), the packet will traverse either on

the sides or on the diagonal, both will lead to the same result lmax = 2
p

49− 2 = 12.

Now using the area we can calculate lmax as follows: the area A= 900× 900 and the

communication range r = 150, hence lmax =
2×
p

900×900
150

= 12).

We can generalize this result to dense networks by allowing diagonal communication.

Thus the maximum shortest path is the maximum distance between any two nodes in

the network divided by the communication range of the sensor nodes. Thus it can be

expressed as d
p

2×A
r
e. In Figure 2.8(right) the maximum shortest path is d

p
2×A
r
e= (9).

2.4 Data Storage 23

90
0

90
0

Figure 2.8: Shortest path in grid and random dense networks

For all storage schemes we assume a WSN with the following parameters: D is the

total number of detected events (data items) in the network. Q are the total number

of queries in the network. The base station is located at a corner. We also define the

function C as the the average communication cost to store and retrieve data items in

the network.

• External Storage:

Because the external storage nodes are located outside the network (at a corner),

the average cost to ship each data item to the external storage is
p

n− 1. Because

the data is already at the external storage node, there is no cost for queries.

Ce = D× (
p

n− 1) + 0 (2.10)

• Local Storage:

Because the data will not be transported, there there is no communication cost for

data storage. However, queries are flooded to all nodes in the network at average

(and max) cost of (n). Answers are routed back to the source of the query at an

average cost of
p

n− 1.

Cl =Q× (n) +Q× (
p

n− 1) (2.11)

• In-network Storage: There are two ways to store data, direct and indirect. Direct

storage: here we transfer each data item to the node responsible for it. The

average cost to transfer each data event to the node responsible for the data item

24 2.4 Data Storage

is 2×
p

n
3
− 2

3×
p

n
. The query source is located at the corner, therefore answers are

routed back at an average cost of
p

n− 1.

Cid = D× ((
2×
p

n

3
−

2

3×
p

n
)) + 2Q× (

p
n− 1) (2.12)

Indirect storage: assume the number of reference updates is Ra

Cii = (Ra +Q)× ((
2×
p

n

3
−

2

3×
p

n
)) + 2Q× (

p
n− 1) (2.13)

Several lessons can be learned from the above calculations:

• Within a network with a large number of nodes, local storage incurs the highest

cost.

• Local storage incurs the lowest cost for scenarios with a very low number of

queries. For a large number of queries, external storage incurs the lowest cost.

For a large number of nodes and intermediate number of queries, in-network

storage incurs the lowest cost.

• Increasing the network density (i.e. increasing the number of nodes in the same

area) will not increase the communication cost for external as well as for in-

network storage schemes. The reason for this is that (as discussed above) the

shortest path depends on the area and the communication range of nodes rather

than the number of nodes in the network. However in case of local storage, the

cost will increase linearly with the number of nodes, in addition to increasing the

congestion in the network.

• In-network storage based on indirect storage incurs the lowest cost if the reference

updates rate is very low.

Figure 2.9 compares the main characteristics of the presented approaches in terms

of complexity, characteristics and requirements. According to their complexity in terms

of communication overhead, external storage shows the lowest performance. But

this approach suffers from two problems. First, the gateway to the external storage

represents a bottleneck in the system, because it encounters huge traffic per time unit

2.4 Data Storage 25

Local Sotrage

In-Network
 Storage

External Sotrage

O(1) O(√N)

Storage Overhead
(Communication)

O(1)

O(√N)

O(N)

Lo
ok

up
 O

ve
rh

ea
d

(C
om

m
un

ic
at

io
n)

- Communication overhead
- No Setup

- Scalable
- Persistence of data using replication
- Needs Setup

- Congestion at the gateway
- External storage must available
 all the time
- Needs Setup

Figure 2.9: A comparison of the complexity of the three storage approaches in terms of
lookup overhead (y-axis) and storage overhead(x-axis), special characteristics of each
approach are named

(when a large number of nodes send data at the same time). The second drawback

of this approach is that it requires the availability of a path to the external storage all

the time. While local storage offers the lowest storage overhead, the lookup process

requires a huge communication overhead, and search results are not guaranteed, since

the lifetime of request messages is restricted to a limited number of hops. In-network

storage which spreads data and routing information across multiple nodes represents a

scalable approach since there are no hotspots in the network and it requires intermediate

communication overhead. Indeed, DHTs provide an efficient approach for the lookup

problem in distributed systems.

2.5 Data Processing

Usually, data processing will result in data reduction, which will reduce the usage of

power sources, bandwidth, and storage in the network. Moreover, events in WSNs

are detected by a group of spatially distributed sensors which collaborate to make

decisions [19]. One approach is to compress sensor data before transmission to reduce

26 2.5 Data Processing

energy as some loss is acceptable without affecting the results of the application.

Data collected by sensors that are in close proximity exhibit spatial correlation. If

samples collected over time are from the same source(s), the data also show temporal

correlation. Like data storage schemes, there are three places to process the data. Simple

and correlated data can be processed on the node (local processing). Some statistical

values (i.e. average, maximum) or event detection can be obtained by cooperation

between nodes (in-network processing). Complicated data should be processed on

high-end machines (external processing). The first two schemes (local and in-network

processing) are usually used for data reduction. External processing is mainly used for

visualization and data mining purposes.

2.5.1 Local Processing

The main goal of data processing on the node is to reduce the amount of data that has to

be stored on the node and transmitted through the network to the sink. Therefore, the

energy saving is proportional to the number of hops the data passes through the network.

Data processing takes several shapes, for example data processing can be used to remove

noise from the measured values, infer information from the data (e.g. detecting an

animal from the picture instead of sending the picture) or compressing the data. [7,8]

are WSNs oriented data compression algorithms. [8] proposed compression algorithms

for historical information in WSNs. The algorithms have been used to reduce the data

needed to be disseminated. The techniques have been built on the observation that

the values of the collected measurements exhibit similar patterns over time, or that

different measurements are naturally correlated, as is the case between pressure and

humidity in weather monitoring applications.

2.5.2 In-Network Processing

Despite the fact that sensor nodes are very resource-constrained devices, several nodes

working together can produce considerable computing power. Hence the nature of

WSNs induces the nodes to work cooperatively, and thus several distributed algorithms

are used in WSNs. DISCUS [9] presents a distributed compression algorithm designed

for WSNs. The Authors propose a way of removing the redundancy of data in a

dense WSN in a completely distributed manner. Their collaborative framework enables

highly effective and efficient compression across a sensor network without the need

2.5 Data Processing 27

to establish inter-node communication, using well-studied and fast error-correcting

coding algorithms. In some application scenarios, the information of interest is not

the data at an individual sensor node, but the aggregate statistics (aggregates) amid

a group of sensor nodes [59,60]. Tiny Aggregation [61] and Geographic Gossip [62]

present approaches to compute aggregates like average, max/min, sum. [63] examines

key applicative query-based approaches that utilize in-network processing for query

resolution.

2.5.3 External Processing

For intensive data processing, it will be more efficient to process that data externally

on a high-end machine. Moreover processing the data on the nodes usually needs

much more time than on a high capability machine, therefore for real time applications

it is preferable to process the data externally. It is obvious that data analysis and

visualization make the data more accessible for human users.

2.6 Peer-To-Peer Technology

In traditional client-server systems the server is the only provider of service or content,

e.g. a web server or a calender server. The peers (clients) in this context only request a

content or service from the server. Thus generally the clients are lower performance

systems and the server is a high performance system. In contrast, in peer-to-peer

systems all resources, i.e. the shared content and services, are provided by peers.

Some central facility may still exist, e.g. to locate a given content [64]. [65] gives a

basic definition of what constitutes a peer-to-peer system: a self-organizing system of

equal, autonomous entities (the peers), which aims for the shared usage of distributed

resources in a networked environment avoiding central resources. The appearance

of new P2Ps was in the late 1990s, the main usage of P2Ps being file sharing on the

Internet [64] between users. In opposition to the traditional client-server paradigm,

P2Ps follows a decentralized, self-organizing approach. Therefore P2P has drawn much

attention in the last decade in both research and commercial domains. Usually P2P

systems are built on the application layer as overlays and leverage the already existing

routing services in the Internet. Therefore, traditional implementation of P2P systems

requires the nodes to have a physical, a link, and a network layer.

28 2.6 Peer-To-Peer Technology

I know the locations of all
 data in the system

I have "D"

I need "D"

N40

N30

N17
N56

N102

N532

.. ..

....
.....

..

.. ...

...

0

1

3

6

10

14

I host "D"

I need "D"
hash("D")=9
get(9)

I have "D"
hash("D")=9
put(9,"D")

I need "D"
hash("D")=9
get(9)

.. ..

....
.....

..

.. ...

...

.. ..

....
.....

..

.. ...

...

.. ..

....
.....

..

.. ...

...

.. ..

....
.....

..

.. ...

...

.. ..

....
.....

..

.. ...

...

Figure 2.10: Peer-to-peer structures: (left) unstructured peer-to-peer network, (right)
structured peer-to-peer network

2.6.1 Unstructured Peer-To-Peer

The term “Unstructured Peer-To-Peer” refers to peer-to-peer schemes at which the

content stored on a given node and its name (i.e. IP address) are unrelated and do not

follow any specific structure. Peer-to-peer networking started with the first generation

centralized concept. In this case some central servers are still available. However,

contrary to the client-server approach this server only stores information about peers

where some content is available, thus greatly reduces the load of that server. The address

of that server must be known to the peers in advance. Figure 2.10(left) depicts a typical

first generation P2P network. If a node (i.e N40) needs some content it must first

contact the server, which responds with the location (i.e N17) of the required content.

After that the data transfer is done between the node holding the content (N17) and

the requesting node (N40) without any interference from the server. A well known P2P

application is Napster, its approach having later been called first-generation P2P. Napster

was used to share music files between home users. It was not fully decentralized,

instead it relied on a server to look up the needed file location. Therefore users have

to contact a server to find the location of the file before being able to download files,

which are stored on the peers. Because of the illegal content of most of the shared files

in the Napster Network and because Napster relied on a central server, it was easily

targeted by the authorities.

As a replacement for the the centralized scheme, decentrally organized schemes

such as Gnutella 0.4 and Freenet became widely used. They used flooding to discover

2.6 Peer-To-Peer Technology 29

the location of the requested files instead of a central server (except possibly for some

bootstrap server to ease joining such network). An important drawback of these schemes

that they generate a potentially huge amount of signaling traffic by flooding the requests.

To avoid that, schemes like Gnutella 0.6 or JXTA introduced hierarchy by defining super

peers, which store information about the content available at the connected peers. Thus

super peers are often able to answer incoming requests by immediately providing the

information about the respective peers, so that on average less hops are required in the

search process, thus reducing the signaling traffic.

2.6.2 Structured Peer-To-Peer

New approaches have been proposed which establish a link between the stored content

and the identifier of a node (e.g. an IP Address). Such networks are termed “Structured

Peer-To-Peer” networks. The link between a content identifier and the node identifier is

usually based on DHTs. The advantages of decentralized and self-organizing systems

inspire researchers to focus on approaches for distributed, content addressable data

storage. DHTs were designed to provide such distributed indexing as well as scalability,

reliability and fault tolerance. DHTs manage the data by distributing it across the nodes

in the network and implementing a routing scheme which allows one to efficiently look

up the node on which a specific data item is located. The main idea of DHTs is simple:

data items are associated with numbers and each node in the network is responsible

for a range of these numbers. In contrast to flooding based searches in unstructured

systems, each node in a DHT stores a partial view of the whole distributed system which

effectively distributes the routing information. Based on this information, the routing

procedure typically traverses several nodes, getting closer to the destination with each

hop until the destination node is reached.

Figure 2.10(right) depicts a typical structured P2P system. Each node maintains

a routing table which contains useful information (i.e IP Address, port number, etc.)

to directly reach a few nodes in the network, through which all nodes can reach each

other in the network. If a node has a content (e.g. node 3), is will insert it on the

node responsible to hold this content (e.g. node 10). Now if a node needs this content,

it can use the same mapping scheme (usually a hash function) to find the proposed

node holding this content. Usually, DHTs are built on the application layer and rely on

an underlying routing protocol that provides connectivity between the nodes. DHTs

30 2.6 Peer-To-Peer Technology

introduce a new address space in which data items are mapped. Address spaces typically

consist of large integer values (e.g. the range from 0 to 2160 − 1). DHT approaches

differ mainly in how they internally manage and partition their address space. In most

cases these schemes lend themselves to geometric interpretation of the address space.

A data item in a DHT is associated with a unique number from the address space. This

value can be chosen freely by the application, but it is often derived from the data itself

via a collision-resistant hash function such as SHA-1 [66]. To store or access data in

a distributed hash table, a node first needs to join the network. The arrival of new

nodes leads to changes in the DHT infrastructure, to which the routing information and

distribution of the data needs to be adapted. When a node fails or leaves the system,

the DHT needs to detect and adapt to this situation.

Chord [67–69] is one of the best known DHT systems. Chord’s elegance comes from

its simplicity: It uses an l − bi t identifier forming a one-dimensional identifier circle

modulo 2l in the range [0,2l − 1]. Using a hash function, data items and nodes are

associated with an identifier. The identifier of the data is called key, while ID refers to

the node identifier. The node whose ID is greater than or equal to the key hosts the data

item. This node is called the successor of that key. Each node maintains a routing table,

called f inger table, of size l and points to nodes that succeed the node in the identifier

circle. Each entry in the table consists of a node ID, an IP address and a port. Other

similar approaches like [70,71] appeared almost at the same time and rely on the same

fundamental idea, however their methods for organizing the identifier space and their

routing mechanisms differ. Symphony [72] is a modified version of Chord which tries to

reduce the per-node state and the network traffic when the overlay topology changes.

2.7 Summary

In this chapter, we have investigated the data management problem in WSNs. We

have shown that because of the special characteristics of WSNs, efficient and scalable

data management schemes are highly required. DHTs provide an efficient layer of

abstraction for managing data in WSNs. Applying DHTs in WSNs faces fundamental

challenges related to separation between physical and logical networks which need to

be solved. We have shown in this chapter also that data lookup, data routing, and data

processing are complementary and not contradicting methods aiming to optimal usage

2.7 Summary 31

of node’s resources, which eventually leads to better performance of the whole system.

32 2.7 Summary

Chapter 3

Related Work

In this chapter, we provide an overview of the related work that uses Distributed Hash

Tables (DHTs) to manage data in WSNs. In Section 3.1, we take Chord [67] [68] [69]

as an example and show problems and drawbacks of implementing DHTs as an overlay

in WSNs. We present DYMO as a candidate routing protocol that can be used with Chord

to offer underlay routing services. After that, we describe Virtual Ring Routing (VRR),

which is a routing protocol that provides DHTs services in Section 3.3. Section 3.4

covers Geographic Hash Tables (GHTs) which maps data items to geographical locations

and leverages GPSR [40] for routing. Finally, we describe Geographic Routing Without

Location Information (GRWLI) and Hop ID in Sections 3.5 and 3.6, respectively. Both

algorithms rely on different types of virtual coordinate systems: Geographic Routing

Without Location Information (GRWLI) is a geographic-like routing protocol using

Cartesian virtual coordinates, while Hop ID employs a set of landmark nodes to construct

other nodes’ coordinates.

3.1 Chord

Chord is an efficient distributed lookup system based on consistent hashing [73]. It

provides a unique mapping between an identifier space and a set of nodes. Chord

uses a l − bi t identifier that forms a one-dimensional identifier ring modulo 2l in the

range [0,2l − 1]. Using a hash function, data items and nodes are associated with

an identifier. Thereby the identifier of the data is called key and a node’s identifier is

called ID. The node whose ID is greater than or equal to the calculated key hosts the

data item. This node is called the successor of that key. Each node maintains a routing

33

34 3.1 Chord

N48

N56

N14

N32

N51

N1

N21

N38

N42

N8+1 N14

FingerTable

N8+2 N14
N8+4 N14

N8+16N32
N8+8 N21

N8+32 N42

N8

N8N32

N51

N38

N1

N42

N48

N14

N21

K54

Get(K54)K10

K19

Figure 3.1: Chord example with 10 nodes

table called f inger table of size l. The entries of the finger table point to nodes that

succeed the node in the identifier ring. The i th entry in the table at node n contains the

successor node of n+ 2imod2l , where 0≤ i < l. The chord routing algorithm exploits

the information stored in the finger table of each node. A node forwards queries for

a key k to the closest predecessor of k on the identifier according to its finger table.

When a query reaches a node n such that k lies between n and the successor of n on

the ring, then the key must be hosted by this successor. Consequently, the successor is

communicated as a result of the query back to its originator.

Figure 3.1 illustrates ten nodes forming a chord ring. In this example, a 6-bit

identifier is used. The successor of key K10 is the node with ID N14 where K10 is thus

hosted. Each node maintains a routing table (Finger Table) with size 6. For example,

if node N8 requests K54, it looks in its finger table and sends the query to the closest

predecessor of the key, which is in this case node N42. This process continues until the

query reaches node N56 which hosts key K54. N56 will then send K54 back to N8.

If a new node node wants to join the network, it must first get an identifier n, that

e.g. can be randomly chosen. In addition, the new node should know another node

o which already participates in the network. By querying o for n’s own identifier, n

retrieves its successor s. It notifies its successor s of its presence leading to an update

of the predecessor pointer of s to n. Then node n builds its finger table by iteratively

querying o for the successors of n + 21, n + 22, n + 23, etc. At this stage, n has a

valid successor pointer and finger table. However, the join function does not make the

3.1 Chord 35

rest of nodes aware of n. In order to validate and update the successor pointers in a

dynamic network with node joins and leaves, Chord introduces a stabilization protocol.

It requires an additional pointer to a node’s predecessor and is performed periodically

on every node. The stabil ize() function at a node k requests its successor to return its

predecessor p. If p equals k, then k and p are each other’s predecessor and successor,

respectively. The fact that p lies between k and its successor indicates that p recently

joined the network as k’s successor. Thus, node k updates its successor pointer to p and

notifies p of being its predecessor.

3.2 Dynamic MANET on Demand

Chord is implemented as an overlay, hence one hop in Chord usually implies several

hops in the real network. So Chord requires an underlay routing protocol that offers

routing services in the underlayer. We chose Dynamic MANET on Demand (DYMO) as

underlay routing protocol. DYMO is the most recent standard ad-hoc routing protocol

and was developed by the IETF MANET working group. It is currently defined in an

IETF Internet-Draft [74] in its twelfth revision and is still work in progress. DYMO is

a successor of the AODV routing protocol [75] and is the current engineering focus

for reactive routing in the IETF MANET working group. DYMO operates similarly to

AODV and does not add extra features to the AODV protocol. It simplifies the protocol

while retaining the basic mode of operation. DYMO is not the first attempt to make an

enhanced version of AODV. AODV with Path Accumulation (AODV-PA) [76] extends

AODV with DSR source route path accumulation feature. AODVjr, AODV simplified [77],

removes all but the essential elements of AODV. Using AODV as a basis, DYMO combines

the ideas originated in AODV-PA and AODVjr. It borrows path accumulation from AODV-

PA (and DSR). Like AODVjr, DYMO removes features that may be regarded as extensions

to the core functionality(i.e DYMO removes hello messages).

Routes in DYMO are discovered on-demand when a node needs to send a packet

to a destination currently not in its routing table. A Route Request (RREQ) message

is flooded in the network using broadcast. If the packet reaches its destination, a

Route Reply (RREP) message is sent back containing the discovered and accumulated

path. Each node must maintain its own sequence number and the sequence number

is incremented each time the node sends a route request message. This allows other

36 3.2 Dynamic MANET on Demand

N56

N38 N8N32

N51
N1

N42

N48

N14

N21

RREQ
S: N8
D: N14
P: N32,N38
 N42

RREQ
S: N8
D: N14

RREQ
S: N8
D: N14
P: N32

RREP
S: N14
D: N8

RREP
S: N14
D: N8

P: N42

RREP
S: N14
D: N8

P: N42,N38
N32

Next Dest. Hops

N32 N14 4

N32 N42 3

 N8: Routing Table

......

Figure 3.2: DYMO route discovery: node N8 wants to communicate with node N14

nodes to determine the order of discovery messages to avoid stale routing information,

to detect duplicate messages, and to ensure loop freedom. An illustration of the route

discovery process is shown in Figure 3.2. In the figure, Node N8 wants to communicate

with node N14 (it is the successor of N8 in chord). Thus N8 is the source node (S)

and node N14 is the destination (D). In the RREQ message, node N8 includes its own

address, destination address and its sequence number, which is incremented before it is

added to the RREQ. The message is flooded using broadcast in a controlled manner

throughout the network, whereby a node only forwards an RREQ if it has not done so

before. The sequence number is used to detect this. Each node forwarding an RREQ

may append its own information. When node N32 receives the RREQ, it installs a route

to node N8. After node N32 has forwarded the RREQ, it has added its own address

to the RREQ, which means it now contains three addresses. Identical processing is

performed at node N38, and additionally it installs a route to node N8 with a hop

count of 2 and node N32 as the next hop node. When node N14 receives the RREQ,

it contains five addresses and has traveled four hops. Node N14 processes the RREQ

and installs routes using the accumulated information. As it is the target of the RREQ,

it furthermore creates a RREP as a response. The RREP is sent back along the reverse

route. Similar to the RREQ dissemination, every node forwarding the RREP adds its

own address to the RREP and installs routes to node N14.

To maintain paths, nodes continuously monitor the active links and update the

Valid Timeout field in its routing table when receiving and sending data packets. If a

3.2 Dynamic MANET on Demand 37

node receives a data packet for a destination it does not have a valid route for, it must

respond with a Route Error (RERR) message. When creating the RERR message, the

node makes a list containing the address and sequence number of the unreachable

node. In addition, the node adds all entries in the routing table that depend on the

unreachable destination as next hop entry. The purpose for this action is to notify

about additional routes that are no longer available. The node sends the list in a RERR

message that is broadcasted. When a node receives a RERR, it compares the list of

nodes contained in the message to the corresponding entries in its routing table. If a

routing table entry for a node from the RERR message exists, it is invalidated if the

next hop node is the node the RERR was received from, and the sequence number of

the entry is greater than or equal to the sequence number found in the RERR. If a

routing table entry is not invalidated, the corresponding entry in the list of unreachable

nodes in the RERR must be removed. If entries still remain in the list, the node further

propagates the RERR.

The main drawback of implementing DHTs as overlay in WSNs is the separation

between the logical(overlay) and physical(underlay) networks. This separation poses

extra overhead and complexity on the system, as each layer has its own routing schemes.

To analyze the cost of the overlay, consider a network of size n nodes. Routing in the

overlay requires O(log(n)) hops, while the underlay requires O(
p

n). Consequently,

routing requires O(log(n)
p

n) hops. Although routing paths of length O(
p

nlog(n))

might be not very bad, updating the routing tables still poses a significant overhead.

In chord, the size of the finger table (routing table) is log(n). Each entry in this table

requires O(
p

nlog(n)) hops, hence updating the routing table requires O(log(n)2
p

n)

hops. In addition to the overlay overhead, there is a separate underlay overhead.

This overhead depends on the employed routing protocol, and updating its routing

table also causes additional overhead. In addition to the communication overhead,

implementations usually require extra memory for routing tables and programs.

3.3 Virtual Ring Routing

VRR [78] is a routing protocol inspired by overlay DHTs. Aside routing, it provides

traditional DHTs functionality. VRR uses a unique key to identify nodes. This key is a

location-independent integer. Like Chord, VRR organizes its nodes in a virtual ring in

38 3.3 Virtual Ring Routing

the order of increasing identifiers. For routing purposes, each node maintains a set of

virtual neighbors (vset) of cardinality r that are nearest to the node identifier in the

virtual ring. Each node also maintains a physical neighbor set (pset) with the identifiers

of nodes that it can communicate with directly. A routing table entry identifies the next

hop towards a virtual neighbor. This information is maintained pro-actively, i.e. it is

maintained even when there is no traffic along the path. The forwarding algorithm used

by VRR is quite simple: VRR picks the node with the identifier closest to the destination

from the routing table and forwards the message towards that node. The problem of

these protocols is that adjacent nodes in the ring can be far away in the real network.

As a result, forwarding to the nearest node can result in a very long path. Moreover, the

scalability is a problem, as the protocol needs to maintain routing tables of increasing

size, with increasing network sizes.

Figure 3.3 shows the mapping between the virtual ring and the physical network

topology, and the routing table for the node with identifier N8. The first four entries

in the table are the vset-paths to N8’s virtual neighbors. The 5th and 6th entries are

vset-paths that happen to be routed through N8, and the last three paths are N8’s

physical neighbors. The routing table also shows that the vset-path identifiers are not

necessarily distinct. The vset-path identifier is assigned by endpoint A, which is the

node that initiates the path setup, such that each vset-path is uniquely identified by

the pair < path− id, endpointA >. Vset-path identifiers can be small: each node

originates at most one vset-path to each of its r virtual ring neighbors and nodes can

reuse the identifiers of paths that were torn down after a probation period to ensure

that there are no routing table entries with those identifiers.

The joining process in VRR is quite similar to Chord. The joining node starts by

looking for physical neighbors that are already active in the network and, therefore,

can be used as proxies to route messages to others. It finds a proxy by sending and

listening to hel lo messages that VRR nodes periodically broadcast to physical neighbors.

These messages are also used to initialize the pset of the joining node. After finding

a proxy, the joining node sends a setup_req message to its own identifier x through

the proxy. This message is routed using the forwarding algorithm to the node whose

identifier y is closest to x . Node y is one of the immediate virtual neighbors of the

joining node in the virtual ring. It knows the identities of the other virtual neighbors of

x . Node y replies with a setup message that is routed back to the joining node through

3.3 Virtual Ring Routing 39

Figure 3.3: Relationship between the virtual and physical node places in VRR

the proxy, and it also adds x to its vset. This message sets up the vset-path between

node y and the joining node by updating the routing tables of the nodes it visits. The

joining node adds y to its vset when it receives the message. The setup message also

includes y in its vset. The joining node uses the received vset to initialize its own vset.

It sends setup_req messages to the identifiers of its other virtual neighbors. The joining

node adds these neighbors to its vset when it receives setup messages from them. This

completes all routing state initialization and the node becomes active. It is clear here

that failure detection in vset is not an easy task. To avoid the overhead of end-to-end

probes or end-to-end heartbeats, the authors proposed a technique called symmetric

failure detection to guarantee that if node x marks a neighbor y faulty, y will also mark

x faulty. To do this, a hel lo message containing two hops information is used. When

a node x marks a node y as failed, it initiates the teardown of any vset-paths in its

routing table that have y as a next hop. It does this by calling TeardownPath(p, null)

for each identifier p of a failed vset-path. Additionally, x removes any one- and two-hop

paths through y from its routing table.

VRR reduces the routing tables from two in Chord to one. Nevertheless, considering

the fact that successor and predecessor of a node lie far away, it imposes not only an

extra stretch of the routing path length, but also makes the joining process complicated,

especially when several nodes concurrently join the network. Another drawback of VRR

is the update of each node’s vset in the routing table. In the optimal case, if we do not

take the stretch over the shortest path into consideration, updating each node in the

vset requires O(
p

n) hops.

40 3.4 Geographic Hash Tables

3.4 Geographic Hash Tables

GHT [53–55] hashes keys into geographic locations, so only data items are stored on

the sensor node that are geographically nearest to the hash of its key. They replicate

the stored data locally to ensure persistence when nodes fail. Like ordinary DHTs, GHT

is built as overlays and relies on underlay routing. In fact, it uses the Greedy Perimeter

Stateless Routing (GPSR) [40] algorithm for low-level routing. GPSR uses the physical

location of nodes for routing purposes. Thus, it is assumed that all nodes in the network

know their location by using localization methodologies like GPS [79].

The main advantage of geographic routing algorithms is their optimal scalability, the

reason of this, is the reliance only on local information for routing. GPSR uses greedy

forwarding, based on local information about the real location of the physical neighbors,

to forward packets to nodes that are always progressively closer to the destination. The

sender includes the coordinates of the final destination while sending the packet. Since

the greedy forwarding routing mode fails in case of voids (even in static networks),

GPSR uses a second mode for routing, called perimeter mode. The perimeter mode uses

a planar subgraph without crossing edges, wherein a packet consecutively traverses

closer faces of a planar subgraph of the network connectivity graph until reaching a

node closer to the destination. Here greedy forwarding resumes. Figure 3.4 illustrates

how routing in GPSR works. Node N8 wants to communicate with node N14. The

routing table of node N8 contains the addresses and locations of its single-hop radio

neighbors. The position of N14 is known to node N8, consequently it sends the message

to the node whose position is closer to the position of the destination, in this case node

N32. Node N32 in turn sends the message to node N56. Until now, greedy forwarding

succeeded to find the next best node. However, because the distance between nodes 56

and N14 (D1) is shorter than the distance between N38 and N14 (D2), as well as the

distance between N48 and N1 (D3), there will be no progress toward the destination

when sending to either N38 or N48. Thus, greedy forwarding fails at node N56. Now

GPSR changes to the other mode (perimeter mode), in which, using the right hand rule,

it traverses the perimeter nodes (N56,N48,N21,N14,N42,N38) to find a node closer to

the destination.

GHT uses GPSR’s perimeter mode to find home nodes for a packet, which is the node

geographically nearest to the destination coordinates of the packet. In GHT, the packet

3.4 Geographic Hash Tables 41

N56

N38

N32

N51

N1

N42

N48

N14

N21

Node

N51 (x1,y1)
N32

N8: Routing Table

Position

N50

N27
N50

N8

(x2,y2)
(x3,y3)

(x1,y1)

(x2,y2) (x3,y3)

D2

D1

D3

D2>D1

D3>D1

Figure 3.4: Routing using geographic positions

enters perimeter mode at the home node, as no neighbor of the home node can be

closer to the destination. The packet then traverses the entire perimeter (called home

perimeter) that encloses the destination, before returning to the home node [40].

The authors of GHT propose the Perimeter Refresh Protocol (PRP) to accomplish

replication of key-value pairs and their consistent placement at appropriate home nodes

when the network topology changes. PRP stores a copy of a key-value pair at each

node on the home perimeter. A node becomes a home node for a particular key when

the packet arrives after completing its tour of the home perimeter. Periodically, the

home node for a key generates a refresh packet addressed to the hashed location of that

key. Thus, the refresh packet will take a tour of the current home perimeter for that

key. Figure 3.5(a) shows home perimeter nodes enclosing a key. The home perimeter

nodes hold replicas of the data associated with the key and the home node is the

node geographically closest to the key. GHT also employs a scheme called Structured

Replication in DCS (SR-DCS) to achieve load-balancing in the network. SR-DCS uses

a hierarchical decomposition of the key space and associates each event-type e with a

hierarchy depth d. It hashes each event-type to a root location. For a hierarchy depth d,

it then computes 4d − 1 images of root. When an event occurs, it is stored at the closest

image node. Queries are routed to all image nodes, starting at the root and continuing

through the hierarchy. Figure 3.5(b) shows a d = 2 decomposition and mirror images

of the root (3,3) at every level.

To use GHT, four important things are assumed. Firstly, each node should know its

physical location. The second important issue is that the deployment area should be

known in advance in order to hash the keys to this area. Otherwise all packets hashed

outside the area will be stored at the edge nodes after a long walk through the entire

external perimeter before arriving at the home node. Thirdly, the correctness of the

common (local) planarization algorithms, and hence the correctness of perimeter mode

42 3.4 Geographic Hash Tables

root point: (3,3)
Level 1 mirror points: (53,3), (3,53), (53,53)

(0,0) (100,0)

(100,100)(0,100)

Level 2 mirror points: (28,3), (3,28), (28,28), (78,3), (53,3), (78,28)

(3,78), (28,53), (28,78), (78,53), (53,78), (78,78)

Key home

replica

replica

replica

replica

(b)

(a)

Figure 3.5: GHT: (a) Perimeter Refresh Protocol (PRP): the node geographically nearest
to the key location is the home node, the nodes at the perimeter keep copies of the data
associated with the key; (b) example of Structured Replication (SR): 16 mirror images
using a 2-level decomposition

routing used intensively in GHT, relies on a unit disk graph assumption under which a

node hears all transmissions from nodes within its fixed radio range and never hears

transmissions from nodes outside this range [43]. Many studies have shown that this

assumption is grossly violated by real radios [20,80–82]. The final assumption is that

nodes are deployed uniformly. Some WSNs may fit these assumptions, nevertheless

many others may not. The replication algorithm (PRP) in GHT will always send refresh

messages periodically, even if there is no any change in the network topology, which

consequently wastes energy and bandwidth resources.

3.5 Geographic Routing Without Location Information

Motivated by the ideal scaling properties of schemes like GPSR, several recent proposals

attempt to use geographic routing ideas without requiring geographic coordinates.

GRWLI [83] creates synthetic coordinates through an iterative relaxation algorithm

that embeds nodes in Cartesian space. Unlike GPSR, this routing protocol does not use

real coordinates, which are costly, not available in many situations, and susceptible to

localization errors. Instead, it constitutes an n-dimensional virtual coordinate system.

The construction of the coordinates is based on finding the perimeter nodes and

projecting them onto an imaginary circle if not pre-defined. This is done by designating

two nodes as beacon nodes. Next, the nodes determine if they are perimeter nodes by

using a heuristic based on their hop count from the beacons. After that, a relaxation

3.5 Geographic Routing Without Location Information 43

algorithm is used to find the virtual location of the nodes in the network. One of the

reasons to project the perimeter nodes onto a circle is to have a well-defined area to

implement the DHT.

The drawback of having many dimensions resulting from a large n is that the process

of forming virtual coordinates requires a long time to converge [84]. Subsequently, it

consumes more power for communication. The initialization technique for this scheme

also requires roughly O(
p

n) nodes to flood the network, and each of these flooding

nodes needs to store the entire O(
p

n×
p

n) matrix of distances (in hops). So O(n) state

is kept at roughly O(
p

n) nodes, and this is an impractical burden in large networks.

Again, the problem of possible dead ends exists here, so the greedy forwarding algorithm

cannot guarantee reaching the correct destination.

3.6 Hop ID

In the Hop ID routing scheme [45], each node maintains a hop ID, which is a multidi-

mensional coordinate based on the distance to some landmark nodes. Landmarks can

be randomly selected in the network. However, to obtain better performance and reduce

the effect of dead ends, the authors present several methods for landmark selection. To

construct and maintain the hop ID system, three basic steps should be followed. First,

a voluntary node floods the entire network to build a shortest path tree rooted at this

node. Then landmarks are selected. Finally, each node adjusts its hop ID periodically

and broadcasts its new hop ID using a hello message. To deal with dead ends when

greedy forwarding fails, a landmark guided detour is designed and is applied with

an expanding ring flooding search algorithm to route out of dead ends. Figure 3.6

illustrates the idea of the Hop ID system. Following a predefined order, the hop distance

of a node to all the landmarks is combined into a vector, i.e., the node’s hop ID. For

example, G’s hop ID is 432 in Figure 3.6, representing that G is four hops away from

L1, three hop away from L2, and two hops away from L3. For greedy forwarding, the

authors have used a the distance function Dp =
p
Æ

∑m
k=1 | H

(1)
k −H(2)k |

p, where m is the

number of landmarks, the hop ID of node N1 is the vector H1 and the hop ID of node

N2 is the vector H2. In Figure 3.6 for destination node C, node A is a dead end. Another

source of dead ends is the existence of two or more nodes with same hop ID (i.e node D

and E). In addition to the problems of dead ends and selecting the optimal number and

44 3.6 Hop ID

416

416

305

414

323

224

335

215

125

036

432

543

654

652

541

650

L1

L2

L3
E

D H

B
C

G

F

Figure 3.6: Example of Hop ID: 16 nodes including 3 landmarks (L1, L2, L3) construct-
ing a 3-D Hop ID network, a node N’s Hop Id xyz means N is x,y,z hops away from
landmarks L1, L2 and L3 respectively [45]

location of landmarks, joining nodes as well as leaving nodes can affect large number

of nodes in the network and requires a large number of nodes to update their hop ID.

3.7 Summary

In this chapter we have given a detailed overview of algorithms used in related work. We

have shown the characteristics of each approach and the problems they face. Employing

a traditional DHTs, like Chord, as overlay and replaying it on another protocol for

underlayer routing services incurs avoidable extra overhead which makes the scalability

of such an implementation is very bad. VRR reduces this overhead by combining both

routing and data lookup, however updating the routing table requires multi-hop data

transmission, and the traversal path can be much longer than the shortest path. Routing

based on a physical location, like GPSR, has optimal scalability. GHT, which uses GPSR

for routing, tries to combine data management with routing. However, it has some

additional drawbacks in addition to the inherent drawbacks of GPSR: GHT always

generates data refreshing messages, even if the topology does not change. GRWLI uses

a virtual location to replace the physical location used in GPSR. The problem of dead-

ends still exist in GRWLI. Additionally constructing the position requires considerable

communication overhead. Constructing virtual positions in the Hop ID algorithm is

easier than GRWLI, nevertheless it requires a number of landmarks. It is not trivial

to determine the optimal number of landmarks. Additionally, the position itself is a

vector that contains the hop counts to the landmarks. In GRWLI and Hop ID, the virtual

positions of the nodes are not unique, which consequently complicates routing and

mapping the data to nodes.

Chapter 4

Virtual Cord Protocol

In this chapter we describe the design of the Virtual Cord Protocol (VCP). VCP offers

efficient routing as well as traditional DHT services for WSNs. The basic operations

performed on VCP are insertion and lookup of (key, value) pairs.

4.1 Overview

In our design VCP offers underlay routing between sensor nodes in a WSNs. Each node

maintains a small amount of routing information that is independent from the number

of nodes in the network. Providing this hash-table-like interface then requires every

node to support a single operation: given an input key, a node must be able to route

messages to the node responsible for that key. As such, our design primarily addresses

the issues related to supporting this data-centric routing operation in a manner that

is completely distributed (requiring no form of centralized control, coordination or

configuration), that is scalable (nodes maintain routing tables that are independent

from the number of nodes in the network), that is simple and easy to construct, and

that is robust to nodes failure.

The basic Idea of VCP is shown in Figure 4.1. Assume a cord connects all nodes in

the network. The cord starts at a given value (say 0) and ends at another value (say 1).

Each intermediate node has a unique value and communicates at least with the node

whose value in the cord is immediately smaller than the node’s own value (termed the

predecessor) as well as the node whose value is immediately larger than the node’s

own value (termed the successor). In the example, node 0.91 generates a data item D.

This data item should be stored in the network in a way that makes finding it by other

45

46 4.1 Overview

I have data "D"
hash("D")=0.63
put(0.63,D)

0

0.07

0.13

0.19

0.34

0.41

0.53

0.66
0.75

1.0

0.81

0.91

I need data "D"
hash("D")=0.63
get(0.63)

0.87

I am the host for "D"

0.26

0.30

1.0
0.81

0.87
Routing Table

N1
N2
N3

Figure 4.1: VCP organizes all the nodes in a structured cord and each node maintains
a small amount of routing information. The routing table of each node contains the
predecessor (first row), successor (second row) as well as other physical neighbors.
When a node generates a data item (i.e. node 0.91 generates D), it stores this data item
(or a reference to it) on the cord. Node 0 sends a request for item D to the node that
hosts D.

nodes in the network an easy task. As discussed in the previous chapter this “lookup”

problem can be easily solved using the concept of a DHT. The generating node stores

the data item on a pre-defined node. Consequently all queries regarding this data item

will be forwarded deterministically to that node. The pre-defined node is determined

by a common hash function.

Now, the interesting questions are:

• How to set up the cord?

• How to route using the cord?

• How to replicate the data in order to assure maximum persistence of data with

minimum usage of resources when nodes fail?

The idea behind VCP is to combine data lookup with routing techniques in an

efficient way. VCP accomplishes this by placing all nodes on a virtual cord, which is also

used to associate data items with. A hash function is used to hash data items to values

in a pre-defined range [S, E], which is completely covered by the participating nodes.

Thus, each node maintains a part of the entire range. The routing mechanism relies on

4.1 Overview 47

two concepts: First, the virtual cord can be used to find a path to each destination in

the network. Additionally, locally-available neighborhood information is exploited for

efficient greedy routing towards the destination.

In comparison with the algorithms mentioned in the related work (Chapter 3), VCP

borrows, and differs, from each of them. From Chord, VCP borrows its simple one-

dimensional identifier, but nevertheless VCP has only one routing table in comparison

to the two routing tables in overlay implementations. Moreover VCP incurs smaller

routing states than the use of shortest path algorithms. From VRR, VCP borrows

combining both routing and DHT services, though the details of the addressing and

forwarding are entirely different. Moreover, VCP’s routing table incurs only local

information and (unlike VRR) needs not adhere to any far away node’s information. VCP

uses greedy forwarding over node coordinates, but (unlike GPSR) greedy forwarding

guarantees packet delivery, does not require geographic information, and makes no

assumptions about radio connectivity. From GRWLI, VCP borrows the notion of using

virtual coordinates, but (unlike GRWLI) it uses a very simple coordinate construction

algorithm, by which greedy forwarding guarantees packet delivery. As mentioned earlier,

VCP focuses on efficient routing on a virtual cord. It features a predefined hashing

range that allows applications to clearly associate data items to places in the cord.

4.2 Setting up the Cord

The design of VCP centers around a virtual, pre-determined range [S, E], i.e. a one-

dimensional cord. Each node in the network is responsible for a portion of the entire

space, defined by its relative position to physical neighbors. This way it is possible to

store data on the nodes, by mapping data items deterministically in the space using

a hash function. The corresponding key-value pair is then stored at the node whose

position is closest to the key. Routing of packets is done based only on the position of the

physical neighbors. To retrieve data items, nodes have to apply the same hash function

to find the key value, then they can route the request to the node whose position is

closest to the key.

When a node joins the VCP network, it must set three important variables: its

position, its predecessor, and its successor. Each node determines these values based on

the positions of its single-hop neighbors. First, one node must be pre-programmed as

48 4.2 Setting up the Cord

Table 4.1: Initial parameters for the join process

Parameter, Value Description
Start S = 0.0 lowest position on the cord
End E = 1.0 highest position on the cord

Position P =−1.0 current position in the cord, −1
means the position is still unset

HelloPeriod Th = 1s time interval between hello

messages
SetPosDelay Tps = 1s time interval before

re-requesting a new position
SetVPosDelay Tvps = 1s time interval before requesting a

virtual position
BlockDelay Tb = 1s blocking period to prevent

assigning the same position to
more than one node

Interval I = 0.1 interval between the two end
positions [S, E] and successor or
predecessor position

VirtInterval Iv = 0.9 interval between node position
and virtual node position

MaxVirtuals Vmax = 2 Maximum number of virtual
nodes that a node allowed to
create

the initial node, i.e. it gets the position S. Furthermore, a number of initial variables

are initialized in the startup phase as listed in Table 4.1.

We employ hello messages to discover the network structure, i.e. all neighboring

nodes and their position in the cord. The hello message contains the position, pre-

decessor and successor of a node. In the current implementation of VCP, the hello

messages are transmitted by means of broadcasting, i.e. each node broadcasts a hello

every Th. Tps is a delay that must have elapsed before a node may re-ask for a relative

position in the case that the last attempt to get a relative position had failed. This

delay is used to prevent asking multiple nodes at the same time. Tb is a delay we

used to prevent assigning the same position to more than one node (i.e. to obtain a

unique position for each node). We used intervals I and Iv to smooth the position

distribution among nodes. Alternatively, the joining operation can also be executed

using an on-demand mechanism, which has advantages in static networks or those with

a high density.

Based on the periodically transmitted hello messages, the joining node gets infor-

mation about its physical neighbors and their adjacent nodes. Algorithm 4.1 depicts

4.2 Setting up the Cord 49

the handling of received hello messages: If the node that sent the hello message is

not in physical neighbors table then we add it, otherwise we update its information in

the table. Of course the hello message updates also the successor and predecessor

information. If the node has not yet joined the network (i.e. its position equals -1), it

calls the SetMyPosition() function listed in Algorithm 4.2 to get a relative position in

the cord. An artificial join delay Tps must have elapsed before re-asking for a relative

position.

Algorithm 4.1: Handle hello Messages

Require: Locally stored state of all neighbors in set N
Ensure: Maintain neighbor set N and set virtual address

1: Receive (hello, Pos, SuccPos, PrePos) from node Ni
2: if Ni /∈ N then
3: N ← Ni
4: else
5: Update Ni ∈ N
6: end if
7: if Ni == M ySucc then
8: Update M ySucc
9: end if

10: if Ni == M yPre then
11: Update M yPre
12: end if
13: if P ==−1 AND (Time() − OldTime) > Tps then
14: OldTime← Time()
15: SetMyPosition()
16: end if

Each node joining the network has to receive at least one hello message from a

node that already joined the cord in order to get a relative position in the cord. If a

node can communicate with an end node (lines 2–20 in Algorithm 4.2), i.e. a node that

has either position S or E, the new node takes over this end value as its virtual cord

position by sending a packet newpos to the node that has that end. If it is the second

node in the network (which can be easy detected by probing the old node position and

successor) then the newpos message contains E as the new position. Otherwise the

newpos message contains a new position between the end value and its successor or

predecessor depending on the its old position. The receiving node newpos examines

the “new position” field in the newpos message as shown in Algorithm 4.3. It can

happen that multiple nodes ask for the end position at the same time, therefore we use

a local variable to indicate if the node is already gave that end (SentF and Sent). we

50 4.2 Setting up the Cord

Algorithm 4.2: Position Update via SetMyPosition()

Require: Neighbor information stored in set N
1: for ∀Ni ∈ N do
2: if Position(Ni) == S) then
3: if Successor(Ni) < S) then
4: SendNewPositionToNeighbor(Ni , E)
5: return;
6: else if Successor(Ni) == E then
7: NeighbourNewPosi t ion← (S+ E)/2
8: else
9: NeighbourNewPosi t ion ← Successor(Ni) − I × (Successor(Ni) −

Position(Ni))
10: end if
11: SendNewPositionToNeighbor(Ni , Posold)
12: return;
13: else if Position(Ni) == E then
14: if Successor(Ni) == S then
15: NeighbourNewPosi t ion← (S+ E)/2
16: else
17: NeighbourNewPosi t ion ← Predecessor(Ni) − I × (Predecessor(Ni) −

Position(Ni))
18: end if
19: SendNewPositionToNeighbor(Ni , Posold)
20: return;
21: else
22: for ∀N j ∈ N : i 6= j do
23: if Predecessor(Ni) == Position(N j) then
24: Ptemp ← (Position(Ni) + Position(N j))/2
25: temporarily store positions of Ni and N j
26: SendBlockReq(N j , Ptemp)
27: return;
28: end if
29: end for
30: else
31: if (Time() − OldVTime) > Tvps then
32: OldVtime← Time()
33: temporarily store position of Ni
34: SendCreatVirtualNode(Ni)
35: return;
36: end if
37: end if
38: end for

4.2 Setting up the Cord 51

use SentF to indicate that the node is already sent the second node in the network its

position, while Sent indicates that the node gave the end it had and it is no anymore

having that end. The old node should update its position, successor and predecessor

accordingly, as well as acknowledge the newpos. At the beginning, when there is

not yet another node in the network, the node pre-programmed as the first node sets

the variable SentF , updates its successor information and sends a firstack message

(lines 2–6 in Algorithm 4.3) to inform the new node that it will be the second node.

Lines 7–14 and lines 15–22 in Algorithm 4.3 show the update and acknowledge when

the old node was assigned the Start and the End position respectively. Here, the old

node sends a newpositionack message instead of firstack. The purpose of these

acknowledgments is to inform the new node that its attempt to get a position has

succeeded, and it can now set its own variables and start to broadcast hello messages.

Algorithm 4.3: Handle New Position Messages

1: Receive (newpos, NewPos) packet from node Ni
2: if ((P == S)AN D(NewPos == E)AN D(!SentF) then
3: SentF← 1
4: MySuccPos← E
5: M ySucc← Ni
6: SendFirstAck(Ni)
7: else if ((P == S)AN D(NewPos < M ySuccPos)AN D(!Sent)) then
8: Sent ← 1
9: M yOldPos← P

10: M yPrePos← P
11: M yPre← Ni
12: P ← NewPos
13: SendUpdatesMysuc()
14: SendAckNewPos(Ni ,MyOldPos)
15: else if ((P == E)and(NewPos > M yPrePos)AN D(!Sent)) then
16: Sent ← 1
17: M yOldPos← P
18: M ySuccPos← P
19: M ySuc← Ni
20: P ← NewPos
21: SendUpdatesMyPre()
22: SendAckNewPos(Ni ,MyOldPos)
23: end if

The response to firstack and newpositionack is shown in Algorithm 4.4 and

Algorithm 4.5 respectively. When the node is the second node in the network, it

updates its predecessor as well as its own position information. In the current proactive

52 4.2 Setting up the Cord

implementation we need to schedule hello messages. The aim of the hello message

mechanism is to enable other nodes to join the network as well as to update their

routing tables. As we describe in Section 4.5.2, if the protocol behaves reactively then

there is no need to schedule hello messages. Instead the joining nodes have to send

a hello request message. To handle the newpositionack messages, the nodes

check the NewPos field: if NewPos is the End then the node updates the predecessor

and its own position (lines 2–6 of Algorithm 4.5); if it was the Star t then it updates the

successor and its own position (lines 8–12 of Algorithm 4.5). Like in the second node

case, in both cases the node has to schedule hello messages because of the proactive

implementation.

Algorithm 4.4: Handle Handle First Ack Messages

1: Receive (firstack, NewPos) packet from node Ni
2: if NewPos == E then
3: M yPre← Ni
4: M yPrePos← S
5: P ← E
6: ScheduleHelloMessage()
7: end if

Algorithm 4.5: Handle New Position Ack Messages

1: Receive (newpositionack, NewPos) packet from node Ni
2: if NewPos == E then
3: M yPre← Ni
4: M yPrePos← NeighbourNewPosi t ion
5: P ← E
6: ScheduleHelloMessage()
7: end if
8: if NewPos == S then
9: M ySuc← Ni

10: M ySuccPos← NeighbourNewPosi t ion
11: P ← S
12: ScheduleHelloMessage()
13: end if

If a node can communicate with two adjacent nodes in the cord, the new node gets a

position between the values of these two adjacent nodes (lines 22–27 in Algorithm 4.2).

The new node stores the position of predecessor and successor as well as its proposed

position temporarily and then sends a blockreq message to the adjacent nodes. To

reduce the number of transmitted messages we send only to the predecessor and

4.2 Setting up the Cord 53

includes its successor in the blockreq message. Thus the node that received the

blockreq message can verify if it was not blocked by another node and is still adjacent

to the node contained in the message; if this test holds true, it blocks itself for a period

of time Tb and then sends a blockack message. The blocking mechanism is used

to prevent multiple nodes from getting the same relative position. Upon receiving a

blockack message the new node activates the temporarily stored position information.

Algorithm 4.6 and Algorithm 4.7 illustrate the details of block request and block

acknowledgment processing. Note that the new node schedules hello messages and

updates it successor.

Algorithm 4.6: Handle Block Req Messages

1: Receive (blockreq, Ptemp, TempSuc) packet from node Ni
2: if (!Blocked)AND(M ySuc == TempSuc) then
3: Block(Tb)
4: M ySuc← Ni
5: M ySuccPos← Ptemp
6: SendBlockAck()
7: end if

Algorithm 4.7: Handle Block Ack Messages

1: Receive (blockack) packet from node Ni
2: M ySuc← M yTempSuc
3: M yPre← M yTempPre
4: P ← Ptemp
5: ScheduleHelloMessage()
6: SendUpdatesMysuc()

Finally, if the new node can communicate with only one node in the network, which

is neither at S nor E, then the new node asks this node to create a virtual position

(lines 31–35). The reason for creating a virtual node is to maintain the connectivity and

the consistency of the cord. The virtual node gets a position between that of the real

node and its successor or predecessor. The newly joining node can now get a position

between the real and the virtual position of the node in the cord. Notice that the node

has to wait some time Tvps before asking for a virtual node. This timeout is used to

encourage the node to find an end or adjacent neighbors and thus get a proper position

in the cord without the need to setup a virtual position. We noticed that fewer virtual

nodes lead to better routing paths. The mechanism for creating a virtual node starts

54 4.2 Setting up the Cord

by storing the proposed position values and then sending a virtualreq message to

the corresponding node. Each node can create up to maxV ir tuals virtual nodes. In

order to ensure a unique position value for each node, the node has to block itself when

creating a virtual node and send an acknowledgment as shown in Algorithm 4.8. When

a node receives a virtualack, it activates the temporarily stored position information

(see Algorithm 4.9).

Algorithm 4.8: Handle “createvirtual” Messages

1: Receive (virtualreq) packet from node Ni
2: if numbero f vir tuals < maxV ir tuals)and(!Blocked) then
3: Vir tualPosi t ion← (M ySuccPos− P) ∗ Iv + P
4: M yTempSuccPos← M ySuccPos
5: Vir tualSuc← M ySuc
6: M ySuccPos← (P + Vir tualPosi t ion)/2.0
7: Vir tualSucPoist ion← M yTempSuccPos
8: M ySuc← Ni
9: Vir tualPre← Ni

10: Vir tualPrePosi t ion← M ySuccPos
11: SendVirtualAck(Ni ,MySuccPos,VirtualPosition)
12: end if

Algorithm 4.9: Handle Virtual Ack Messages

1: Receive (virtualack, NewPos, VirtualPosition) packet from node Ni
2: M yPre← M yTempPre
3: M yPrePos← M yTempPrePosi t ion
4: M ySuc← M yTempSuc
5: P ← NewPos
6: M ySuccPost ion← Vir tualPosi t ion

Figure 4.2 shows the joining process for a six node network with a position space

of [0,1]. In each picture, a small circle indicates the communication range of the

newly joining node. Initially, a pre-programmed node is assigned the lowest position,

0 (see Figure 4.2[a]). The newly joining node (Figure 4.2[b]) finds itself to be the

second node, because it communicates with a node that has the lowest position and its

successor is not set. Therefore the new node gets the end position, 1. The next node that

joins the network (see Figure 4.2[c]) can communicate with a node that has the lowest

end but its successor is set – therefore it gets this end position, 0, and hands the old node

a position between the old one and its successor. The same happens in Figure 4.2[d],

however this time with the other end, 1. The node joining in Figure 4.2[e] cannot

4.2 Setting up the Cord 55

0.52

0.5 0.75 1

0.6

0
0.5 0.75 1

0

0 1 0.5 1

0

0

0.5 0.75 1

0.6

0

b ca

d e f

Figure 4.2: Basic join operation in VCP, six nodes are joining the network according to
the rules described in Algorithm 4.2

Figure 4.3: Operation of creating virtual node

communicate with any end, but it can communicate with two nodes adjacent on the

cord. Thus, this new node gets a position between the positions of the adjacent nodes

and it becomes the successor for the lower-numbered and predecessor for the higher-

numbered node. In Figure 4.2[f] the new node can communicate only with one node

whose position is not an end. Therefore the new node is forced to ask for a virtual node

and get a relative position between the virtual node and the old successor. Figure 4.3

illustrates how a node gets a relative address by creating a virtual node.

56 4.3 Routing on the Cord

0.53

0.52

0.5 0.75

0.78

0.8 1

0.9
0.6

0.67

0.130

0.25

0.4

0.43

Figure 4.4: An example for a routing path using the virtual cord and greedy routing
exploiting local neighborhood information

4.3 Routing on the Cord

We now describe routing in VCP. At the beginning we define the greedy forwarding rule

and we prove that, for static networks Greedy forwarding based on local information

guarantees finding path between any two nodes in the network. Then we address the

failure of pure greedy routing to find paths in the presence node failure, by introducing

algorithm for forwarding packets around failing nodes.

Figure 4.4 depicts the state of the network after adding 15 nodes. Routing in VCP is

done using the virtual cord. Additionally, local neighborhood information is exploited

for greedy routing. The greedy forwarding mechanism works as follows: a node with

relative position P forwards a packet to its neighbor Ni which has the closest virtual

position to the destination Dp. The forwarding is terminated if no more progress is

possible, i.e. if the local coordinate P is closest to Dp. Based on the established cord,

VCP will never get stuck in dead ends. Preliminary studies have shown that the path

stretch is near optimal. Also, it is clear that the joining of a new node only affects

a small number of nodes in the vicinity of the node and the complexity of the join

operation is independent from the total number of nodes in the network. In fact, the

insertion of a new node only affects O(m) nodes, where m is the number of successors.

4.3 Routing on the Cord 57

4.3.1 Greedy Routing

In VCP, packets are marked by their originator with their destinations’ locations. As a

result, a forwarding node can make a locally optimal, greedy choice when choosing a

packet’s next hop. Specifically, if a node knows its radio neighbors’ positions, the locally

optimal choice for next hop is the neighbor closest to the packet’s destination. This

forwarding logic results in successively smaller hops until the destination is reached.

Thus for routing in VCP, each node has to first know its physical neighbors. Then

a greedy algorithm, Algorithm 4.10, is employed to send packets to the node of the

physical neighbor that has the position closest to the destination until no more progress

is possible and the value lies between the positions of the predecessor and successor.

VCP inherently relies on a previously established cord. Therefore, greedy routing will

always find a path to the destination – it is not possible to run into a dead end. In

addition, VCP allows taking shortcuts whenever a physical neighbor with a virtual

number is available that is closer to the destination.

Continuing with our example, if node 0.25 in Figure 4.2 produces a data item, it

first has to hash this item to the correspondent hash value – we assume a hash value

of 0.781. Thus, node 0.25 will forward the message towards the destination node, i.e.

in our case to node 0.5, which has the closest position to the value (0.781) among the

physical neighbors. Afterwards, node 0.5 will send the message to node 0.75, and then

node 0.75 will send it to node 0.78 as shown in Figure 4.2 (right). Node 0.78 will finally

store the data and will not forward it any further because there is no more progress

possible and the value lies between the positions of the predecessor and the successor.

Algorithm 4.10: Greedy Forwarding Algorithm

Require: Received data packet D for destination position Dp, locally maintained data
set [Pmin, Pmax]

1: if Pmin ≤ Dp ≤ Pmax then
2: StoreData()
3: else if ∃Ni ∈ N : |Position(Ni)− Dp|< |P − Dp| then
4: Send(Ni , D)
5: end if

The great advantage of greedy forwarding is its reliance on only knowledge of

the forwarding node’s immediate neighbors [85]. The amount of state information

that needs to be tracked is negligible and dependent on the density of nodes in the

58 4.3 Routing on the Cord

wireless network, not the total number of destinations in the network. In networks

where multi-hop routing is useful, the number of neighbors within a node’s radio range

will be substantially less than the total number of nodes in the network. Thus the

scalability can by analyzed as follows; the most obvious measure of scalability of a

routing protocol is the overhead associated with the maintenance of routing tables.

In a WSN two measures of this overhead are important: the size of the routing table

and the communication overhead required to keep it up to date. The size is not only

refers to the memory size required to store the routing table, but also to how many

entries of the table need to be adjusted when nodes join or leave. The communication

overhead indicates how much communication is required to update each entry. In VCP

the routing table of each node contains only its radio neighbors, hence the size is O(m)

where m is the node degree. Since a hel lo message is enough to update each entry of

the routing table, the communication overhead to update each entry is O(1). From this

analysis we can conclude that VCP has good scalability characteristics.

Theorem 4.3.1. Given a static network and VCP, greedy forwarding based on local
information guarantees packet delivery to the correct destination.

Proof. Assume a packet, marked by its originator with a Ke y , gets stuck at a node that
is not closest to the Ke y, say S, and there exists another node S′ that is closest to the
Ke y. Recall that in VCP each node can communicate at least with its predecessor and
successor. The value of the successor is larger than S and the value of the predecessor is
smaller than S. Therefore either the successor or the predecessor is closer to S′ than
S (if not, then S = S′). S′ is closest to the Ke y. Consequently, either the successor or
the predecessor is closer to the Ke y than S. Hence the packet will not get stuck at S
and the packet will be greedily forwarded (based on the local information) either to the
successor or the predecessor until it reaches a node for which neither the successor nor
the predecessor is closer to the Ke y than the node itself.

Theorem 4.3.2. Given a static network, routing in VCP is loop free.

Proof. A loop occurs when a packet revisits an already-visited node. In VCP each hop a
packet travels shortens its distance toward the destination. Thus all visited nodes have
a longer distance on the cord to the destination than the current node. Consequently,
greedy forwarding will never choose to forward a packet to a node that has a longer
distance to the destination than the current node.

4.3.2 Failure management

The presented cord management is working very well as long as all nodes stay available

after forming the cord. Greedy forwarding can guarantee the reachability of the

destination only if there is no failure. However, in case of node failures, greedy

4.3 Routing on the Cord 59

forwarding might fail and the cord might become unstable. To overcome the problem

of finding a path towards the destination in case of node failures, we propose a new

scheme to find an alternative path.

We use hello messages to identify failed nodes: in addition to successor and

predecessor positions, we store the timestamps of the last hello message in the routing

table, i.e. in the physical neighbor table. If a node did not receive a hello message

from a neighbor for k × Th, where Th is the hello message period, this neighbor is

marked as a dead node. From the available information in the routing table, each

node can locally check whether the final destination of a packet is one of its physical

neighbors or not.

During packet routing there are two cases in which greedy forwarding cannot reach

the correct destination because of a dead end in the cord. The first case means reaching

a physical neighbor of the failed node. In this case, the packet can either be dropped

or stored within the neighbor of the failed node. If the operation was to retrieve data

items, then if replication is used, it is highly probable that the data is also on this node.

In the second case, the failed node is the next hop towards the destination, but it is

not the final destination itself. In this case, we have to find an alternative path. The

procedure is as follows. The neighbor of the failing node locally creates a so called no

path interval NP-I. This interval corresponds to the range of keys that the dead node

was responsible for. Then, the node sends a no path (NP) packet, which includes the

NP-I to another active node in its neighborhood. This node is selected according to its

position in the cord, which should be as close as possible to NP-I. In order to prevent

routing loops, this information needs to be stored on all nodes involved in this process.

However, the stored NP-I data is expected to expire after Tnp s. Another function of

no path interval, until Tnp s expired, is that it prevents any new messages addressed

with keys in this interval from entering zones that will not lead to the destination,

i.e the calculated NP-I at a node is [a, b] means that, at the moment this node can’t

find a path for packets addressed with values in the range [a, b]. Therefor any packet

with destination a+ ε < b should not be sent to this node. From now on, each node

either transmits data using greedy forwarding towards the destination (if there is a

neighboring node closer to the destination available), or it continues to send NP packets.

Using the stored NP-I data, this information will never be sent twice. If a NP packet

reaches a node that already has NP-I in its table, it has to send a no path back (NPB)

60 4.3 Routing on the Cord

packet as an indicator of a detected loop.

The procedure of treating routing packets is shown in more detail in Algorithm 4.11.

The interval [Pmin, Pmax] is maintained by evaluating the distance between the cur-

rent node and the neighbors on the cord. In particular, this interval is used to iden-

tify the final destination for each packet. The no path interval NP-I is calculated

by the function ComputeNoPathInterval() illustrated in Algorithm4.12. The func-

tions F indBig gerNode(Big gerNode) and F indSmallerNode(SmallerNode) return

(if available) the nodes with larger and smaller positions than the packet destination

position respectively.

Algorithm 4.11: Handle Routing Packets

Require: Received data packet D for destination position Dp, locally maintained data
set [Pmin, Pmax]

1: if Pmin ≤ Dp ≤ Pmax then
2: StoreData()
3: else if D ∈ NP-I then
4: Send(D->src,NPB, D)
5: else if ∃Ni ∈ N : |Position(Ni)− Dp|< |P − Dp| then
6: Send(Ni ,ROUT, D)
7: else
8: ComputeNoPathInterval()
9: Nc ← FindClosestNode(Ni)

10: Send(Nc , N P, D)
11: end if

Algorithm 4.12: Compute No Path Interval

1: if Ke y > P then
2: if F indBig gerNode(Big gerNode) then
3: N P_E← (FailedNodePosi t ion+ Big gerNodePosi t ion)/2
4: else
5: N P_End ← E
6: end if
7: N P_Star t ← (FailedNodePosi t ion+ FailedNodePrePosi t ion)/2
8: else
9: if F indSmallerNode(SmallerNode) then

10: N P_Star t ← (FailedNodePosi t ion+ SmallerNodePosi t ion)/2
11: else
12: N P_Star t ← S
13: end if
14: N P_End ← (FailedNodePosi t ion+ FailedNodeSuccPosi t ion)/2
15: end if

An example for packet forwarding in the case of a node failure is illustrated in

4.3 Routing on the Cord 61

0.3 0.24 0.69 0.61

0.35 0.41 0.47 0.51

0.0 0.18 0.73 0.8

0.05 0.12 1.0 0.9

Figure 4.5: Routing in case of a node failure: node 0.41 generates a NP packet that is
forwarded until node 0.69 continues to regularly forward the packet

Figure 4.5. In this example, node 0.0 produces a data packet address to 0.52. According

to the greedy routing principles of VCP, the data packet will be forwarded by nodes 0.30

and 0.35 until it reaches node 0.41. At this node, a dead end is detected because the

previously-existing node 0.47 has failed. Thus, node 0.41 will create a no path interval

NP-I=[0.44,1] and send a NP packet back along the path to node 0.35. Similarly, the NP

packet is forwarded until it reaches node 0.24. This one, according to the programmed

rules, tries node 0.47 again. However, 0.47 detects a loop and sends a NPB packet to

node 0.24. In turn, node 0.24 tries to find another path by sending a NP packet to node

0.69. Finally, this node can resume greedy forwarding toward destination node 0.51.

4.4 Data Replication

In order to avoid losing data when nodes fail, additional copies of the data items must

be stored on other nodes. However, data replication does not only consume storage

capacity, but also cause a communication overhead to increase, which can quickly lead

wireless sensor networks in particular to be overloaded and eventually drain the battery.

Therefore in WSNs data replication schemes should utilize the network resources as

good as possible. In this section we propose replication techniques to ensure persistence

of data when nodes fail. First we propose two localized replication techniques, which

replicate each data item in the direct vicinity. Hence, these two schemes incur only local

communication. The second approach replicates the data at dispersed places then at

each place replicates the data locally.

62 4.4 Data Replication

put(D)

D
D

DD

DD

D

D
D

D

D

get(D)

Figure 4.6: Replication of the inserted data on neighbors within a node’s radio range

4.4.1 Local Replication

Replication on the Physical Neighbors

The first local replication scheme employs physical neighbors to accomplish local

replication of key-value pairs (Figure 4.6). When a packet reaches its destination, it

will be retransmitted to all physical neighbors. The retransmission of data is done using

a broadcast message, thus we need only one message to store a data item in all physical

neighbors. This way we can be sure that if a node failed, there are other nodes that

stored the data items of the failed node. Note that we store for each data item a pointer

that indicates the node from which it originated. When a node re-joins the network it

will ask its physical neighbors for its data by broadcasting a DATA_REQ message. Here

too we need only one broadcast to ask all neighbors. This message contains the physical

neighbors of the joining node.

Algorithm 4.13 illustrates how VCP treats the DATA_REQ message. Nodes count

the number of messages that have to be sent to the joining node. Then the nodes have

to wain some time before sending acknowledgment. The waiting time is a sum of

two components, the first component is deterministic and the second is random. we

used the random time to prevent multiple nodes that have the same number of data

form sending synchronously. The waiting is inversely proportional to the number of

4.4 Data Replication 63

data messages to be sent. Therefore, physical neighbor with more data items will send

an acknowledgment by sending a DATA_ACK before other nodes. Upon receiving a

DATA_ACK from the joining node, it will ask the answering node to send the data. This

message is a broadcast that contains the position of the responding node, thus it will be

heard by other nodes and will keep them from responding (Algorithm 4.14).

Algorithm 4.13: Handle DATA_REQ Messages

1: Receive (DATA_REQ, N) packet from node Ni
2: computecommondata
3: wait
4: if !StopSending then
5: Send(DATAACK)
6: end if

Algorithm 4.14: Handle DATA_SEND Messages

1: Receive (DATA_REQ, NPos) packet from node Ni
2: if N Pos == P then
3: SendData(Ni)
4: else
5: StopSending ← 1
6: end if

The advantage of this approach is that nodes re-claim data items on demand and

there is no need to periodically refresh the replica nodes. Thus if there is no node

failure there will be no periodic refresh. Recall that VCP routes all packets (data and

queries) to the responsible nodes. Thus the query will reach the node closest to the

desired key. If the node has the desired data item it will answer the query. Otherwise it

will broadcast the query to the physical neighbors, thus if the data item still exist in the

network, it will be found (also here we need only one message to send the query to all

neighbors). Therefore there is no extra communication overhead for querying a data

item.

Replication on the Adjacent Neighbors

The second local replication technique utilizes the cord for replication as depicted in

Figure 4.7. This replication scheme ensures exactly 2 f + 1 copies of the inserted data

item independently from the network’s node degree, where f is the maximum number

of replications on each side of the cord. The node hosting a data item has to replicate

64 4.4 Data Replication

put(D)

D
D

D

D
D

get(D)

Figure 4.7: Replication of the inserted data on adjacent neighbors on the cord

this data on the f nodes succeeding and the f nodes preceding it on the cord. Because

adjacent nodes can be located not only in the radio range of the node, broadcasting

data items is not feasible. Hence the replication is done using unicast messages.

4.4.2 Global Replication

Relying only on local replication is of little use if all the nodes in an area fail at the

same time (e.g., a fire destroys all nodes in a region). Therefore we also developed a

global replication scheme (Figure 4.8). This replication approach is more resilient to

clustered failures than local replication techniques. It stores each data item multiple

times at dispersed locations (using multiple hash functions).

At each location we then use the local storage approach. The reason behind using

local replication in addition to the global replication is to cut back on multi-hop data

refreshing. Otherwise, the only chance to restore a data item after a node holding a copy

fails, is to schedule data refresh messages by other nodes holding this data item. Given

that these replica nodes can be far away from each other, the data refresh approach is

very costly. To query a data item, three strategies can be used. We call the first strategy

“sequential querying”. Here, after asking the first location and, if the query did not find

the data item, it continues from this location to other possible storage locations. If the

sink node did not get answer it will retry the same query. This method is communication

4.4 Data Replication 65

put(D)

D
D

DD

DD

D

D
D

D

D

get(D)

DD

DD

D

D

D

D

D

DD

D
D

D
D

D

Figure 4.8: Replication of the inserted data to dispersed locations on the cord, applying
the local replication technique at each location

efficient in the best case (finding the data at the first visited location or all locations

have the data item) and it performs good in average cases, but it performs very bad in

the worst case and can imply a very long delay.

The second strategy is to use multiple querying, i.e. to ask the first location and

then, if there is no response, ask the second location and so on (modulo m). This

method is better than the fist one in the worst case, but it can also imply a long

delay. The last technique is parallel querying, i.e. to ask all locations at the same time.

This method performs bad in the best case compared to the sequential and multiple

querying methods, yet it has an optimal performance in the worst case. We used in our

implementation the parallel querying method, nevertheless the other two methods are

also applicable.

4.5 Further Extensions

At the beginning of this chapter we gave a detailed design of the two essential parts

of VCP to work: the construction of the network and the routing algorithm. Then we

described how to route around node failure and how to replicate the data in order to

increased data availability when nodes fail. In this section we provide some extensions

of VCP that can be useful for special applications. If the keys are supposed to be

66 4.5 Further Extensions

uniformly distributed, then a uniformly distributed node positions can be desirable,

therefore we introduce and approach for cod refinement. In the second extension we

describe a reactive implementation of VCP, which can be useful for delay tolerant sensor

networks. If the nodes are supposed to store data for long time, it is highly probable that

the storage capacity of node get exhausted. Therefore, cooperative storage strategies

are worth investigating.

4.5.1 Refinement of the Cord

As previously stated, greedy forwarding guarantees reachability between any two nodes

in the cord, however there is no guarantee of a uniform distribution of the relative

positions on the cord. Therefore if the cord is supposed to be used as an in-network

storage mechanism and if the data is supposed to be uniformly distributed, then it

is desirable to have a uniform cord. To refine the cord each node has to compare

its position with the position of its predecessor and successor. If its position is far

away (based on a refinement factor) from the middle, then the node should adjust its

position towards the middle. To maintain a consistent cord it is important to block the

predecessor and the successor before changing the position of the node. Otherwise

it can happen that the successor position value becomes less than the node’s position

value or the predecessor position value becomes greater than node’s position value.

This refinement can be done during the construction of the cord or after constructing

the cord and before starting to use the cord to store data.

There are two possible ways to do this refinement. The first possibility is to send

special blocking messages (unicast) to the predecessor and the successor. Upon receiving

a block acknowledgment from both the predecessor and the successor, a node can

adjust its position. The second possibility is to integrate the refinement with the hello

messages instead of sending special refinement messages. As shown in Algorithm 4.15

we extended the hello message with an extra field. During refinement this field is

either set to refineblockreq if the node’s position needs to be adjusted or it is set to

refineblockack if the node is already blocked. Otherwise a normal hello message

is sent. Upon receiving this hello message the normal hello message handler will be

used in addition to testing the type field as depicted in lines(17–29) of Algorithm 4.16.

4.5 Further Extensions 67

Algorithm 4.15: Hello Refinement

1: if ((Time()> star t r e f inet ime)AN D(Time()< endr e f inet ime)) then
2: if (!Blocked)AN D(ABS((P−M yPrePos)> re f ine f act∗ABS(M ySuccPos−P)))

then
3: T ype← re f ineblockreq
4: else if (Blocked) then
5: T ype← re f ineblockack
6: end if
7: else
8: T ype← hel lo
9: end if

10: SendHello(T ype)

Algorithm 4.16: Handle hello Messages with Refinement

Require: Locally stored state of all neighbors in set N
Ensure: Refine the cord in addition to Maintain neighbor set N and set virtual address

1: Receive neighbor information from node Ni
2: if Ni /∈ N then
3: N ← Ni
4: else
5: Update Ni ∈ N
6: end if
7: if Ni == M ySucc then
8: Update M ySucc
9: end if

10: if Ni == M yPre then
11: Update M yPre
12: end if
13: if P ==−1 AND (Time() − OldTime) > Tps then
14: OldTime← Time()
15: SetMyPosition()
16: end if
17: if (T ype == re f ineblockreq)AN D(!Blocked)AN D(Ni ∈ (mySucc, myPre)) then
18: Block(Tb)
19: end if
20: if (T ype == re f ineblockack)AN D(!Blocked)AN D(Ni ∈ (mySucc, myPre)) then
21: if (Ni == M ySucc) then
22: my_succ_blocked ← 1
23: end if
24: if (Ni == M yPre) then
25: my_pre_blocked ← 1
26: end if
27: if (my_suc_blocked)And(my_pre_blocked) then
28: P ← (Position(M ySucc) + Position(M yPre))/2
29: end if
30: end if

68 4.5 Further Extensions

4.5.2 Reactive Implementation

The join operation of VCP, discussed in Section 4.2, is relying on periodic hello messages.

However it is possible to implement VCP reactively; when a new node wants to join the

cord, it simply asks for hello messages by broadcasting a hello message request to its

physical neighbors. The physical neighbors that already joined the network respond by

broadcasting a hello message. This way it is not necessary anymore to send periodic

hello messages during the joining operation. The same holds true for updating routing

tables. Instead of periodically updating the routing tables (physical neighbor tables)

using the hello messages sent by physical neighbors, routing table can be updated

on-demand by sending a hello request to the physical neighbors when there is a data

item that needs to be routed. On one side this implementation saves hello messages

which eventually saves power, on the other side this implementation imposes an extra

delay.

4.5.3 Cooperative Storage with VCP

Because sensor nodes have limited resources, it can happen that the storage capacity of

a single node gets exhausted. VCP offers a cost-effective mechanism to find alternative

nodes which can offer part of their storage capacity to store data in place of other nodes.

These nodes in VCP are the successors and predecessors on the cord. This way, if the

storage capacity of a node is full, this node can send new data messages to either its

successor or its predecessor. If the successor (or predecessor) is also full, it can in turn

send new data items to its own successor (or predecessor) until reaching a node that can

store the data item. To answer queries if a data item is not available at the node itself,

it should ask its proceeding and succeeding node. To avoid the extra search overhead

that can be introduced as a result of long searches on the preceding and succeeding

nodes, Bloom filters [86] can be used. Bloom filters offer a way of representing a set

of elements as a compact summary supporting membership queries. Consider a set of

n elements to be represented using an m-bit long vector, initially set to 0. A set of k

independent hash functions h1, ..., hk is chosen where each function maps each item in

the universe to a random number uniformly distributed in the range 1, ..., m. For each

element x to be represented, the bits at positions hi(x) are set to 1 for 1≤ i ≤ k. A bit

may be set to 1 multiple times. This bit vector serves as a summary. To find out if an

4.5 Further Extensions 69

element y is in the data-list, we check the positions h1(y); ...; hk(y) in the bit vector. If

they are all set to 1, then we can infer that y is in the data-list, though there is a (small)

probability of being wrong (false positive). The critical feature of a Bloom filter is that

the probability of false positives decreases exponentially with u if the number of hash

functions k is chosen optimally. It is shown in [87] that the probability of a false positive

is given by (1− (1− 1
m
)nk)k. We now explain how this concept can be applied to the

problem of data storage in a sensor network. Each node maintains a Bloom filter for its

successor and its predecessor. Thus the Bloom filter can be used to represent compactly

which nodes store data on behalf of other nodes. By Bloom filter based matching, we

can infer if a node stores a certain data item for other nodes. Hence a node can then

forward the query to a restricted subset of the adjacent nodes.

4.6 Summary

In this chapter we have described VCP in detail. VCP is a virtual position based routing

protocol that provides traditional DHTs services tailored to WSNs. VCP maintains

the advantages and avoids the drawbacks of the protocols mentioned in the Related

Work chapter. Unlike other, similar routing protocols that rely on local information

for routing, in static networks greedy forwarding in VCP guarantees packet delivery.

Because greedy forwarding relies only on local information, VCP scales good. The

joining of a new node affects at most two nodes (the successor and the predecessor).

The virtual position maintenance as well as the protocol itself are simple. Therefore VCP

can be implemented on top of any MAC layer. We have also presented in this chapter

a failure management approach to route around failing nodes, as well as replication

approaches to improve persistence of data when nodes fail. We have further discussed

some extensions that can be used in specific scenarios.

70 4.6 Summary

Chapter 5

Simulation and Evaluation

We evaluated VCP in a detailed simulation using OMNET++. The aim of the simulation

part is to give a detailed performance analysis of VCP under different scenarios and to

compare it with other similar protocols. Later, in Chapter 6 aiming to show that VCP’s

feasibility to run on low resource sensor devices, we implemented a prototype on sensor

nodes in our lab.

We simulated the algorithm on a variety of scenarios [88–90] including different

network sizes, data rates and topologies. A detailed description of the scenarios is

provided in Section 5.2. Unless stated differently, we performed ten replications of

each simulation experiment with different random seeds. In order to provide a better

understanding of the performance of VCP, we compared VCP to standard ad hoc routing

technique. This comparison outlines the usability of VCP especially in typical WSN

scenarios where nodes are less mobile compared to MANETs. The most recent proposals

for routing protocols in both the WSN and the MANET domain have been evaluated in

comparison with AODV. We decided to explicitly use DYMO for our comparison as it

is the designated successor of AODV. To compare the performance of VCP with prior

work in DHT-based routing protocols for wireless sensor networks, we also simulate

VRR [78], which has been shown to offer higher packet delivery ratios and lower

latencies than several other ad-hoc routing protocols [78].

5.1 Simulation Environment

For the analysis of the VCP protocol, we implemented a simulation model of the protocol

in OMNeT++ [91]. OMNeT++ is a discrete-event simulator which is free for academic

71

72 5.1 Simulation Environment

Figure 5.1: Simulation setup: nodes are deployed either in a grid or randomly a
rectangular area

use. In addition, there are some extensions, such as the INET framework and the

Mobility framework, which have been released under the GNU General Public License

(GPL). We used the INET framework that provides detailed simulation models of the

MAC and the physical layer. In our simulation, we built our protocol on the top of the

IEEE 802.11 Wireless LAN protocols. An example of a 25 node network is depicted

in Figure 5.1. The nodes are deployed in a grid on a rectangular area. Each node

can communicate only with its direct neighbors that are aligned either horizontally or

vertically, but not on the diagonal. The figure includes the virtual relative positions and

the virtual cord connecting all the nodes.

For all communications, the complete network stack is simulated and wireless

modules are configured to closely resemble IEEE 802.11b network cards transmitting

at 2Mbit/s with RTS/CTS disabled. On the MAC layer, each correctly received unicast

packet is followed by an Acknowledgment (ACK) to the sender, which retransmits the

packet up to 7 times until this ACK is received. Nevertheless, all routing protocols

do not receives notification from the MAC layer when a packet exceeds its maximum

number of retransmit retries. For the simulation of radio wave propagation, a plain

free-space model is employed, with the transmission ranges of all nodes adjusted to a

fixed value of 50m. In order to compare the results with measurements for VRR [78]

and DYMO [92], all simulation parameters used to parameterize the modules of the

INET Framework are summarized in Table 5.1. For the constants that used as internal

parameters of DYMO, we used the values presented in the paper [92] which reflect the

5.1 Simulation Environment 73

Table 5.1: INET Framework Module Parameters

Parameter Value
mac.address auto
mac.bitrate 2 Mbit/s

mac.retryLimit 7
mac.maxQueueSize 14 Pckts

mac.rtsCts false
decider.bitrate 2 Mbit/s

decider.snirThreshold 4 dB
snrEval.bitrate 2 Mbit/s

snrEval.headerLength 192 bit
snrEval.snrThresholdLevel 3 dB

snrEval.thermalNoise −110 dB
snrEval.sensitivity −85 dB

snrEval.pathLossAlpha 2.5
snrEval.carrierFrequency 2.4 GHz
snrEval.transmitterPower 1 mW

channelcontrol.carrierFrequency 2.4 GHz
channelcontrol.pMax 2 mW

channelcontrol.sat −85 dBm
channelcontrol.alpha 2.5

suggested values from IETF MANET working group. For the constants of VRR we stick

with values used in the original paper [78].

5.2 Evaluation Metrics and Scenarios

Throughout our simulations, we used a number of metrics to evaluate and compare the

performance of the protocols. We now present definitions and explanations for these

metrics.

• Stretch ratio: the ratio between length of the path traversed by a routing protocol,

in comparison with the optimal shortest paths in the network graph. If all packets

are all transmitted with the same transmission power, this metric also reveals the

radio power consumed to deliver a packet from the source to the destination.

• Join messages overhead: the number of control messages nodes need to join the

network.

• Success rate: the ratio between the number of packets originated by the applica-

tion layer sources and the number of packets received by the final destination.

This metric represents the useful work done by a routing algorithm.

74 5.2 Evaluation Metrics and Scenarios

• Path length: how long are the routes found by a routing protocol?

• End-to-end delay: the delay a packet experiences on its path from source to

destination. The path length can also serve as an indicator for the delay, but the

two metrics may vary due to congestion in the network.

• MAC layer collision ratio: the ratio between collided packets and received packets

on the MAC layer at the sink node. This metric indicates the overhead a routing

protocol causes on the underlying layer.

• Total number of transmitted messages: the number of messages transmitted

by all nodes during the simulation experiment. This is an important metric for

comparing the protocols, as it measures the scalability of a protocol, i.e. the

degree to which it will function in congested or low-bandwidth environments,

and its efficiency in terms of node battery power consumption.

• Refresh messages: the total number of retransmitted data copies during the

simulation. This metric indicates the communication overhead imposed by a

protocol to increase data availability during node failure.

• Query messages: the total number of messages used to retrieve data items during

the simulation. This metric indicates the communication overhead imposed by a

protocol to find data items during node failure.

We used these metrics to evaluate the protocols in three different scenarios. In

the first set of simulation experiments, the goal was to show that VCP guarantees

reachability with a low cost and to show that VCP is a scalable protocol. Thus we

measured the join overhead, stretch ratio, packet delivery ratio, and end-to-end delay

under different network sizes and data rates. Additionally we examined the cord

refinement.

We varied the network size from 25 to 400 nodes and adapted the size of the

simulation area to keep the node density constant. Moreover, we studied two different

traffic patterns. After joining the network, each node uniformly selects a start time in

the time interval [0, 100) s. Then, in the first traffic scenario, we evaluated bursty traffic,

i.e. all messages were sent with a uniformly distributed inter-departure time in [0, 1) s.

In the second traffic scenario, a constant packet stream was analyzed to compare

the protocol behavior under artificial traffic conditions. We varied the traffic load in

5.2 Evaluation Metrics and Scenarios 75

Table 5.2: Summary of simulation scenarios in the first set of experiments

Input Parameter Value
Number of Nodes 25-400

Playground size 200m× 200 m to
820 m× 820 m

Node placement Grid, Random
Data rate CBR, 1pps . . . 400pps or

VBR 2pps . . . 400pps
Initialization time 40s

Start of data transmission uniformly distributed in
[0, 100) s

Number of data
transmissions

100

Destination node Upper left node or Random

the range of 1pps . . . 400pps (packets per second). For statistical correctness, each

experiment was executed five times for different data item keys. Table 5.2 summarizes

the scenarios used in the first set of simulation experiments.

In the second set of experiments we evaluated VCP in comparison with DYMO and

VRR. In this comparison we explored the performance of these protocols regarding the

path length, end-to-end delay and MAC-layer collisions. In these experiments we fixed

the network size at 100 nodes. Nevertheless, we changed other parameters as shown in

Table 5.3. We also inspected the routing resilience to node failures, which indicates the

ability of a routing protocol to withstand and adapt to node failures. We measured the

success ratio when a part of the nodes are flipping between on and off state.

In the last set of experiments we investigated different data replication schemes.

Here we investigated how VCP can be used to keep data available to queries in spite of

node failures. Table 5.4 summarizes the parameters of the performed experiments.

We visualized the results using box plots. We chose box plots because they are

more robust in the presence of outliers than the classical statistics based on the normal

distribution. In a box plot, the median is used instead of the mean to indicate the central

tendency. The interquartile range (IQR) is a robust way of describing the dispersion

of the data. The IQR is the range within which the middle 50% of the ranked data

are found. This is also the range between what is called the lower quartile value and

the upper quartile value. The median and the IQR are used to construct the box. It

has a height equal to the IQR and is drawn so that it starts at the lower quartile value

and stops at the upper quartile value. A horizontal bar is drawn at the height of the

76 5.2 Evaluation Metrics and Scenarios

Table 5.3: Summary of simulation scenarios for experiments comparing several protocols

Input Parameter Value
Number of Nodes 100

Playground size 180m× 180 m or
400m× 400 m

Node placement Grid and random
Data rate CBR, 1pps or 0.1 pps

Initialization time 400s
Start of data transmission uniformly distributed in

[400,418] s or [400,580] s
End of data transmission 490s or 1 300s

Destination node Upper left node
Fraction of failing nodes 0%, 20 %, 40%, 60 %, 80%,

or 100%
On time uniformly distributed in

[0,120] s
Off time uniformly distributed in

[0,60] s
Start of node failures 400s
End of node failures 1300 s

Table 5.4: Summary of simulation scenarios for data replication experiments

Input Parameter Value
Number of Nodes 50-400

Playground size 160m× 160 m
Node placement Grid and random

Query rate 2qps
Query period 300s

Data Types 20
Sink node Upper left node

Fraction of failing nodes 0%, 20 %, 40%, 60 %, 80%,
or 100%

On time uniformly distributed in
[0,120] s

Off time uniformly distributed in
[0,60] s

5.2 Evaluation Metrics and Scenarios 77

median. A provision is also made for the representation of extreme values. An upper

extreme value limit is computed as the upper quartile range +1.5× IQR and the lower

extreme value limit as the lower quartile range −1.5× IQR. The box plot emphasizes

the presence of outliers by marking them with a circle.

5.3 Performance Evaluation of VCP

In this section, we show the first set of simulation results. The results have been

collected from several simulation experiments to investigate the impact of different

parameters like network size and traffic load on the performance of our protocol.

5.3.1 Join Overhead and Join Duration

At the beginning we explore the communication overhead and the time required to

join the VCP. To measure the communication overhead in the joining operation, we

count the number of control messages sent by each node to join the network in the

initialization phase. The left-hand side of Figure 5.2 shows the number of messages

sent by each node to join the network. On the x-axis we vary the number of nodes in

the network, and the y-axis shows the number of sent packets by each node to join the

network. The figure confirms that the control messages needed to join VCP are very low

and independent from the network size. For example, when starting a network with

400 nodes, the average number of control messages per node is 4 messages. In contrast,

a single flood of the network requires 400 messages. Moreover, it should be noted that

the control messages in VCP are lightweight: its payload contains only few parameters

as discussed in Section 4.2. We also measured the time when the last node joined the

network. As you can see in the right-hand side of Figure 5.2, the time increased with

increasing network size. This increase is a result of the fact that the virtual position is

propagated throughout the network starting from the node that was pre-programmed

as first node. Nevertheless, the time required to build the network is reasonable. We

can see from the figure that even for the largest network all nodes were active in less

than one minute.

As we explained in Section 4.2, the current implementation uses hello messages

to stimulate new nodes to ask their physical neighbors who are already active in the

network for a virtual position. Since VCP uses only local information for the joining

78 5.3 Performance Evaluation of VCP

●●

●●

●

●

●●

●

●

●●●●●

●

●●●●● ●●●●●

●

●●●●● ●●●●●● ●●●●

●

●●

●

● ●●

●

●● ●●●●●●

0
5

10
15

20

Network Size

Jo
in

 O
ve

rh
ea

d
(m

es
sa

ge
s)

25 49 100 144 225 256 289 400

VCP

●
●

0
10

20
30

40
50

Network Size

T
im

e(
s)

25 49 100 144 225 256 289 400

VCP

Figure 5.2: Initialization phase: number of control messages sent by each node and the
required time in order to join the network

operation, concurrent joins of multiple nodes in different regions of the network are

allowed. This has no effect on the consistency of the virtual cord. A problem may arise

if multiple nodes join the network simultaneously in the same region of the network.

In that case, the same position might be assigned to multiple nodes. We solved this

problem by introducing the blocking mechanism discussed in Section 4.2. Thus, each

node in the networks receives a unique virtual position.

5.3.2 Quality of Routing Paths

In order to inspect the quality of the routing paths, we examined the stretch ratio, i.e.

the ratio between the length of the path traversed by VCP and the shortest path. For

different network sizes, we measured the path length from all nodes to the upper left

node. Recall that for a network of size n which is deployed in a rectangular area and in

which nodes can communicate only with their direct neighbors, the average path length

is lavg−c =
p

n− 1.

Figure 5.3 shows the measured stretch ratio in the simulations as we varied the

network size from 25 to 400 nodes. The stretch ratio increases with the network size,

however, this increase is reasonable and the mean and median stay below 25%. This

low stretch level outlines the optimal path selection of VCP.

5.3 Performance Evaluation of VCP 79

●
●

●

0.
0

0.
5

1.
0

1.
5

2.
0

Network Size

S
tr

et
ch

 R
at

io

25 49 100 144 225 256 289 400

VCP

Figure 5.3: Stretch ratio for different network sizes

5.3.3 Influence of the Network Size

We performed a series of experiments to explore the effect of the network size on the

performance of VCP. We simulated networks consisting of 100, 200, 300 and 400

nodes. We deployed the nodes randomly in rectangular planes of sizes 200 m× 200m,

300m× 300 m, 400m× 400m, and 500 m× 500m, respectively. Each node in the

network sends one packet per second to a random destination. All nodes start sending

at a random time in the interval [100, 280] s and stop sending at 490 s.

Figure 5.4 shows the results of the ten replications we performed for each network

size. It is clear that the path length increases with the network size in a logarithmic

manner. However, there are a few nodes that used a path length significantly larger

than the shortest path to reach the destination. Taking a look on the average and mean

path lengths, they are almost half of the worst case shortest path lavg . Also, more than

75% of the nodes have a path length smaller than lmax .

For instance, if we assumed an optimal situation in which the nodes are deployed

uniformly with adequate node density, then for a network with an area of 500 m× 500m

and nodes with a communication range of 50m, lmax = 15(based on the euclidean

distance between two corners). The results show that for this network 75 % of the

paths were less than 12 hops, which is an indication of good path selection. On the

other hand, the end-to-end delay is proportional to the path length as a result of the

80 5.3 Performance Evaluation of VCP

Figure 5.4: Performance evaluation results of path length, end-to-end delay and success
rate with increasing network size

propagation delay because it is not necessary to queue packets. Moreover, the success

ratio was 100% for most network sizes. The packet losses at the lower layers cause a

slight decrease in the success rate for the largest network size, but even then it is still

above 99.6%.

5.3.4 Influence of the Traffic Load

To study the behavior of our protocol under varying traffic load, we kept the number

of nodes in the network constant at 100 nodes. Each node in the network sends 100

packets to the same destination. For the first experiments, the time between successive

packets was randomly selected in the interval [0, 0.5] s, which is equivalent to sending

at least 2pps. Afterwards, we decreased this time interval down to [0, 0.005] s, which is

5.3 Performance Evaluation of VCP 81

l l l l

l

l

l

l

l

l

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

lo
s
s
 r

a
ti
o

2 4 8 16 32 64 100 128 200 400

data rate (packets/s)

llllllllllllllllllllllllllllll
llll
ll
ll
l
llllllllllllllllllllllllllllllllllllll lllll

lll
llllllllllllllllllllllllllllll
llllllllllllllll llllllllllllllll

l
lllllll
llllllllll
llllllllllllllllllllllllllllllllllllll
lll
l
lllllll
l
l
lllllllll
llllllll
lll lllllllllllll

lll
lllllll
l
llllll
l
lllllllllllllllllllllllllll
l
l
ll
lll
llllllllll
ll
ll
llllllllllllll
ll
lllll
ll
lll
ll
l
l
l

ll
l
l
l
l
ll
l
l

lllllllllllllllllllll
llllllll
ll
llll
l
lllll
l
l
l
llll
llll
l
ll
llll
llllllllllllllllllllllllll
l
lllllllllllllllllllll
l
lllllllllllllllllll
l
ll
lllllllllllll
l
lllllllll
llllllllllllllllllllll
llllllll
llllllllllllllll llllll

l
l
l
l
lll
lll

l
ll
l
l

ll

llll

l

l
l

ll

l
ll
llll

ll

l

ll

l

l

ll
l

lll

ll

lllllll
l
ll

l

ll

lllllllllllllll
l

l

l
lll
l
ll
l

lll

l

l

llllll
lllll

l

ll

l

l
ll
l

ll

l

l

llllll

l
l

l

l

ll

l

ll
l
l
lllll
l
ll
l

lll
l

lll

l
llll
l
l

l

l

l

l

l

l

l

l

l

lll

l

l

ll

l

ll
l
l

llll
l

l

llllll

l

l

l
l

l
lll
ll

l

lll
l
lll
l

l
ll
l
l

l
l

l

l

ll

l

l
lll

l
ll

llllllll
l
lll
l
ll

lll

lll
llllllllll
lllll
llllllllllll
l
llllllllllll
l
lllllllllllllllll
llllllllll
l
l

l
lllll
lllll
l
l

l

l

llll
ll
l
l
ll
l
l
l
l
lll
llllllllllllllllllllllllllll
lllllllllllllllllll
llllll
lll
ll
l
llllll
ll
l

l

llll

l

l

ll

ll

l

lll
lll

l

l

llllll
lll
lll
l
l
l
lllll
lll
lllll
llllllllllll
llllll
ll
lllllllllllllllllllllllllll
l
lll
llll
lll
l
lllll
lllllllll

l

ll

l

ll
l
l

l

ll

l

l

l

l

l

l

l

ll

l
l

llll

l
llll

ll
ll

lll

l

l

lll

ll

l

l

l

ll

l

l
ll

l

l

llll

l

l

ll

ll

l

llll

lll

ll

ll

lllllll
ll
llll
l
l
lll
lllllllllll
lllll
l
lll
lllllllllllllllll
lllllllll
lllllll
l
llllll
l
l

l

l
lll
llllllllllll
lllllllll
lll
ll
lll
ll
l
l

l

l
l
l

lll

l

l

ll

ll
l
l
l

l

l

l

l

l

lll
l
l
l

l

ll

l

l

lll

l

ll

l

l
l

l

l

lll

ll

ll
ll

l

l
l

ll
l

lll

lll

lll

l

l

ll

l

l

l

lllll

l
l

l

l

ll

ll

l

l

l

lll

l

l

ll

l

l

ll

l

l

l

lllll

ll

ll

l

lll
l

l

l
llllll

ll

lll

l

lll
l

l

l
l

l

l

llllll

ll

l

l
l
lll
llllllllllll

l

lllll
l

lllll
lll
ll

lll

l

ll

l

lll
ll

l

l
l

l

l

lllll

l

l
llll
l

lll

l

ll

l
ll
lll

lllll

l

lll
lll
l

l

ll

l

l

ll

llllll
l
llll
ll
lllllllllll
l
llllllllllllll
llll
ll
l
lllllllllllllllll
lll
llll
llll
lll
lllllll
lllllllllll
lll
l
lllllll
l
l
lll
lllllll
ll
lll
lllll
llll
llllll
l
llllllll
lll
l
l
lllll
llllll
l
l
ll
l
lllll
l

llllll
ll
llllllllllllll

l

ll

ll

llllllll

l
l

ll
l

l
ll

lllllllll

l

l

ll
l
lll

lll
lll
l
ll

l

lll
l

l

l

ll

llll
l

l

lll
lll
ll

llll
ll
llllllllllllllll
llll
l
llll
ll

l

lllllll
llll
l
lll
lllll
llllll
llllll
ll
llllllllllllll
lll
lll
ll

l
ll
lllll

l

llllll
llll
l

l

l

ll
l
l

ll

ll
llllll
ll
l

lll

llll

l

l
l

l

l

ll
l
l

ll
l
ll
l

l

l

l

l
l

l

lllll

l

l

l

l

ll

l

l

ll

lll

llll

ll
ll

l

l

l

l

ll

lll

ll

l

lll

lll

l

l

lll

l

lll

l

lll
l

l
ll

l

lll

l
ll

l

l

l

ll

lll

ll

lllll

l

ll

lll

l

lllll

l
l

lll

ll

ll

l

l

l

l

l

lll
l

ll
l

l

ll

l

l
ll

l

l

l

l

ll

l

lll

lllllllll
lll
l
ll
l
l
lll
llllll

l

lll
l
l
lllllllllll

lll

lll

l

l

l

llllllllll

lllllllllllllllll
lllllll
llll
lllll
lllllll
lllll
ll
llllllllllllll
lllllllllll
llll
l
l

l
llllll
llllllll
l
lllllll
lllll
l
ll
lllll
llllll
lll
l
lllllll

ll

lllll

l

ll

ll

lll

l

l

l

llll

ll

ll

ll

l

l

ll

l

l

ll

lll

l
ll

l

l
l

l

ll

l

l

l

l

l

ll

l
llllll

l

lll

ll

lll

l

l
ll
l

ll

l

l

ll

l
ll

l

ll

l

ll

l
lll

lll

l

l

l

l

l

lll

l

l

l

l

l

l
lllllllllllll

l

l

l

llll

l

l

ll

ll

l

l

ll
l

l

l

ll

l

l

l

lll

l

ll

lllll

ll
llll
l

ll

lll

ll

l
llll

l

l

ll
l
ll

lllllllllllllllll
lllllll
llllllll
ll
l
ll
llllllllll
l

l

l

ll

l
l
lll
ll

l

ll

l

l
l

ll
l

l
l

l

l

l

ll

l

l

l

ll

l

ll

l

l

llll

l

l

l

l

l

lll

ll
ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

ll

ll

l

l

l

l

l

l

l

l

l

lll

l

ll
ll
l
l

l

l
l

l

l

l

ll

ll

ll

llll

l

lll
lll

ll

l

l

l

l

ll

l

lll

l

l

l

ll

l

l

l

l

l

l

ll
ll

l

l

lll

ll

l

l
l

lll

l

llll

l

lll

l
l

l

l

ll

l
l

l

lll

l

l

l

llll

l

l

l

lll
lll

ll

l
l

ll

l

l

lll

l

l

ll
l
l
l
lll
lllllllllllll
lll

l

ll
l

l

l

llllllllllll
l

ll

l

l

llllllll
lll

ll

llllll

l

llllll
l
ll

l

l

l

llllll

l
lllllllllllll
lllll

ll
llllll
llll
lll
l
lll
llllllllllllllllllllllllll
llllllll
lllll
ll
ll
ll

lll

l

lllllll

l

lllll

l

lllll
lllll

l
l

lll

llllll
l

ll

llllll
ll
lllllllllll
lll
llllllllll
l
ll
l
llllllll
lllllllll
lllll
llllll
l
llllll
llll
llll
lllll

l

l

ll

l

l

ll

l

l

lll

ll

l

l

llllllll
llllllll
ll

l
ll
lllllll

llll
l
lll
ll
lllll
llll
lll
lllll
llllll
llllllllllllllllllll
l
l

l
ll
llll
llllllll
lllllllll
ll
lll
lll
llll
lll
ll
lllll
l

llll
l
ll
l

llll

ll

lll

lll

lllll

l

l
l

l

l

l

l

ll

ll

l

l

l

l

l

llll

l

l

lll

ll

l

l

ll

l

ll

llll

l

lll

l

l

l

l

l

l

ll

ll

l

ll

l

l

ll

l

l

l

l

llll

l

ll

l

ll
llllll

l

l
lll

ll

l

ll

llll

ll

llll
lllll
lll

ll

ll

ll
ll
l

l

llll

llllll

l

llll
ll
l

ll
lllll
lllllllll
lllllllllll
lllll
lllllllll

lllllllll

ll
llll

llll
ll
llllll
lllll
lllll

l
l

lll

l

l
l

ll

ll

llllll

l

l

l

ll

l

ll

l

llllll

l

ll

l

ll

ll

l
l

l

ll

ll

l

lll

l

l
l

l

ll

llllll

lllll
ll
ll
lllll
l
lllllll
llllllll
ll

llll
ll
l
l

ll
ll

l

l

l
l

l

l

ll
ll
ll

l

l

l
l

l

llll

ll

l

l

l

l

ll

l

l

l

l

ll

l

ll

lll
l

l

ll

l
l

l

l

l

lll

l

l

lll

l

l

l

l

l

l

l

l
l

l

l
ll

l
l
l
l

l

l
l
ll

l

l
llllllllll
l
l
l

ll

ll

l

l

l
l

l

llll

l

llll

l

l

l

llll
ll

l

l

l

l

ll

l

l

l

lll

lll

l

l

l

l

l

l

l

l

ll

ll

ll

ll

l
lllll

l

l

l

lll

l

lllll
l

l

l
l

l

l
l

l

l

lll

l
ll
l
lll

l
ll
lllllll
lllllll
llllllllllllllllllll
llll
lllllllllll
lll
l
llllll
l
lllllllllllll

l

lllll
lllllll
l
l
ll
l
lll
llllll
l
lll

lll
ll
llll
lll
l
lll

llllllll
lll
llll
l
ll
l
l
l

lll

l

l

ll
llllllllll
llll
lllll
llllllll
lll
llllllll
lllll
ll

llllllllllll
l

lll
ll
l

l
lll
ll
l
ll
lllllll
lllllllllllll
llllllllllllll
l
l
lllll
llll
lll
llllll
l
llllll
llllllllllllll
lllllllllllllllllllllll

ll
l

l

ll

l

l

l

llll
ll

l

llllllll
llllllllllllll
lll
l
llllllll
lll
ll
lllllll
l
lllllll
llllllll

lll

l

l

llllll

lllllllllllllllll

lll

llllll
l

l
ll

l

lll
llll

lll

llllll
l

l
l

l
ll
l

l
lllllllll

l

ll

lll

l

l

ll
lllllllllllllllllll
lllllllll
lllllll
l

ll
l

l

l

lll

l

l

l

ll

l

lll

ll

l

l

ll

l

lll

l

l

ll

l

lll

lll

ll

l
ll

l

ll

l

llll

ll

lll

l

lllll

l

l

l

llllll

l

l

lll

l
l
l
lllll

l

lllll
lllll

llllll
lll
ll
l
ll

ll
ll
l
l

llll
l

ll
ll
ll

l

l

l

l

l
l

l

ll
l

ll

l

l

l

l

ll

lll
lll

l

lll

l

l

l

ll

l
llll
l

l

l

l

l

l

l
l

ll

l

l

l

l

l

ll

l

l

ll
l

l

l

l

lll

l

l

l
ll

l

l

l

l

l

l
ll

l

ll

ll

l

ll

l

l

ll

l

l

ll

l

l

l

l

l

ll

l

ll

lll

lll

ll

l

l

l

ll

l

ll

l

l

l

ll

ll

l

l

l

lll

l

llll

ll

ll

lllll

l

l

l
llllll
l

ll

lll

l
l

l

ll

lll
ll

ll
l

lll
ll
ll

lllllllllllll
ll
ll
l
l

l
lll

l
ll
l
l

l
ll

ll

lllll
lll
llllll
llllll
llllllllllllll
llllllll
lllll
lll
l
lllllll
lllllllllllll
l
lllllllllllll
l

l
llllll

lll
lll
ll
l
ll
l
ll
l

ll
ll
lllll
ll
lllllllllllllllll

ll
l
l

llllll
l
lllll
ll
llllll
llll

l

l

ll
ll
lllll
lll
lllll
lll
lllllll
lllllllllllll
lllllllllllllll
llllllllllll
l
lllll
l
llllllll

lllll
lll
lllllllllllllllll
llllllll
lll
lllllll
lllll
lllllllllllllllllllll

lll

ll

ll

lllll
ll

l

lllll

l

l

l

lllll

l

llllll
llllllll
lllll
l
lll

lllllll
lll
llllll

l

lll

l

l

l

l

l

llllllllllllll
llll
l

ll

l

l

lll
lllll
ll

llllllll

llll
lllllll

l
ll

ll

l

lll

l
ll
l
lllllllll
lllll

lllllllll
lll
lllllllll
llllllllll
llll
llllllllllllll
lll
l

lll
ll

l

l

lll

l

llll
l
lllll

l

llll
ll

l

ll
llll
l
lllll
l

l

llll
l

ll

ll

l

l

ll

l

l

l

l

llll

l

l

l

l

l

llll

l

l

l

l

l

l

l

ll

ll

llllllllllllll
lllllll

llll
l

l

ll

l

lll

l

l
l

l

l

l

ll

lll

l

lll
l

ll

llll

ll
l

l

l

l

lll

l

l
l
l

l

l

llllll

l

l

l
l

l

l
ll

l

ll

ll

llll

lllll

lll

ll

ll

llll

lll

ll

ll

ll

lllll

ll

l

l

l

l

l

l

l

ll

llll
l

l

lllllll

llll
lll

l

l
lllllll
l

ll

l

llllllll
llllllllll
l
llll
llll
l
lll

ll

lllllll
llll
llllllll
lllllll
llll
lllll
lllllll
llllll
lllllllllllllll
lllllllll
lll
llllllllll
l
l
llllll
lll
ll
lll

ll
l

llll
l
l
lll
ll
l

lllll
lllll
llllllll

l
ll
lllll
ll
lll
llllll
l
l
ll
lllll
ll

ll
l
l

lllll
llllll
lllll
lllll
lllllllllll
lllllllllll
llll
ll
lllllllllll
llllll
llllllll
l

lll
llllllll
llll
lllllll
llllllllllllllllll

llll

l
l

ll

ll
lllll
lllllllllll
lllll
lllll
llll
llllllllllllllll

l

lll

l

l

l

llll

l

l

l

lll

ll

lll

ll

ll

l

lllll
lllll

l

lll

l

llllll
lll
lllllllllll

l

lllllll
ll
ll
lllllllll
l
l
llll
l

l

l
l

ll
l
llllllll
lll
lll

ll
lll

lllll
lllll
llll

l

l

lll

ll

ll
l

l

llll
lll
ll
ll

l

llll
l
l

l

llll
llllll
lllll
llllllllll
lllllllllllllllll
lllllllllll
lllllll
llll
l
lllllll
l

ll

ll

l

ll

l

lll

ll

l

l

ll

ll

l

lll

l

lll

llll

l

lllll

l

lll

ll

llll

l

l

ll

ll

ll

l

lll

llll
l

l

l

l

lllll
l

lll

ll

lllll

l

ll

l

l

ll

l
l

l

l

l

l

ll

l

ll

l

llllllllllll
l
ll

l

l
l

l

ll
l

ll
ll

l

ll

ll

l

l
l
l

ll

l

l

l

ll

l

ll

l

ll

ll

llll
lll
l

lll

ll

l

l
ll

l

l

l

l
l

l

ll

l

ll

l

ll

l

llll

l

l

l

l

ll

l

l

l

ll

lll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

ll

ll

ll

lll

l

ll

l

ll

l

l

l

l

l

l

ll

l

llllll

l

lll

lll

l

l

l

l

ll

llll

ll

l

l

lllll

lll

lll

l
lll

lll

l

l

l

llll

lll

l

lll
l

ll

l

llllllllllllllll
ll
lllllllllllllllllllllll
ll

llllll
lllll
lllllll
lllll
lllllll
lllll
llll
llllll
llllllllll
llllllll
lllllllllllllllll
llllllllllllllllll
ll

lllllllllll
ll

lllll
llll
l
ll

ll
lll

llll
lllllllllll
l
l

lll
lll
lll
llllllllll
lllll
llllll
l
llllll
llll
l
ll

l
ll
lll
llll
ll
llllllllll
llllll
ll

l

l
l

llll
llllll
lllll
llllll
lll
lllllll
lllll
lllllll
llllllllllllllllllll
lllllllll
ll
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

e
n
d
−

to
−

e
n
d
 d

e
la

y
 (

s
)

2 4 8 16 32 64 100 128 200 400

data rate (packets/s)

Figure 5.5: Performance evaluation results: effect of increasing VBR traffic rate on loss
rate and end-to-end delay

equivalent to sending at least 400 pps. As shown in Figure 5.5, packets can be delayed

at the MAC layer due to congestion. As a result, the end-to-end delay increases with

increasing traffic load. Nevertheless, the delay is still in an acceptable range. For sending

packets with a rate below 16 pps, the effect of congestion is negligible. However, the

delay reached a peak of 1.2 s when sending with rate of 400 pps compared to only

0.03 s in the other case. The effect of increasing traffic was not so big on the packet

delivery rate. As you can see from Figure 5.5, the loss ratio was below 0.4 %, therefore

the success ratio is above 99.6%. This loss is due to collisions on the MAC layer.

We repeated the same experiments using a constant packet rate. In these exper-

iments, we started sending packets every 0.5 s and decreased this duration down to

0.005s. As shown in Figure 5.6, the results slightly improved. There was no impact

of increasing traffic load below 32 pps and the mean delay was lower than before.

However, the peak delay was slightly higher compared to the experiments with varying

traffic.

All previous experiments were done based on deployment on a square area. To

explore the performance of VCP in an area of different shape, we performed simulations

using a network consisting of 200 nodes deployed randomly in a 600× 120 plane,

which is similar to scenarios described in [78] for VRR. The packet rate was set to one

or two packets per second, which is equivalent to 200 or 400 CBR flows, respectively.

In less than 20 s, all the nodes joined the network. Each node starts sending a 100 byte

82 5.3 Performance Evaluation of VCP

l l l l l

l

l

l

l

l

0
.0

0
0
0

0
.0

0
0
2

0
.0

0
0
4

0
.0

0
0
6

0
.0

0
0
8

0
.0

0
1
0

lo
s
s
 r

a
ti
o

2 4 8 16 32 64 128 200 300 400

data rate (packets/s)

ll
llllllll ll

ll llllllllllllll
ll lll

llllllll lll lllllllllllllllllllllllllllllllllllll
lll
lllllllllll
l
ll
llll

l

ll

l

l

l

l

l

l

ll
ll
l
l

l

lll

ll

lll

ll

ll

l

l

l

lll

l

l

l

llll

l

ll

l

ll

l

l

l

l

ll

lll

lllllll

l

l

ll

l

l

ll
lll

l

lll

lll

lll

l

l

lll

llllllll

ll

lll

ll

ll

l

lllll

llll

l

lll

ll

l

l

llllll

llll

l

l

l

l

lll

l

l

lllll

l

lll

l

l

l

l

l

ll

l

l

llll

l

l

ll

ll

l

l

l
l

l

l

lllll

l

l

ll

l

lllll

l

llllllll
lll
lllll
lll
l
llll

l

l

l

ll

lll
l

ll
l
l
l
l
l
lllllll
llllllllllllll

l

lll

llllllllllllll

l

ll

l
lll
l
lllllllllllllllllllll
llllllll
l
l
llllllll
lllllllllllllllllllll
llllllll
llllll
llllllll
lllllll
lllllll
l
llllllll
l
lll

lllllllllllllllllll
lllllllllllllllllllllllll
lllllllllllllll
lllllllllllllllllllll
lllllllllllllllll
l
l
llllllllllllll
lllllllllllllllllllllllllllllll
l
llllll
l
l
lllllllllllll
lllllllll
lllll
lll
lllllllllllllllllllllllllll
lllllll
llll
l
ll
l

l
ll

l

lllll
l
ll
l
l
l

llllllll

l

ll
l

lllllll

l

l

l

l

ll

l

ll
ll

l
l

l
l

l
llllll

l

l

llll

llll

l

ll

l

llll

l

ll

l

ll
l

l

l

l
l
l

l

l

llllll
l

ll

l
l
lll
ll

l

llllllll

l

ll

ll

l

l

llll

ll

ll
ll

l

ll

l

ll

l
l

lll

l

ll

l

l
llllll

l

l
lll

l

ll

l

l

l

llll

l

l

l

l

lll

ll

l

l

l
ll

l

l

ll

l

l

ll

l

l

l
l

ll

l

l

l

ll

l

l

ll

l
ll

l

l
ll

l

l

l

l

l

l

ll

l

l

ll

l

l

ll

ll

l

l

ll

l

ll

l

l

l

l

lll

lllll

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

llll

l

l

l

l

l

l

l

l

l

l

lll
l

l

l

l
l

l

l

ll

ll

l

ll

l

l

ll

l

l

l

lll

l

ll

l

ll

l

l
l

l

l

ll

l

l

llllll

l

lll

l

llllllllllllllllllllllllll
l
l
l
l
llllllll
lllll
l
llll
lllll
llllllllllll
llllllllllllllllllllll
lllllll
lllllll
lll
llll
lllllll
l
ll
ll
ll
lllllll
l
ll

lll

l

ll
l
l
ll

l
llllllllll
llllll
l
llllllllllllll
l
l
l
l
llll
l
lll

lll

lll

l
l

l
lllllll
lll
lllllllllllllllllllll

llll
l
l
llll
llllll
ll
l
lllllll
llllllll
ll
lllllllllllll
lllllll
lllllll
llll
llllll
llllllllllllllllllllll

llllllll
llllllllll
lllll
l

l

ll
l
ll
l
lll

l

ll

l

ll

l

l

l

ll

l

l

l

lllllll

ll

l

ll

l

l

l

l

ll

l

ll

l

lllll

l

llll

l

ll
l
ll

ll

l

l

l

l
l

l

ll
lll

l

l

l

ll

l

l

ll

ll

l

l

ll

ll

l

l

l

ll
l

l

l
ll
lllll
lll

ll

l

l

lll
lll
l

l

lll

ll
llllllll

l

llllllll

l

l

l

lll

llll

l

l

l

l

l

l

ll

l

l

l

ll

lllll

l

ll

llll

lll

l

ll

l

llllll

l

l

l

l

ll

lll

ll

llllllllllll

llll
l
l
l
l
lll

ll

l
ll

llll

l

llll

l

ll

l

l

l

l

l

ll

l

l

l

l

ll

l

ll

lll

ll

l

l

l

l

ll

l

lllll

l

lll

lll

l

l

ll

ll

llll

l

ll

l

ll

l

l

l

ll

l

l

ll

ll

l

lll

l

ll

l

l

ll

l

l

l

lll

l

l

ll
l
l
lll

l

l
llll
l

ll

l

ll

lll

lll

l

l

l

llll

ll

lll

ll

l

l

l

l

lll

lll

l

l

llll

ll

lll

l

l

ll

l

l

l

l

l

l

ll

lll

lll

lllll

llll

l

ll

l

ll

ll

l

llllll

l

ll

l

l

llllllll
llllll

l
ll
lllllllllll
l
lllll

ll

ll
l

ll
lllllll

l

lll

ll

l

l

lll

ll

lllll

l

l

l

llllll

ll

l

l

l
lllllllllll

l

lllllllllllllll

l

l

l

llll
lll

l

ll

l

l

ll

llll

l

llllllll

l

llll

ll

l

ll

llll

l

lllllll

l

lll

l

ll

l

llll
lllllll

l

l

l

llll
lllll

ll

lllll

l

lllll
l

l

l

l

l

lll

llll
llll

lll

lllll

l

l

l

lllllllllllllll
l

l

ll

l

llll

l

l

l

l
l
l
l

l

ll

lllllllllllllllllllll

l
lllll
l
l

ll
l
lll

lll
lll

l

lllll
ll
l

ll
ll

ll

lllll

l

l

l

ll

ll

l

ll

ll

l
l
l

l

l
lllllll

l

l

l

ll
ll

l

lll

l

l

l

l

ll

l

l

l

llll

ll

lllll

l

lll

l

ll

l

ll

l

l
l

l

ll

l

l

l

l

l

lll

ll

l

l

l

l

ll

l

l

lllll
ll

l

ll

l

l

l

l

l

l
ll

l

l

ll

l

l

l

ll

l

l
ll

l

llll
l

l

lll

lll

l

l
l
lll

l

llll

l

l
l

l

l
l

l

l

l

l
l

l

l

l

lll

l

lll

l

ll

ll

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l
l

l

ll

ll

l

l

l

ll

l

l

lll

lll

l

l

ll

l
l

ll

ll

l
l

l

l

l

l

l

l

ll

ll

l

lll

ll

l

ll

ll

l

l

l

l

ll

ll

l

l

l

l

lll

l

lll

ll

l

l

lllllllllllllllllllllllllllllll

ll

lll
llll
ll
lll
ll
lll
llllll
lll
llll
lllll
llll
llll
llllllllllllll
lllll
llllllllllll
llllllll
lllllllllllllll
llllllllll

l
ll
ll
ll

lllll
llll
l
lllllll
ll
l
l
l
lll

lllll
llllllll
l
ll

l
ll

llll
llll

l
lllll

l

ll

ll

l

ll

lll

l

l
l
ll
l
ll

ll
lll

lll
lll

l
ll

ll
l
l
ll
ll
lll

lll
l
lllll
l
ll
lllllll
l
llllll

l

lll

lllll
ll

ll

llll

llllllllllll
lllllllllllllllllllllllllllllllll

l
lllllllllllllllllllllllllllllllllllll
lllll
ll
lll
lll
l
ll
ll

llllll

l

ll

l

llllll

ll

lll

l

ll
lll
lllll
ll

l

l

l

l

l

lll

ll

ll

lll

lll

l

l

ll

l

l

l

lll

l

lll

l

l

ll

l

lllllll

llllll

l

l

ll

l

l

l

l

ll
l

l

l

l

lll

l

lllllllll

ll

ll

l

llllllllllllllll

lll

lll
ll

l
l
llll
l

ll

l

l

ll

ll

lll

l

lllll

lllllll

l

llllllllllllll

l

lll

ll

l

l
l
ll
l
l

l

lll
lll
l
llllll
l
l
lll
lllll

l

l

l

l

l

lll

ll

lllll

l

l

l

l

l

l

l

l

ll

l

l

lllllll
llllllllllllllllllllllllll

ll
l

l
l

l

ll

ll

llll

ll

lll

l

llll
l
lllll

l

ll

l

l

l

l

ll

l

l

llllllll

l

lll

ll

l

lll

l

l

l

ll
llll
l

l

l
l
ll

l

l

l
l

l

l

l

l

ll

l

l
lll

ll

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

llllll

ll

l

l

l

lllll

l

ll

l

l

l

ll

l

l

l

ll

l

l

l

l

l

ll

ll

ll

l

l

l

l

l

lll

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

llll

ll

ll

ll

l

lll

l

l

ll

l

llll

l

l

ll

l

ll

ll
lll

ll

l

l

l

ll

ll

ll

lll

l

l

l

l

l

ll

ll

ll

l

ll

l

l

l

ll

l

l

l

l

lll

llll

l

l

l

l

l

l

l

lllll

l

lll

l

l

l

l

l

l

lllllllllllllllllll

ll

lllll
ll
llllllll
llllllllllllll

ll
lll
llllllllllllllll

l
ll
ll
lll
lllllllll
lllllll
llll
l
ll
l

lll
ll
l
llllllll

l

l

l

ll

l

l

lll
llllllllllllllllllllllllllllllllllllll
lllll
ll
llll

l

ll

l

l

lll

l

ll

l

lll

l

l

l

l

l

l
l

ll

l

ll

llll
ll
l

lllll

l

l

llllllllllll

l

l

llllll
llllllll

llll

l

lll

ll

l

lll

ll

l

lll

ll

l

lllllllll

ll

lllll
llllllllllllllllllllllllll
llllllll
ll
lllllllllllll
llllllll
llllllll

ll

ll

l

lll
l

ll
l

ll
l
l
lll

llll
l
lllll
lllllll
l
llll
lll
l
llll
l
lllll

ll
ll

lllll
l
ll
lll
llllllllllll
llllllllll
llllllll
l
lll
llllllllllllllllllll

ll
ll

llllll
l

l

l

ll

ll

lll

l

llll

ll

l

ll

l

l

ll

l

ll

l

l

l

ll

l

l

l

llll

l

l

l

l

l

l

lll

l

ll

l

llll

lllllllllllll
llllllllllllllll

ll
lllllllll
lllllllllllllllllllllllllllllllllllll
lll
ll
ll

l

l
llll
ll
llllll

lll
ll
l
l
ll
lll
llllll
llllllllllllllllllllllllllllllllllllll

l

l

l
lll
ll

l

llllll

ll

lllll

l

lll

l

lllllll

ll

llll

l

l

l

lllllll

l

lllllll

l

ll

l

ll

llllllllllllllllllllllllllllll
ll

llll

ll
l

l

l

l
lll
lll
l

ll
l
l

ll

l

l

l

lll

l

l

ll

l

l

ll

l

ll

l

lll

l

l

l

llllll

lll

lll

lll

ll

l

l

llll
l

l

l

lll

l

lll

lll

l

ll

l

l

lll

l

l

l

l

l

l

l

l

ll

ll

l

lll

lll

ll

l

lll

l

l

l

l

ll

ll

l

l

l

l

l

ll

l

l

l

l

lll

l

l

l

l

l

l

ll

l

l

l

l

l

l

lll

l

ll

l

l

l

ll

ll

llll

l

l

lll

ll

lll

l

l

ll

ll

l

ll

llllll

ll

l

l

l

l

lllllllll

l

l

l

ll

l

l

l

l

l

lll

ll

l

l

l

l

ll

lllll

l

l

l

l

l

l

llllll

l

llll

l

lll

lll
llllllllllllllllllllllll
llllllllllllllllllllllll

l
l
lll
lllllllll
lllllllllll
llllllllllllllllll

l
l
llllllll
llllllllll

lll
l
lllll
lllllll
ll
l

ll
ll
lll
l
l

llllllll
llllllllllllllllll

lllllllllll
lllll
l
ll
llllll
llllll
llllllll

llll
llllllll
l
ll

ll
ll
l
l
lll
ll
l
l
ll
l
ll
llll
lll
l
ll
l
ll
l
lllllll
lllllllllllllllllll
lllllllllll
llllllllll
llllllllll
lllllllllllllllllllllll

llllllllll
lllllllll
lllllll
lll

llllllllll
llllllllll
lllllll
l

ll

lllll
lll

l

l

l

l

l

ll
llll

lll

llll

ll

l

l

l

l

llllll

l

l

lll

l

lllll

ll
ll

ll

llll

l

lll

l

lll

lll

llll

l

llllll
ll
ll
lll
llll
l
lll
ll
ll
ll
lllllllllllllllllllllllllll

l
l

ll
l
llll

ll

lll

l

lll

lll

lll

ll

l

l

l

l

l

ll

l

llll

l

l

lll

l

l

l

llll

llll

l

llllllllll
lllllllllllll
llllll

llll
l
llll
llllllllllllllllllll

lllll
l
llll
l

l
ll

lll
llll
lll
llll

l

l

llllllll

l

l

l

l

l

lllll

l

l

ll

l

l

l

l

l

l

lllll

l

lllll

l

lll

l

l

ll

l

llllllll

l

l

ll

l

l

llll

l

llll

l

lllllll

l

llllllll
ll

l

l

l

l

l

lllll

ll

lll

l

lll

l

llll

l

l

l

l

lllll

ll

l

ll

l

lll

ll

l

l

l

l

l

l

l

l

l

l

ll

lllll
llllllllllllll

ll

l

l

lll

l

ll

l
ll

lll
lll

llllll

lllll
l
l
l

lll

l
ll
l
ll

l

l
l

l

lll

l

l

l

l

lll

l

ll

l

lll

l

l
l

l

lll

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

ll

l

ll

l

l

l

llll

l

ll

lll

ll

l

l

l

l

ll

ll

l

llll

lll

lll

ll

l

l

ll

l

ll

l

l

l

l

ll

l

lll

l

ll

l

l

lll

ll

lll

l

llll

ll

l

l

l

l

ll

l

l

llll

l

l

l

l

l

l

l

l

ll

l

ll

l

l

llll

l

ll

l

l

llllllllllllllllll
llllllllll
ll

llllllllllll
llllllllllllllll
lllllllll
lllllllllll
lllllllllll
lllllllllllllll
llllllllll
lllllllllll
lllll

llllllll
llllll
lllll
lllllllllll
llllllllll
llllllll

ll
l
llllllll
ll

lll
ll
llll
lll
ll
ll
ll
ll

l
ll
llllllllll
llllll

lllllllllll
lllllll
llllllll
lll
lllll
lllllll
l

llllll
lllll
lllllllll

lllllllllllllll
lllllllll
lllllll
llllllllllll
llllll
lllllllll
lllllllllll
llllllllll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

e
n
d
−

to
−

e
n
d
 d

e
la

y
 (

s
)

2 4 8 16 32 64 128 200 300 400

data rate (packets/s)

Figure 5.6: Performance evaluation results: effect of increasing CBR traffic rate on loss
rate and end-to-end delay

Table 5.5: Influence of the traffic load for random deployment

Measure 1 pps 2pps
success rate 100 % 99.95%

average delay 0.006 8s 0.0174 s
max delay 0.065 s 0.234s

average hop count 5.65 5.79
max hop count 16 16

packet to a random destination at a random time in the interval [50, 230] s. All nodes

stop transmission at time 950s. As shown in Table 5.5, the results are very promising.

For example, the success rate is almost 100% – even for high traffic load.

5.3.5 Cord Refinement

To show the possibility of smoothing the cord, we ran an experiment where we enabled

the cord refinement mechanism as discussed in Section 4.5.1. In this experiment, we

simulated 100 nodes deployed randomly on a rectangular area of 180× 180. Running

several experiments yield to different position values for the nodes in each run, which

consequently makes the difference between with and without refinement difficult to be

noticed. Therefore we ran this experiment only for one time (this is the only experiment

we ran only for one time). The left-hand side of Figure 5.7 shows a histogram for the

distribution of node positions without refinement. The right-hand side of the figure

shows the positions distribution after about 120 refinement iterations. It is important to

5.3 Performance Evaluation of VCP 83

Position Values

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

VCP

Position Values

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12 VCP

Figure 5.7: Distribution of virtual positions: (left) histogram of the position without
refinement, (right) histogram of position with refinement

mention here that the routing performance of VCP does not rely on the smoothness of

the Cord. In contrast, routing on similar protocols such as GRWLI [83] depends heavily

on the the distribution of the nodes’ virtual positions.

5.4 Comparison with Other Protocols

In this section, we present our evaluation of the routing performance of VCP in compari-

son with other protocols. In particular, we compare VCP to VRR, a competitive approach

relying on virtual coordinates for routing, and to DYMO, which is the most recent

standard of ad hoc routing protocols as developed by the IETF MANET working group.

We rely on the simulation settings as described in Section 5.2. Basically, these settings

represent a basis for analyzing the routing performance in sensor networks [78,89].

5.4.1 Path Length

The first metric we evaluate is the stretch ratio, i.e. the deviation of path length

calculated by the different routing protocols to the shortest path. It turned out that in

all the scenarios the average measured stretch ratio was in the interval of [1, 1.25]. This

measure was independent of the network size and density as well as of the deployment

topology. Also, VCP and VRR provided almost similar results for this network size. A

deviation of 25 % from the shortest path can be considered acceptable especially if the

observed end-to-end latency is not being influenced to a large degree. Figure 5.8 depicts

84 5.4 Comparison with Other Protocols

Figure 5.8: Path lengths of VCP and VRR for low and high density scenarios

the typical path lengths as observed during the simulation runs for the low and the

high density scenarios. As can be seen, the path length used by VRR is slightly higher

compared to the VCP paths.

5.4.2 Delay

We compared the end-to-end delay as observed by the application. In a number of

different experiments, we analyzed the protocol behavior for different network densities

and traffic rates. Also, we evaluated the influence of the network topology, i.e. grid or

random placement of nodes. The results for the grid scenario are depicted in Figure 5.9,

and for the random scenario in Figure 5.10. Because of the proactive implementation

of VCP as well as VRR, both protocols incur low delays in comparison with the reactive

protocol DYMO. For better comparability, we normalized the latency to the path length,

i.e. to a per hop delay. As can be seen, the per hop delay for VCP and VRR is quite

similar. Both the mean and the median are at about 1 ms. Some outliers can be observed

up to about 10ms. Both protocols are very robust with respect to the network density

and the traffic load. Differently, the MANET routing protocol DYMO performed slightly

worse for higher traffic load (depicted as 1 s traffic pattern). For lower traffic rates, the

observed delay increases largely. This effect can be explained by the route timeouts

used by DYMO in our experiment. In the ten seconds example, DYMO has to set up a

new route for almost every packet because the available routes have timed out. Thus,

each time an additional route setup delay adds to the transmission delay.

5.4 Comparison with Other Protocols 85

Figure 5.9: Delay performance of VCP, VRR, and DYMO in the grid scenario: depicted
is the latency as observed by the application normalized to the path length; all figures
are plotted using a log scale y-axis

86 5.4 Comparison with Other Protocols

Figure 5.10: Delay performance of VCP, VRR, and DYMO in the random scenario:
depicted is the latency as observed by the application normalized to the path length; all
figures are plotted using a log scale y-axis

5.4 Comparison with Other Protocols 87

5.4.3 MAC Layer Collisions

For the analysis of routing protocols designed for wireless networks, a main measure to

observe is the number of MAC layer collisions. This metric helps to evaluate the load

introduced by a routing protocol on the lower layers. Figure 5.11 shows the results for

the grid scenario. The results for random deployment, as shown in Figure 5.12, show a

higher variance but a similar trend. In particular, the number of MAC collisions is almost

zero for the virtual address based routing protocols (for the high density scenario, VRR

shows about 5% collisions per data packet sent, which is negligible). However, the

number of collisions is quite high for DYMO. This is not an effect of collisions among

data messages but of the periodic flooding of path setup messages. With decreasing

data rates, the ratio of the messages required to setup paths to normal data messages

increases.

5.4.4 Network Load

Figure 5.13 shows the total number of transmitted messages during the simulation.

From this figure, we can infer two important pieces of information. The first one

concerns the communication overhead of the protocol, while the second one is related

to the routing path. For this experiment we used the low packet rate scenario where

each node transmits at a data rate of 0.1pps. The nodes start transmitting at random

times in the interval [0− 18] s and stop sending after 90 seconds. Thus each node

generates about 8 packets on average. The network size is 100 nodes, therefore the

nodes will create about 800 data messages during one replication. Figure 5.13 shows

that the average number of messages transmitted in the low density network is about

8000 (i.e. about 10× 800).

The explanation for this number is that in the low density scenario 100 nodes are

deployed in a 400 m× 400 m plane. Hence the average shortest path is 9 hops which

means that in an optimal routing protocol each message would be transmitted 9 hops on

average to reach the destination, i.e. the upper left node. In case of the dense network

(i.e. 100 nodes deployed on a field of 180 m× 180m) the optimal average shortest path

is 4 hops. This explains why the number of messages in the dense network is about half

the number of messages compared to the low density network. Thus we can conclude

that VCP does not create extra routing overhead and the number of messages needed to

88 5.4 Comparison with Other Protocols

Figure 5.11: MAC layer collisions at the sink per data packet sent for VCP, VRR, and
DYMO in the grid scenario

5.4 Comparison with Other Protocols 89

Figure 5.12: MAC layer collisions at the sink per data packet sent for VCP, VRR, and
DYMO in the random scenario

90 5.4 Comparison with Other Protocols

Figure 5.13: Communication overhead: total number of messages transmitted during
the simulation

build the cord is negligible. The second conclusion confirms that VCP routing paths are

near optimal. Concerning VRR, although there was only a small difference in the path

length there is a clear difference in the number of transmitted messages. The reason for

this increase is the number of required messages for a node to join the network. In the

high density scenario there are about 2500 more messages than with VCP which means

that on average each node transmits 25 messages to join the network. This number

increases with the average path between nodes. In the low density network the number

of joining packets is about 100 packets per node.

5.5 Failure Performance

In the next set of experiments, we focused on the protocol behavior in presence

of frequent node failures. As a node failure, we consider any event that prevents

communication to a particular node at a given time, e.g. complete energy outages

and node replacement, or interrupted communications due to changes in the radio

propagation. For these experiments, we only consider VCP and VRR because the

network load (and therefore the collision probability) increases too much for MANET

protocols such as DYMO. The general setup is the same as for comparative performance

in the previous section. We follow the simulation setup described in [55]. In particular,

5.5 Failure Performance 91

Figure 5.14: Failure performance: the plots show the success rates for VCP and VRR in
the grid scenario

the failing of nodes is modeled as a uniformly distributed on/off process. We increase

the number of nodes toggling their state from 0% to 100%. When a node is selected as

unreliable, it remains up for a period selected uniformly at random in [0, 120] s, then

goes down for another period selected uniformly in [0, 60] s.

5.5.1 Success Rate with Node Failures

First, we investigated the success rate, i.e. the number of transmissions that were

completed successfully. Figure 5.14 depicts the measured success rate for VCP and VRR.

As can be seen, the ratio of successful transmissions degrades with the number of failing

nodes. However, VCP still maintains a success rate of about 70 %–80 %. In contrast, the

success rate degrades much faster for VRR, down to 50% in the worst case.

The main source of packet loss in VCP is the wrong assessment of the status of radio

range neighbors. For example, if a node dies immediately after transmitting a hello

message, this node will be considered live in the next 4 seconds (the time that should

elapse before removing a node from the routing table). As we do not acknowledge the

packets, the neighbors can send data packets to this node during this time without the

data packets being received. Acknowledgment on the network layer level can reduce

this problem. However we did not use network layer acknowledgments because they

can cause extra traffic and delay with little benefit. Some routing protocols in the

literature, [40, 93] check the MAC layer queue to retransmit packets to a different

92 5.5 Failure Performance

●

●

●

●
●

0
50

00
00

10
00

00
0

15
00

00
0

Failure Ratio

S
en

t M
es

sa
ge

s

0% 20% 40% 60% 80% 100%

VCP

●

●

●

●

0
50

00
00

10
00

00
0

15
00

00
0

Failure Ratio

S
en

t M
es

sa
ge

s

0% 20% 40% 60% 80% 100%

VRR

Figure 5.15: Failure performance: the plots show the total number of sent messages for
VCP and VRR in the grid scenario

node. However, to keep VCP independent from the MAC layer, we did not use this

trick. VRR has a similar problem in updating the physical neighbor states. In addition,

VRR requires extra routing packets to update its virtual neighbors. We investigate the

problem of communication overhead with node failures further in the next section.

5.5.2 Communication Overhead with Node Failures

We counted the total number of sent messages, i.e. the number of transmissions in the

network, without hello messages during each simulation experiment. Figure 5.15

depicts the total number of messages sent for VCP and VRR, respectively. In a static

network where the node failure ratio is 0, the total number of messages for VRR is

larger than for VCP. As discussed before, this is due to nodes in VRR requiring more

packets for joining and due to the larger stretch ratio of VRR. When a fraction of the

nodes alternates between operation and failure, the number of transmitted messages in

VRR increases dramatically, whereas the number decreases for VCP. The explanation

for this is related to the mechanism for updating the routing tables in both routing

protocols.

In VCP, hello messages are enough to update the routing table. Although length

of the routing paths will be increased with node failure, there will be fewer nodes

generating messages to be sent to the base station as the fraction of nodes increases.

Consequently the total number of messages in VCP will decrease. On the other hand, in

5.5 Failure Performance 93

Figure 5.16: Failure performance: the plots show the MAC layer collisions for VCP and
VRR in the grid scenario

VRR, the hello messages can only partially update the routing table (only the physical

neighbors set). Because the virtual neighbors are often far away updating them incurs

a high communication overhead.

5.5.3 Collision with Node Failures

A look at the network load reveals some effects of the extra messages of VRR on the

lower layer. These effects also explain the reduced success rate of VRR compared to

VCP. Figure 5.16 shows the number of MAC layer collisions. As can be seen, there are

almost no collisions for VCP, which outlines the capability of this protocol to work even

in extreme failure situations. On the other hand, VRR needs many state maintenance

operations that lead to increased network congestion.

In addition to the problem of updating the routing table in VRR, there is another

problem facing VRR when nodes are unreliable. When VRR enters the transmission

phase after its initial join phase, it simply forwards packets to the node that has the

ID closest to the packet ID. It needs to be noted that “closest” ID means the ID that

is closest on the virtual ring. When the network size increases and many nodes fail

periodically, the node’s forwarding table becomes incomplete and represents only a

local view of the whole network. VRR has two different strategies to handle such failure

situations: exact repair and local “vset-path” repair. The idea is to bypass the failed

node. However, this technique works only for a few node failures.

94 5.5 Failure Performance

Figure 5.17: Failure performance: the plots show the delay for VCP and VRR in the grid
scenario

5.5.4 Delay with Node Failures

The congestion not only reduces the success rate, but also, increases the delay in the

network. Packets spend more time in the interface queues because of collision avoidance

and packet retransmissions at the MAC layer. Figure 5.17 shows that the median per

hop delay of VCP is not affected by the failing nodes. Differently, the delay of VRR

increases with the failure ratio.

5.5.5 Path Length with Node Failures

The path length outlines the capability of a routing protocol to find short paths even

in case of many node failures. Figure 5.18 depicts the simulation results. While the

average path length is slightly shorter for VCP, some single outliers correspond to the

special cases in which the virtual cord needs to be used for finding an alternative path

when greedy fails. In some cases, such as when all nodes are unreliable, VRR has lower

path lengths. The explanation for this lies in the fact that VCP has a higher success rate,

which means it receives more packets than VRR. The source of these packets can be far

way from the final destination, hence these packets can encounter long paths.

5.6 Replication Performance 95

Figure 5.18: Failure performance: the plots show the path length for VCP and VRR in
the grid scenario

5.6 Replication Performance

To explore the effectiveness of replicating data in VCP, we measured the availability of

stored data to queries as well as the communication load placed on the nodes when a

fraction of the nodes fails. To measure the availability we used the query success rate,

i.e the fraction of queries that were answered correctly. We measure the communication

load on nodes by counting the total number of data refresh operations during the

simulation experiment as well as the number of messages transmitted during the query

period. We used the same simulation parameters as shown in Table 5.4, which are

similar to the scenarios used in the GHT paper [53]. Thus the simulation setup consists

of 100 nodes deployed in rectangular area of size 160 m× 160m. We placed a sink node

on the upper left corner of the simulation area. After inserting 20 keys into the network,

the sink starts to generate queries. If a query is not answered within one second, the

sink will retransmit the query for up to 7 times. The sink generates 2 queries per second

including both new and retransmitted queries. In the simulation we investigated the

two local replication schemes as well as the global replication described in Section 4.4.

5.6.1 Local Replication on Neighbors

At the beginning we investigate the scalability of VCP to store and retrieve data. We

varied the number of nodes from 50 to 400 and we scaled the playground to keep a

constant density. As one would expect, VCP offers perfect availability of stored data

96 5.6 Replication Performance

0
20

40
60

80
10

0

Network Size

S
uc

ce
ss

 R
at

e

50 100 150 200 250 300 350 400

VCP

0
20

40
60

80
10

0

Network Size

S
uc

ce
ss

 R
at

e

50 100 150 200 250 300 350 400

VCP

Figure 5.19: Success Ratio for Insertion (upper-left), Retrieval (upper-right) with
increasing network size

●●●

● ●●●

●

●●

●●

0
5

10
15

20

Network Size

N
um

be
r

of
 H

op
s

50 100 150 200 250 300 350 400

VCP

●●●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●●●●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●●●

●

●

●

●

●

●●●

●●

●

●●

●●●

0
5

10
15

20

Network Size

N
um

be
r

of
 H

op
s

50 100 150 200 250 300 350 400

VCP

Figure 5.20: Path lengths for insertion (left) and retrieval (right) with increasing
network size

items on static networks where the topology does not change. Figure 5.19 shows that at

all network scales, all data items were inserted to the correct destination and all queries

were answered without retransmission of the request. The number of refresh messages

was zero because there is no node failure.

The paths traversed by the queries are slightly shorter than the data insertion paths

as can be seen from Figure 5.20. The reason behind this decrease in the path length lies

on the replication scheme. It is highly probable that queries will reach a node holding

a copy of the requested data before reaching the node responsible for that data item.

5.6 Replication Performance 97

Figure 5.21: Replication on all physical neighbors: query success ratio and number of
data refresh messages

●

0
50

00
10

00
0

15
00

0

Failure Ratio

T
ot

al
 M

es
sa

ge
s

in
 th

e
Q

ue
ry

 P
er

io
d

0% 20% 40% 60% 80% 100%

VCP

●●
●

●

●

●

●●

●

●

●

●●
●●

●●

●

●

●●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●●●
●●
●●
●

●

●
●

●●

●●●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●
●●

●

●

●
●
●

●
●
●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●●
●●●
●

●●●

●

●
●●●●

●
●
●

●
●

●

●

●

●

●

●●●
●●
●
●●
●

●●

●

●

●

●
●●
●

●
●
●●

●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●●●

●●

●●

●●●

●

●

●

●
●

●

●●●

●

●
●●●

●

●
●

●
●●

●

●

●●

●
●

●
●
●●

●

●

●●●●

●

●●

●

●

●

●●

●

●
●

●
●●●●

●

●●

●●●●●

●

●

●

●●●●
●●●

●

●

●●
●
●●●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●

●

●

●
●●●

●●
●●
●

●

●
●●●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●
●

●●

●●●

●

●

●

●●
●

●●

●●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●●

●

●
●

●●●

●●●●●●●

●●●●

●

●●●

●

●

●
●●

●●●●●

●
●

●●●●

●

●

●●

●

●

●●

●

●●
●
●

●●

●●●●●●●
●

●●

●●

●

●

●
●

●

●

●●

●

●●●
●
●

●●

●

●●●

●●●

●

●●●

●●

●

●●

●●●●

●
●

●●●

●
●●●

●

●●●●●

●

●
●●

●●

●

●

●●●●●

●

●●

●

●

●

●●

●●
●

●●

●

●

●
●

●

●●

●●

●

●
●

●

●

●●●
●

●
●●●●
●

●

●●●

●●

●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●
●
●●●

●

●●●●●●●●●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●
●
●

●

●

●

●

●●

●

●

●●

●

●●
●●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●●●

●●●

●
●

●●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●●●●

●●

●

●

●●●

●

●

●

●

●●●●

●●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●●●
●

●

●

●

●

●●●

●
●●●

●

●

●●

●
●●●●

●

●

●
●

●
●

●●●

●

●●

●

●

●●

●●●●

●

●●●●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●●
●

●
●
●
●●
●
●

●

●

●

●

●
●

●

●●●●●●●●

●

●●

●

●
●
●
●
●

●

●

●

●●●

●

●

●

●
●
●
●●●●●●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●●

●●
●

●●●

●

●●
●
●●●●●

●

●●

●

●
●●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●●
●
●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●●
●
●

●
●●●

●

●●
●●

●●

●

●●●●
●●●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●●

●
●
●●●●
●
●
●

●
●
●

●●

●

●●●
●

●

●●

●
●

●

●

●● ●●●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●●
●

●
●

●●●

●

●

●●●

●
●

●
●●●●

●

●
●●●●

●

●

●

●

●

●●
●●●●●
●

●

●

●

●

●

●

●
●●

●

●●●

●
●

●

●
●●
●●

●
●●

●

●

●●

●●●
●

●

●

●

●

●

●●●●●

●●●

●

●

●

●

●●●

●

●●
●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●●
●
●

●
●
●●

●

●

●

●
●●
●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●●●

●

●
●

●●

●●●

●

●

●
●

●

●
●●●●
●●

●
●

●

●

●
●●

●

●

●
●

●

●●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●●

●

●
●●

●●●
●

●

●

●●
●●

●

●●

●

●
●●
●

●●●●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●

●
●
●

●●●●●

●

●

●●

●●●●
●

●

●

●

●

●●
●●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●

●
●

●

●

●

●
●

●●●●

●●●
●●

●●

●

●

●

●●●

●●
●

●

●

●●

●

●
●

●●

●●●
●

●●

●

●●

●

●

●●

●

●
●●

●

●

●
●

●●

●

●
●●
●●●●

●

●

●

●

●

●
●●●●●

●

●

●

●
●●
●
●

●
●●●●●

●

●
●

●

●

●●

●

●●

●

●

●
●
●

●

●
●

●●●●●

●

●●●●●

●

●

●

●●

●●

●

●●●●●●●●●

●

●●

●

●
●●
●●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●●

●●●●

●●●●

●

●

●
●

●●●

●

●

●●●●

●●●

●

●

●

●●●
●

●

●
●●

●
●

●

●

●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●
●

●

●
●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●●●●●●

●

●●
●●

●

●

●
●

●

●
●
●

●

●

●

●
●

●
●

●●●●

●

●●●●

●

●●

●

●
●

●
●
●
●
●

●●

●
●

●
●●

●

●

●

●

●

●
●●●

●●

●

●

●

●
●
●
●●●●

●

●

●
●●

●●●●●

●

●
●●
●●●●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●●●

●

●●●

●●

●●

●

●

●●●

●
●●●●

●●●●

●

●
●

●

●

●●

●

●●
●●●●●

●●

●●●●●

●
●

●

●●

●

●
●

●
●●●

●

●

●
●
●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●●
●
●

●
●

●

●

●
●●●●

●

●

●

●
●
●

●
●

●
●
●

●

●
●

●
●●

●

●
●

●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●●●

●

●

●●
●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●
●
●●●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●
●

●
●

●

●●●
●

●
●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●●
●

●●●●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●●●

●●

●

●
●

●
●●

●
●●
●
●

●
●

●

●

●●

●

●

●

●

●
●●●●

●

●

●

●
●

●●●
●

●●●●●●
●

●

●●
●

●
●
●

●

●●●●

●●

●

●
●

●

●

●

●

●●
●

●
●●
●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●

●

●●

●

●

●
●
●●

●●●

●●

●

●●

●

●

●

●

●
●
●

●

●

●●●●●●
●

●
●●
●●●

●●

●

●
●
●●

●

●●
●

●

●
●

●
●●●
●
●

●●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●
●

●

●

●●●

●●

●

●

●
●

●
●
●

●

●
●
●●

●●
●

●●●
●
●

●

●
●

●

●

●
●●
●
●

●

●
●

●

●
●

●

●●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●●●
●●●

●

●

●●
●●●

●

●

●
●
●●●●●●

●

●
●

●

●
●●

●

●
●
●

●
●

●

●

0
10

20
30

40
50

Failure Ratio

Q
ue

ry
 E

nd
 to

 E
nd

 D
el

ay
(s

ec
)

0% 20% 40% 60% 80% 100%

VCP

Figure 5.22: Replication on all physical neighbors: total number of transmitted messages
in query period and end-to-end delay with increasing fraction of failing nodes in random
scenario

We said “highly probable” since the data copies were sent using broadcasts without

acknowledgments at the MAC layer. Consequently, in real world scenarios, some nodes

(especially the far away nodes) may not receive the packet.

Figure 5.21 depicts the success ratio and total number of refresh messages for the

random topology. As one would expect, the success ratio decreases as the number

of failing nodes increases. Nevertheless, VCP maintains a good success ratio even

when all the nodes alternate between available and unavailable states. Figure 5.22

98 5.6 Replication Performance

●

0
20

40
60

80
10

0

On/Off period

S
uc

ce
ss

 R
at

e

60/30% 120/60% 240/120% 480/240

VCP

0
10

00
20

00
30

00
40

00
50

00

On/Off period

T
ot

al
 R

ef
re

sh
 M

es
sa

ge
s

60/30% 120/60% 240/120% 480/240

VCP

Figure 5.23: Performance of replication: query success rate and number of refresh
messages, all nodes alternate between on and off state of varied length

depicts the number of messages used in retrieving the data as well as the querying

delay. This success ratio is only a little higher than the success ratio achievable with

GHT. Nevertheless, VCP has several advantages. First, nodes do not need to be aware

of their physical location. Second, there is no assumption about the node connectivity.

Finally, the refresh messages in VCP are generated on-demand, i.e if there is no node

failure then there is no need for refresh messages. In contrast, the refresh messages in

GHT are sent periodically and independently from node failures.

We also investigated the effect of on/off intervals. In these experiments, all nodes

are flipping between on and off states. Figure 5.23 shows the performance of VCP with

different on/off time intervals. The simulation experiments lasts five times the length

of the down time interval. When nodes flip between on and off states more frequently,

the ability of local nodes to hold data items is stressed heavily. Thus, the success rate

for short on/off intervals is decreased. For longer on/off intervals, the success rate

increases and reaches a good value at long on/off intervals. Notice that the number of

refresh messages stays almost constant for all on/off intervals.

5.6.2 Local Replication on Adjacent Nodes

The effectiveness of data replication on radio range neighbors depends on the node

degree, i.e. the number of direct neighbors. Therefore, the availability of data items can

be affected negatively in a sparse network. We investigated the replication on adjacent

5.6 Replication Performance 99

●

0
20

40
60

80
10

0

Failure Ratio

S
uc

ce
ss

 R
at

e

0% 20% 40% 60% 80% 100%

VCP

●

●

●

0
10

00
20

00
30

00
40

00
50

00

Failure Ratio

T
ot

al
 R

ef
re

sh
 M

es
sa

ge
s

0% 20% 40% 60% 80% 100%

VCP

●

●

●

●

0
50

00
10

00
0

15
00

0

Failure Ratio

T
ot

al
 M

es
sa

ge
s

in
 th

e
Q

ue
ry

 P
er

io
d

0% 20% 40% 60% 80% 100%

VCP

●●●●●●●
●

●●

●

●●
●●●

●●

●

●

●

●●●●

●
●●

●

●

●●

●

●
●●

●●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●●●●●
●

●●●

●

●
●●●●

●
●
●

●
●

●●●

●●●
●●
●
●●
●

●●

●

●

●●●
●

●
●
●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●

●

●●●

●

●●●●

●

●

●●

●●
●

●

●

●

●
●●

●

●●●

●

●●
●

●
●

●

●●●●

●
●●

●

●

●

●●●●●●

●

●●●●

●

●●

●
●●
●

●●

●

●●

●●

●
●●

●

●

●

●

●

●●●●●
●

●
●

●
●

●●
●●●●
●

●●

●

●

●

●

●

●

●●
●●●
●●

●
●

●

●●
●

●

●

●●
●
●

●
●●

●

●
●●●●

●●●●●●

●

●

●●

●

●

●

●●
●
●

●
●●●●●●

●

●

●

●

●

●

●●●●●
●●

●

●●
●

●

●

●●●●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●●

●

●

●

●●

●
●
●●

●

●●

●

●●●●●
●

●

●●

●●

●

●

●

●
●
●

●

●

●

●●

●
●

●
●
●●

●

●●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●
●●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●
●

●

●

●●●

●
●●●
●●

●

●

●
●●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●●
●●

●●●

●●
●
●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●●

●

●●
●●

●

●

●

●

●

●
●

●

●

●
●
●●
●●●

●

●

●

●
●●●

●

●

●●●

●●●

●

●

●●●

●

●

●

●●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●●
●●
●●

●

●

●

●●
●
●●●●●

●

●●
●

●

●
●

●

●
●
●●
●

●

●
●

●

●

●

●

●●

●●

●●

●●●

●

●

●

●

●

●

●●●●

●
●
●
●●

●

●
●●●

●●●

●
●

●

●
●

●●

●

●

●

●

●●●

●●

●

●

●

●
●
●

●

●

●●
●●
●

●

●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●
●
●

●

●

●

●

●●
●

●

●●

●

●
●●●

●

●

●

●

●

●●

●

●●●●

●

●
●

●

●

●

●

●

●●●

●

●

●
●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●
●●●●

●

●●●●

●

●

●

●●

●●
●

●

●

●●●

●

●

●●

●

●●●
●
●●

●●●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●●
●

●

●

●

●●
●

●
●●

●
●●●
●
●●●

●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●●
●

●

●

●
●●●●●●

●

●
●

●
●●●

●

●
●

●

●
●
●
●

●●

●●

●
●●●

●

●
●

●

●

●
●●●●
●

●
●●

●●●
●

●

●

●●
●●

●

●
●

●

●

●

●●

●
●●●●●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●●

●●
●●●●

●

●

●

●●●●●
●

●●
●●●●

●

●

●●●●●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●
●●

●
●
●

●

●

●

●
●

●

●
●

●
●

●●

●

●●

●

●
●

●●
●

●●
●

●

●

●

●
●
●
●●●●

●

●

●

●

●●

●●●●

●

●
●

●

●●●

●

●
●●●●●●●●

●

●●

●

●
●●●●
●

●
●
●●

●

●

●
●

●●

●●●●●

●●
●

●
●

●
●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●●
●●●●●●
●

●

●●●

●

●●
●
●

●

●

●

●

●

●
●
●

●
●

●

●
●

●●

●
●

●

●
●

●●

●

●●●●●

●

●
●
●

●

●

●●●●
●

●

●

●

●

●
●●
●
●

●

●

●

●●

●

●●●

●

●●

●

●
●

●

●

●

●

●●●

●●

●

●

●

●●

●●

●

●

●
●
●

●●

●

●

●
●

●

●

●●
●●

●●●●●
●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●
●

●
●●●●

●●●●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●
●

●

●

●●
●

●

●●●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●
●

●●

●

●●●●
●

●

●

●

●●

●

●

●●●●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●●

●
●

●

●

●●●●

●

●

●

●

●
●
●

●●●●●●●●

●

●●

●●●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●
●
●●
●
●

●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●●●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●●●

●●●

●●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●●●●●

●●
●

●
●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●
●●●●

●●●

●

●

●
●

●
●●

●

●

●
●
●

●

●●

●
●

●

●

●

●●
●●

●

●

●●

●

●
●

●●●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

0
10

20
30

40
50

Failure Ratio

Q
ue

ry
 E

nd
 to

 E
nd

 D
el

ay
(s

ec
)

0% 20% 40% 60% 80% 100%

VCP

Figure 5.24: Replication on two adjacent nodes: query success ratio, number of data
refresh messages, number of total transmitted messages in query period and end-to-end
delay with increasing fraction of failing nodes in random scenario

nodes and the effect of the number of copies. Figures 5.24, 5.25, and 5.26 illustrate

the effect of the number of copies on the success ratio, the required number of refresh

messages and the number of messages used in the query period. As it is expected, the

higher the number of copies the better the success rate. The success rate figures also

indicate that all replication schemes perform similarly and provide a high success rate

when a small number of nodes fail (20 %). In contrast, when a high number of nodes

are failing, the success rate decreases significantly.

There is a clear relation between the number of copies and the number of refresh

messages. The figures show a slight increase in the total number of messages used in

the query period, which actually comes from the refresh messages and not from the

100 5.6 Replication Performance

●

●

0
20

40
60

80
10

0

Failure Ratio

S
uc

ce
ss

 R
at

e

0% 20% 40% 60% 80% 100%

VCP

0
10

00
20

00
30

00
40

00
50

00

Failure Ratio

T
ot

al
 R

ef
re

sh
 M

es
sa

ge
s

0% 20% 40% 60% 80% 100%

VCP

●

●

●

●

0
50

00
10

00
0

15
00

0

Failure Ratio

T
ot

al
 M

es
sa

ge
s

in
 th

e
Q

ue
ry

 P
er

io
d

0% 20% 40% 60% 80% 100%

VCP

●●●●●●●●●●●●●●●●●
●

●●

●

●●
●●●

●●

●

●

●

●●●●

●
●●

●

●

●●

●

●
●●

●●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●●●●●
●

●●●

●

●
●●●●

●
●
●

●
●

●●●

●●●
●●
●
●●
●

●●

●

●

●●●
●

●
●
●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●
●

●

●●●●●●●

●●
●

●

●

●
●●

●

●●●

●

●

●

●

●
●

●●●●

●
●●

●

●●●●●●

●

●●●●

●

●

●
●●
●

●●

●

●●

●●

●
●●

●

●

●

●

●

●●●●●
●

●
●

●
●

●●
●●●●
●

●●

●

●

●

●

●

●

●●
●●●
●●

●
●

●

●●
●

●

●

●●
●
●

●
●●

●

●
●●●●●

●

●●

●

●

●●
●
●

●
●●●●●●

●●

●

●

●

●

●

●

●

●●●●●

●

●●
●

●

●

●●●●

●●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●
●

●
●

●●

●
●
●●●

●
●

●●
●●●●
●

●

●●●

●●

●

●
●

●
●
●

●

●●●

●
●

●

●

●●

●●

●

●
●●

●

●

●
●●●●
●

●●●●●

●

●●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●●●

●

●

●●

●

●
●
●●

●

●●

●

●●

●

●

●●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●●●●●

●

●●
●

●

●●●●●

●

●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●

●●●
●
●●

●
●

●

●

●

●

●●

●●

●●●●
●

●

●

●●●

●
●●●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●
●●

●●●

●●
●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●
●●
●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●
●●
●●

●

●
●●●

●
●

●●●●●●●

●

●●

●
●
●
●●●
●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●●●

●

●●●

●●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●●
●●
●●

●

●

●

●●
●
●●●●●

●

●●
●●

●●

●

●●●●
●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●
●●

●
●
●
●●

●
●●●

●

●
●

●

●
●

●

●

●

●

●● ●●

●

●

●

●
●
●

●●

●●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●
●

●●
●

●●●

●

●●

●
●

●
●●●

●

●

●
●

●
●●

●
●

●●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●
●●

●

●

●

●

●
●●●

●●●●

●

●

●

●●●●

●

●●
●

●

●
●●

●

●●
●

●

●

●
●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●
●
●●●●●●●●●●●

●

●

●

●●

●●
●

●

●

●●●

●

●

●●

●

●●●
●
●●

●●

●

●

●

●

●●

●●●

●●●

●

●

●

●
●
●
●

●●●

●

●

●●●●

●

●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●●

●●●●

●

●

●●

●●●●

●●

●

●

●●

●

●

●
●●

●

●

●

●
●●

●●

●

●
●

●●

●

●

●

●●

●
●●

●●

●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●
●●●●
●

●
●●
●
●

●

●

●●

●

●

●

●

●
●
●

●●
●
●●

●●

●

●
●●●●●
●●
●
●

●

●●●

●●
●

●●
●●●●

●

●

●●●●●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●
●●

●
●
●

●

●●●

●

●
●
●

●

●●

●●
●
●

●●

●

●
●

●●

●
●●

●●●

●●

●

●●

●

●
●

●
●
●●

●
●

●

●
●
●●●

●

●●
●●
●
●
●

●
●

●
●

●●

●●

●●●●●●●

●

●

●

●

●

●
●
●●

●●

●●●

●

●
●●●●●●●●●

●

●
●
●●●●●
●

●

●

●●●

●

●

●

●

●
●●

●

●

●
●●●

●
●●

●●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●●●●
●●

●●

●

●

●
●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●●●●●●
●

●

●●●

●

●●
●
●

●●

●

●

●

●

●
●
●

●
●

●

●
●

●●

●
●

●

●
●

●●

●

●●●●●

●

●
●
●

●

●

●●●●
●

●

●

●

●

●
●●
●
●

●

●

●

●●

●

●●●

●

●●

●

●
●
●

●

●●●

●

●●

●

●
●●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●●
●●

●●●●●
●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●●●

●●●●

●●●

●

●

●
●
●
●

●

●●

●

●●
●●●●●

●●

●

●
●●

●

●

●
●

●

●
●●

●

●●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●
●●
●

●

●

●●●

●●●

●●●

●
●
●●●●●●

●

●

●

●
●

●●

●●

●●

●

●●●
●
●

●

●

●
●●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●●●

●

●
●

●

●●●●●

●

●

●

●
●
●

●

●

●
●

●
●

●●
●

●●

●

●

●●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●
●
●
●

●

●●

●●
●

●

●●●●●

●●

●●●●

●

●●

●

●●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●●●

●

●
●●

●

●

●

●

●

●
●●

●
●

●

●
●

●●
●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●●
●

●

●

●

●
●
●
●●
●

●

●

●
●
●

●

●

●

●
●●●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●●

●●●

●

●

●●●●

●

●
●
●●

●
●●●●●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●●●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●

●

●
●●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●●●●●

●●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●●●●

●●●

●

●

●
●

●
●●

●

●

●
●
●

●

●
●

●

●

●

●●
●●

●

●

●●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●
●

●
●
●●●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●0
10

20
30

40
50

Failure Ratio

Q
ue

ry
 E

nd
 to

 E
nd

 D
el

ay
(s

ec
)

0% 20% 40% 60% 80% 100%

VCP

Figure 5.25: Replication on four adjacent nodes: query success ratio, number of data
refresh messages, number of total transmitted messages in query period and end-to-end
delay with increasing fraction of failing nodes in random scenario

5.6 Replication Performance 101

●

●

●

●

0
20

40
60

80
10

0

Failure Ratio

S
uc

ce
ss

 R
at

e

0% 20% 40% 60% 80% 100%

VCP

0
10

00
20

00
30

00
40

00
50

00

Failure Ratio

T
ot

al
 R

ef
re

sh
 M

es
sa

ge
s

0% 20% 40% 60% 80% 100%

VCP

●
●

●

●

0
50

00
10

00
0

15
00

0

Failure Ratio

T
ot

al
 M

es
sa

ge
s

in
 th

e
Q

ue
ry

 P
er

io
d

0% 20% 40% 60% 80% 100%

VCP

●●

●●

●

●

●

●●

●

●●

●

●

●

●●●

●
●

●●●●

●

●
●●

●●●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●●●
●

●

●
●●●●

●
●
●

●
●

●●●
●●
●
●●
●

●●

●
●

●
●
●●

●

●●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●●

●

●

●●●●●●

●

●●●●

●
●

●

●
●●
●

●●

●

●●

●●

●
●●

●

●

●

●

●

●●●●●
●

●
●

●
●

●●
●●●●
●

●●

●

●

●

●

●

●

●

●●
●●●
●●

●
●

●

●●
●

●

●

●●
●
●

●

●

●

●
●●●●●

●

●●

●

●

●

●●
●
●

●
●●●●●●

●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●●●●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●
●

●
●

●●

●
●
●●●

●
●

●●
●●●●
●

●

●●

●●

●

●

●

●
●
●

●●●

●
●

●

●

●●

●●

●

●
●●

●

●

●
●●●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●
●

●

●

●

●

●●

●

●
●
●●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●●●●●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●●
●

●

●

●

●

●

●

●

●●●
●

●●

●●●●
●
●

●

●

●●

●●●

●

●●
●

●
●
●

●

●

●

●●

●●

●
●

●●●●

●

●

●

●

●●
●●
●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●
●
●●
●●
●●

●

●
●●●

●
●

●●
●●

●

●

●●
●●●
●●●

●

●

●●

●●●
●●●

●
●●●
●
●●

●●●●
●
●
●

●

●
●

●

●●●●●●

●
●
●

●

●●●

●●

●
●

●

●

●●●

●

●

●●●●

●

●

●

●
●

●

●●
●●
●●

●

●

●

●
●●
●
●●●●●

●

●●
●

●●●

●

●●●●
●●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●
●●

●
●
●
●●

●
●●●

●
●●
●

●●●

●

●●

●

●

●

●●

●

●

●
●●●●

●●
●●

●

●

●

●

●
●●

●●●

●

●

●

●
●
●

●

●●
●●

●

●●●●

●
●●●●
●●●

●

●

●
●●●●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●●●●
●

●

●
●

●

●●●●

●●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●●●
●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●●●

●●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●●
●
●●●

●

●

●

●

●

●●

●●

●●●

●

●

●

●
●

●●

●●

●
●●

●

●

●

●

●●●

●●●

●

●

●●●●●
●

●

●

●●

●●●●

●

●●
●●●●●

●

●
●

●

●
●

●●●●●

●

●

●

●●

●
●●●●

●

●●●

●●●●

●●

●

●

●

●
●●●●
●

●
●●●●●

●●

●●

●

●
●●
●
●●
●
●●

●

●

●

●

●●
●●
●●●

●

●●
●●●●
●●
●

●

●

●
●●●
●
●●●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●●

●
●

●●

●

●
●
●
●
●

●
●

●●●●●

●

●

●●●

●
●●
●

●●

●
●
●
●
●●

●

●●

●

●
●

●

●

●

●

●●●

●

●
●●●●●●●●●

●

●

●●●●●●

●●●

●

●●

●●●●

●

●

●●●

●●●●

●●●

●

●

●

●●●

●

●

●●●

●●●●
●

●●

●

●

●

●●

●

●●
●●●
●

●●

●

●

●
●
●
●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●●

●

●●
●

●

●
●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●●

●

●●
●●●

●

●

●

●

●●●●●●

●

●

●●●●
●

●

●

●

●

●

●

●

●●●
●

●

●●

●●

●
●●

●●

●

●

●
●

●

●●

●

●

●

●●
●●

●●●●●
●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●
●●
●

●

●
●●
●
●
●

●●

●

●●

●

●
●

●●
●●●●

●●●●

●●●
●●

●

●
●
●●
●

●

●

●
●●

●

●

●
●

●
●●

●●●
●●

●

●
●

●

●

●

●
●●

●●
●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●
●●
●

●

●

●●●

●●●

●●●

●
●
●●●●●●

●

●

●

●
●

●

●●

●●

●

●●●
●
●

●

●

●
●●●

●

●

●●

●

●

●

●●●

●

●
●
●

●

●●

●

●
●

●

●
●●●

●

●
●●●●

●●●

●
●●●

●

●

●●
●●
●

●●

●

●

●

●

●●●

●●
●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●●
●

●

●●●●●●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●●

●

●●
●
●

●

●

●
●●

●

●●

●

●

●

●●
●

●

●

●
●●

●
●

●

●●

●●
●●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●
●
●●

●
●
●●

●●

●

●●

●

●

●

●●●

●

●

●

●●●

●●●●

●

●

●●

●

●

●

●
●●

●●
●●

●

●
●
●

●

●
●●●
●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●●●●

●

●

●
●
●●

●

●

●
●

●

●●
●
●●

●

●
●

●

●
●

●
●●●

●
●

●●
●
●
●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●
●●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●
●●
●
●

●

●●

●

●
●

●
●●

●
●

●

●

●

●●

●

●
●●
●
●●

●●

●

●●
●●

●●

●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●
●

0
10

20
30

40
50

Failure Ratio

Q
ue

ry
 E

nd
 to

 E
nd

 D
el

ay
(s

ec
)

0% 20% 40% 60% 80% 100%

VCP

Figure 5.26: Replication on eight adjacent nodes: query success ratio, number of data
refresh messages, number of total transmitted messages in query period and end-to-end
delay with increasing fraction of failing nodes in random scenario

102 5.6 Replication Performance

●
●
●

●

●

0
20

40
60

80
10

0

Failure Ratio

S
uc

ce
ss

 R
at

e

0% 20% 40% 60% 80% 100%

VCP

●

●

0
20

00
40

00
60

00
80

00
10

00
0

Failure Ratio

T
ot

al
 R

ef
re

sh
 M

es
sa

ge
s

0% 20% 40% 60% 80% 100%

VCP

0
50

00
10

00
0

15
00

0
20

00
0

Failure Ratio

T
ot

al
 M

es
sa

ge
s

in
 th

e
Q

ue
ry

 P
er

io
d

0% 20% 40% 60% 80% 100%

VCP

●●●●●●●●
●
●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●
●●
●
●●●●
●
●●
●

●●
●

●

●
●●●
●

●●●●●●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●
●
●
●●

●
●

●

●●

●
●

●●●

●

●●●●

●

●●
●
●●
●●
●●●
●●
●●
●●●
●●●●
●●●●●
●●●●

●

●

●
●

●

●●●
●
●●

●

●●●●●●

●

●

●
●●
●●●
●●
●

●

●

●

●

●
●●●●●
●●●●●

●

●
●
●

●●
●
●●
●●
●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●
●●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●●
●

●

●
●
●●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●
●

●

●
●
●

●●●
●
●●
●●
●●
●●

●

●●
●●
●●
●
●
●●●
●●

●

●
●
●●
●●
●●
●●●●
●
●●●
●●
●●
●●●
●
●●●
●

●

●
●
●

●
●
●
●●
●
●●●●

●

●

●
●

●●
●●●
●
●●●
●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●●
●●●
●

●●

●
●●
●●
●●●

●

●
●

●

●

●

●

●●
●●●
●●●●●

●

●

●

●

●

●

●

●

●
●

●●
●
●
●
●

●

●

●
●

●

●
●●

●

●
●●
●●

●

●
●●
●●
●●
●
●●●
●●
●●
●●●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●
●
●
●●
●●●●●
●●●

●

●

●●
●
●●●●●
●●●

●

●

●●

●●
●●●

●

●●

●●

●

●

●
●

●

●

●

●

●
●
●

●
●●
●●
●●●
●●●
●●●

●

●

●

●

●

●●

●

●

●

●●●
●●●●

●

●

●

●

●

●

●

●
●
●●
●●
●
●

●

●

●●

●

●

●

●

●
●
●
●●●
●●

●

●
●●

●

●

●●
●
●
●●●
●

●

●●
●●
●●
●●●●
●●

●
●●
●●
●●●●
●●●●●●
●

●

●

●

●

●●●●

●

●

●

●

●
●

●●●
●
●

●

●

●

●

●

●

●

●
●
●
●
●●
●
●●●

●●●
●●●●
●●●●
●●●●●
●

●

●

●●
●
●

●●
●●

●

●●
●
●

●

●●
●
●●
●●●

●

●●●
●

●●
●●
●●●
●●●●
●●●●
●●●●

●●

●●●●
●●●
●●●
●●●
●
●●●
●

●
●●

●

●●
●●●●
●●●
●●●●
●●

●

●
●●●●
●●●●●
●●●●●
●

●

●

●
●●
●
●●
●
●●
●●
●●●
●●
●●●
●

●
●

●●
●●
●●
●●
●●●●
●●●●●

●
●●
●●●
●●●
●
●
●●
●●
●●
●●
●●
●●
●●●●
●●
●

●●
●
●
●
●●●
●

●

●
●●
●
●
●●●
●

●●●

●

●●
●
●

●
●●●
●●● ●

●

●
●

●

●

●●
●
●
●

●

●

●

●

●

●

●●●
●●
●●

●●●●

●
●
●

●
●●
●●
●●
●●●●●

●●●●●●●
●●●

●

●
●

●

●●
●●●●●
●●●

●●

●
●
●
●

●●

●

●●
●●

●
●●
●

●

●
●●
●

●●●
●

●

●●
●●●
●

●●

●

●

●

●

●●

●●
●●
●●●
●●●
●●●

●

●●

●●
●

●

●●
●

●

●

●

●

●●●
●

●

●●
●

●
●

●●
●●
●
●●●
●●●
●●
●●
●●●

●

●
●●
●●●●
●●

●●
●
●●
●●●
●●
●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●
●●●●
●●●

●

●●
●●●
●●
●

●

●

●●●●
●●
●●

●

●
●●●
●
●●

●

●●●
●

●●
●
●●

●●
●

●

●●
●

●

●
●
●●
●
●
●●

●

●

●●●
●●
●●●
●
●

●

●●●

●
●●
●
●●
●●●
●

●●
●
●

●●

●●
●●

●

●●

●●●

●
●●
●●
●●●●
●●●●
●●●

●●●
●●●
●●●

●

●

●

●

●●
●
●●
●●●
●●●
●●
●●
●●●

●
●●●
●●●
●●
●●●●

●

●

●

●

●
●●●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Failure Ratio

Q
ue

ry
 E

nd
 to

 E
nd

 D
el

ay
(s

ec
)

0% 20% 40% 60% 80% 100%

VCP

Figure 5.27: Global Replication: query success ratio and data refresh messages with
increasing fraction of failing nodes in random scenario

messages needed to reach the data items. Finally, the end-to-end delay mostly results

from the retransmission of requests.

5.6.3 Global Replication

In extreme scenarios a massive node failure can occur in the same region. Therefore,

we examine here the effectiveness of storing data items at dispersed locations on the

cord. We stored each data item on five different locations. In each location we also

replicate the data items on the physical neighbors. The reason behind replicating the

data locally is to save multi-hop data refreshing as discussed in Section 4.4. Figure 5.27

shows the success ratio and number of refresh messages. On one side, the success ratio

becomes close to the 100% even when all nodes are unreliable. On the other side,

5.6 Replication Performance 103

the communication cost increases linearly with the number of storage locations. The

end-to-end delay is low compared to local replication because we used the parallel

querying method.

5.7 Summary

In this chapter we have intensively evaluated VCP using simulation. A detailed model

of IEEE 802.11 radios has been used throughout the simulation experiments. We

investigated different parameters over a large set of scenarios. We also compared VCP

with competitive state of the art protocols. We have performed ten replications for

most of the experiments and visualized the results using box plots. VCP has exhibited a

robust performance throughout the experiments, i.e a low overhead, high scalability,

near optimal routing paths, and a high capability to adapt to topology changes. We

investigated the ability of different local replication algorithms to persist data in the

presence of unreliable nodes. The results show that these maintain good persistence of

the data in the network. We also investigated a more expensive algorithm that generates

copies of data items on multiple places on the cord. This method shows a higher query

success rate, but also incurs more communication overhead. The preferred replication

algorithm thus depends on the intended application.

104 5.7 Summary

Chapter 6

Implementation in a Lab Environment

In order to show that VCP is feasible not only in simulation, but also in real world, we

set up a proof-of-concept experimental setup in our lab. We implemented VCP on sensor

node called BTnode1 depicted in Figure 6.1. Because this sensor node does not contain

any sensor, we implemented a sensor board that contains sensors measuring light and

temperature, a motion detector and a buzzer. Moreover we implemented a switch to be

used as an actuator. During the developing of VCP on the sensor nodes we made use of

pimoto [94,95] for the debugging and monitoring the transmitted packets.

6.1 The BTnode Sensor Node

The BTnode sensor node is is an autonomous wireless communication and computing

platform based on a Bluetooth, low-power radio and a microcontroller. Both radios can

be operated simultaneously or be independently powered off completely when not in

use, considerably reducing the idle power consumption of the device. The low-power

radio is the same as used on the Berkeley Mica2 Motes. It had been jointly developed at

the ETH Zurich by the Computer Engineering and Networks Laboratory (TIK) and the

Research Group for Distributed Systems. It serves as a demonstration and prototyping

platform for research in MANETs and WSNs.

The characteristics of BTnode are listed below:

• Microcontroller: Atmel ATmega 128L (8 MHz @ 8 MIPS)

• Memories: 64+180 Kbyte RAM, 128 Kbyte FLASH ROM, 4 Kbyte EEPROM

1http://BTnode.ethz.ch/

105

http://BTnode.ethz.ch/

106 6.1 The BTnode Sensor Node

Figure 6.1: The BTnode wireless sensor node [2]

• Bluetooth subsystem: Zeevo ZV4002, supporting AFH/SFH

• Low-power radio: Chipcon CC1000 operating in ISM band 433-915 MHz

• External Interfaces: ISP, UART, SPI, I2C, GPIO, ADC, Timer, 4 LEDs

• Software: BTnut System Software, Standard C Programming, TinyOS compatible

6.2 Sensors and Actuator Boards

While the BTnode had been designed for conducting research in sensor networks, it does

not carrying any onboard sensors. Therefore, in order to enable for sensing capabilities,

the BTnode team designed the BTsense, which is a sensor board that can be attached

by the J2 connector to the BTnode. However this Board is not available to external

users. Therefore we built our own board. We used the same design but we used the J3

connector on the USB programmer board. In addition to the BTsense board, we also

built an actuator.

Figure 6.2 shows a sensor board (left) and an actuator (right), which we developed

in our lab for testing and demonstration purposes. They can be attached to the BTnode.

The sensor board contains temperature and light sensors as well as a motion detector.

The actuator (switch) contains a relay that can be biased by a sensor node to switch

on/off high-voltage (220V) devices.

6.3 Pimoto 107

Figure 6.2: Left: Motion, temperature, and light sensors and a buzzer are mounted on
a connector board; Right: a relay is used as an actuator and can be used together with
the BTnode sensor node

Low-power radio network

Bluetooth

Figure 6.3: Basic architecture of Pimoto

6.3 Pimoto

Pimoto [94,95] is a tool to passively monitor sensor networks. Its primary objective is

to intercept radio data packets in a completely passive way. Additionally, it supports

distributed monitoring in hierarchical way. Pimoto visualizes the packets collected by

several monitoring nodes, which transmitted the monitoring data over a hierarchically

operating system to a central server for further analysis.

In particular, the packets are sniffed at MAC level by sensor nodes that employ a

second radio channel, i.e. a Bluetooth interface, for communication with a gateway PC.

This gateway in turn sends the received data to the server. Pimoto uses the concept

of “monitoring islands”, which has the advantage of monitoring several networks

simultaneously by multiple monitoring nodes and, perhaps, multiple gateways. At the

server, a Wireshark plugin for protocol analysis is used. This tool for the visualization

and analysis of packet contents.

108 6.4 Implementation

Field Meaning
Source address (2 Byte) BMAC source address
Destination address (2 Byte) BMAC destination address
Length of Data (2 Byte) Length of the data
Type (1 Byte) Application type
Data (length of data) Packet data

Table 6.1: BMAC data format

6.4 Implementation

We implemented VCP on BTnode running BTnut operating system. BTnut was developed

based on the open source Nut/OS. Similar to TinyOS, it is a real-time embedded

operating system compatible with ATmega processor family. In addition to minimal

OS services, it provides a multithreaded system architecture. We used the multithread

capability to schedule tasks for hello, insert, query messages.

The implementation is written in standard C and it is configured to use double

for Position, and a hello period of 1 second. The employed BTnode sensor nodes

primarily use the BMAC protocol. Table 6.1 shows the original packets format used by

BMAC.

Because sensor nodes may offer only broadcast as a communication paradigm [1],

we tested at the beginning the performance of VCP using broadcast mode and relying on

the VCP position to identify nodes. Then we investigated the performance of VCP when

putting the interface in promiscuous mode, because we observed that the monitoring

nodes in Pimoto capture more packets than the destination node of that packet.

The size of the compiled system to be installed on the BTnode is about 87 kByte.

The file contains both the text and the data sections. The text portion contains the

actual instructions, while the data contains the program’s data part. The resulting file

size is reasonable for sensor nodes of this class.

To simplify the administration of the network we implemented some functions and

registered them to be called from the terminal:

• printN displays some debugging information information about the node (like

its virtual position).

• setpos 0 is used to initialize the first node.

• sink 1 assigns the current node as a sink.

6.4 Implementation 109

6.5 Prototype and Demo

Based on our implementation, we prepared a demo setup to show the functionality of

VCP in a real-world scenario [96]. Certainly, this is more a proof-of-concept than a

large-scale deployment.

Initially each node should have a unique local identifier. We used the first 3 bytes of

the Bluetooth address to identify the nodes (node ID). Other approaches can be used

such as random numbers. All nodes were initialized with the relative position with a

the negative value of the node ID. We used this value to communicate with the nodes

before joining the network. We connected one node to the PC using a USB cable. This

node acts as a sink node. Using a terminal we set the virtual position of this node to

the Start value (0). This triggers the node to start broadcasting its position (hello

messages). The hello messages enable all nodes to eventually get a virtual position

on the cord.

By default all nodes are named as node. We used the terminal to change one node’s

name to Sink. Using a hash function, this information is inserted in the cord’s data

store and can be used to retrieve the sink’s virtual position. After a short initial period,

the same hash function is used to identify the sink’s position by all the other nodes.

Then, all the nodes start sending one data packet per second to the sink.

As one would expect, when the promiscuous modes is enabled the sink receives

more packets than when just using the broadcast mode. Nevertheless this different is

not that big. The success ratio is increased from about 60− 78% when using broadcast

mode to 65− 90% when enabling promiscuous mode. The main reason for packet loss

lies on the fact that we did not considered the quality of the link when transmitting

packets between nodes. Greedy forwarding in VCP selects the node that make maximum

progress toward destination without considering the link-quality to that node. Therefore

we suggest to include link-quality (i.e signal strength of the received packets) in the

routing table (radio range neighbors) and restricting data transmission to nodes with

minimum link properties. This criterion can incur longer paths, however it improves the

delivery ratio. Another obvious method to improve the delivery ratio is to acknowledge

data packets. However this will incur extra communication overhead on the network.

For demonstration purposes, we used the received data packets on the sink to

visualize the established cord and its dynamic updates as shown in Figure 6.4. We

110 6.5 Prototype and Demo

Figure 6.4: Cord visualization in the lab demo

deployed six nodes in the lab and in the corridor. We stored the IDs of the sensor nodes

and there location in a text file. Hence, when a packet is received at the sink node, we

would be able to know its original location. Each packet has a hop-counter as well as

the value of successor and predecessor positions of the originating node. It can happen

that different packets from the same node have different hop counts. The reason for this

is the that the hello messages are not reliable and they can be easily lost, especially

from nodes at the edges of transmission range. Thus a node that considered live at one

time, can be be considered unavailable in another time because there was no hello

messages form that node. In Figure 6.4 the yellow circles are normal nodes, the green

is a sink, the double circle indicates an end of the cord.

6.6 Summary

In this chapter we proved that VCP can be implemented on real sensor nodes. From the

demonstration, it can be seen that all nodes obtained a virtual position. Moreover all

Sink position queries were answered correctly. However we noticed that the network

experienced packet loses at the mac-layer level. Nevertheless, we can say in spite of the

poor capabilities of the MAC-layer on BTnodes, VCP performance was acceptable.

Chapter 7

Conclusion

Wireless Sensor Networks (WSNs) represent an emerging technology that has the ability

to bring the physical real world closer to the user. However, it also poses big challenges

that must be solved to build functional systems. The challenges can be divided into two

main related categories: miniaturization of node hardware and development of efficient

data management solutions. In this thesis, the latter aspect has been addressed.

We have presented the Virtual Cord Protocol (VCP), a light-weight protocol that

includes routing functionality as well as DHT-based data management functions. VCP

uses a one-dimensional virtual cord to keep routing tables small and to provide low-

complexity but robust packet delivery in sensor networks independently from the

network density. VCP relies on greedy forwarding based on two concepts. First, the

virtual cord can be used to find a path to each destination in the network. Secondly,

locally available neighborhood information is exploited to find shortcuts towards the

destination. Local broadcasting of hello messages is used to update the routing tables.

We have shown that VCP is able to find almost optimal paths.

Furthermore, VCP uses a pre-defined range of virtual coordinates, i.e. the cord

positions, that can be used to hash different contents such as collected sensor data or

even service information such as the positions of base stations. This mapping between

content and the node position on the cord enables other nodes to deterministically

identify the searched items. In static networks, greedy forwarding guarantees packet

delivery to the correct destination as well as a loop free path. In the case of frequent

topology changes, greedy forwarding is impossible and VCP tries to find alternative

paths in order to reach a region in the network where greedy forwarding can be

resumed.

111

112 7 Conclusion

We evaluated VCP in extensive simulation experiments using different network

sizes, topologies and node densities. The results demonstrate that VCP shows a robust

performance across a wide range of different parameter settings. The results shows a

nearly optimal stretch ratio in all investigated scenarios. Furthermore, the success rate

was almost 100%. The only reason for packet loss was congestions on the MAC layer.

We compared VCP with the state-of-the-art protocols DYMO and VRR in different

scenarios. We demonstrated that the performance of VCP is consistently good and in

most scenarios even better compared the other protocols. Both VCP and VRR clearly

outperformed DYMO in static network scenarios. In the experiments with frequent

node failures, VCP shows clear advantages over VRR. VCP consistently delivers more

that 80% of all data packets successfully even when all nodes flipping between on and

off, whereas the success ratio for VRR decreased to about 40 %. The reason for this

decrease is the extra communication overhead generated by VRR to update the vset.

In a final set of experiments, we investigated different replication algorithms. We

have shown that VCP can be used to replicate data on physical neighbors or on neighbors

on the virtual cord. The main advantage of the proposed algorithms is that data

replication is done locally and only on demand. Hence there is no need for periodic

update. The results shows that replicating on the physical neighbors significantly

increases the data availability. In dense networks, even when all nodes are unreliable,

the query success rate is still well above 90%. Because the performance of replicating on

physical neighbors depends heavily on the network density, we investigated replication

on the cord, i.e. on the succeeding and the preceeding nodes. The query success rate

was lower compared to replicating on all physical neighbors. However, when only small

fraction (less than 20 %) of the nodes are unreliable, the results were perfect for all

replication methods. We also investigated the replication on different places on the

cord, which can be required for some cases, for instance when all nodes in the same

region may fail due to localized disturbances.

List of Acronyms

ACK Acknowledgment

AODV Ad Hoc on Demand Distance Vector

AODV-PA AODV with Path Accumulation

BMAC Berkeley MAC

BVR Beacon Vector Routing

DIFS Distributed Index for Features in Sensor Networks

DHT Distributed Hash Table

DSDV Destination-Sequenced Distance Vector

DSR Dynamic Source Routing

DYMO Dynamic MANET on Demand

GFG Greedy Face Greedy

GHT Geographic Hash Table

GLIDER Gradient Landmark-Based Distributed Routing

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GRWLI Geographic Routing Without Location Information

GSR Global State Routing

ISM Industrial, Scientific and Medical

113

114 List of Acronyms

MAC Medium Access Control

MANET Mobile Ad Hoc Network

OLSR Optimized Link State Routing

PRP Perimeter Refresh Protocol

P2P Peer-To-Peer

RREQ Route Request

RREP Route Reply

RERR Route Error

RSSI Received Signal Strength Indicator

SR-DCS Structured Replication in DCS

TBRPF Topology Broadcast based on Reverse Path Forwarding

TORA Temporally-Ordered Routing Algorithm

VCap Virtual Coordinate assignment protocol

VCP Virtual Cord Protocol

VRR Virtual Ring Routing

WSN Wireless Sensor Network

ZRP Zone Routing Protocol

Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor

Networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–116, August

2002.

[2] F. Dressler, Self-Organization in Sensor and Actor Networks. John Wiley & Sons,

December 2007.

[3] A. Boukerche, Ed., Algorithms and Protocols for Wireless Sensor Networks. Wiley-

IEEE Press, 2008.

[4] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks.

John Wiley & Sons, 2005.

[5] L. Q. Zhuang, J. B. Zhang, D. Zhang, and Y. Z. Zhao, “Data management for wire-

less sensor networks: research issues and challenges,” in International Conference

on Control and Automation (ICCA 2005), vol. 1, June 2005, pp. 208–213.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century Challenges:

Scalable Coordination in Sensor Networks,” in 5th ACM International Conference

on Mobile Computing and Networking (ACM MobiCom 1999). Seattle, WA: ACM,

August 1999, pp. 263–270.

[7] C. M. Sadler and M. Martonosi, “Data Compression Algorithms for Energy-

Constrained Devices in Delay Tolerant Networks,” in 4th ACM Conference on

Embedded Networked Sensor Systems (ACM SenSys 2006). Boulder, CO: ACM,

November 2006, pp. 265–278.

[8] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Compressing historical informa-

tion in sensor networks,” in ACM SIGMOD International Conference on Management

of Data (ACM SIGMOD 2004). Paris, France: ACM, 2004, pp. 527–538.

115

116 Bibliography

[9] S. S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed Compression in a

Dense Microsensor Network,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp.

51–60, March 2002.

[10] J. S. Wilson, Sensor Technology Handbook. Newnes, 2004.

[11] T. Arampatzis, J. Lygeros, and S. Manesis, “A Survey of Applications of Wireless

Sensors and Wireless Sensor Networks,” in 13th Mediterrean Conference on Control

and Automation, Limassol, Cyprus, June 2005, pp. 719– 724.

[12] C. Chevallay, R. E. V. Dyck, T. A. Hall, R. E. Van, and D. T. A. Hall, “Self-organization

Protocols for Wireless Sensor Networks,” in 36th Annual Conference on Information

Sciences and Systems (CISS 2002), Princeton, NJ, March 2002.

[13] I. Dietrich and F. Dressler, “On the Lifetime of Wireless Sensor Networks,” ACM

Transactions on Sensor Networks (TOSN), vol. 5, no. 1, pp. 1–39, February 2009.

[14] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless

Sensor Networks for Habitat Monitoring,” in 1st ACM Workshop on Wireless Sensor

Networks and Applications, Atlanta, GA, September 2002.

[15] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon,

“Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks,”

in 6th ACM/IEEE International Conference on Information Processing in Sensor

Networks (IPSN 2007), Poster Session. Cambridge, MA: ACM, April 2007, pp.

254–263.

[16] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring Volcanic

Eruptions with a Wireless Sensor Network,” in 2nd European Workshop on Wireless

Sensor Networks (EWSN 2005), Istanbul, Turkey, February 2005.

[17] S. Dengler, A. Awad, and F. Dressler, “Sensor/Actuator Networks in Smart Homes

for Supporting Elderly and Handicapped People,” in 21st IEEE International Con-

ference on Advanced Information Networking and Applications (IEEE AINA-07):

1st IEEE International Workshop on Smart Homes for Tele-Health (SmarTel 2007),

vol. II. Niagara Falls, Canada: IEEE, May 2007, pp. 863–868.

[18] A. Awad, T. Frunzke, and F. Dressler, “Adaptive Distance Estimation and Localiza-

tion in WSN using RSSI Measures,” in 10th EUROMICRO Conference on Digital

Bibliography 117

System Design - Architectures, Methods and Tools (DSD 2007). Lübeck, Germany:

IEEE, August 2007, pp. 471–478.

[19] C. S. Raghavendra, K. M. Sivalingam, and T. Znati, Wireless Sensor Networks.

Kluwer Academic Publishers, 2004.

[20] J. Zhao and R. Govindan, “Understanding Packet Delivery Performance In Dense.

Wireless Sensor Network,” in 1st ACM Conference on Embedded Networked Sensor

Systems (ACM SenSys 2003), Los Angeles, CA, November 2003.

[21] M. Mauve and J. Widmer, “A Survey on Position-Based Routing in Mobile Ad-Hoc

Networks,” IEEE Network, vol. 15, no. 6, pp. 30–39, 2001.

[22] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) for Mobile Computers,” Computer Communications Review,

pp. 234–244, 1994.

[23] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot,

“Optimized link state routing protocol for ad hoc networks,” in IEEE International

Multi Topic Conference 2001: Technology for the 21st Century (IEEE INMIC 2001),

Lahore, Pakistan, December 2001, pp. 62–68.

[24] B. Bellur and R. G. Ogier, “A Reliable, Efficient Topology Broadcast Protocol for

Dynamic Networks,” in 18th IEEE Conference on Computer Communications (IEEE

INFOCOM 1999), vol. 1, New York, NY, March 1999, pp. 178–186.

[25] T.-W. Chen and M. Gerla, “Global State Routing: A New Routing Scheme for

Ad-hoc Wireless Networks,” in IEEE International Conference on Communications

(IEEE ICC 1998), Atlanta, GA, June 1998, pp. 171–175.

[26] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless

Networks,” in Mobile Computing, T. Imielinski and H. F. Korth, Eds. Kluwer

Academic Publishers, 1996, vol. 353, pp. 152–181.

[27] C. E. Perkins and E. M. Royer, “Ad hoc On-Demand Distance Vector Routing,” in

2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans,

LA, February 1999, pp. 90–100.

118 Bibliography

[28] V. D. Park and M. S. Corson, “A highly adaptive distributed routing algorithm for

mobile wireless networks,” in 16th IEEE Conference on Computer Communications

(IEEE INFOCOM 1997), 1997, pp. 1405–1413.

[29] V. Park and M. Corson, “A Performance Comparison of the Temporally-Ordered

Routing Algorithm and Ideal Link-State Routing,” in 3rd IEEE Symposium on

Computers and Communications (ISCC 1998), Athens, Greece, June/July 1998, pp.

592–598.

[30] R. Bhaskar, J. Herranz, and F. Laguillaumie, “Efficient Authentication for Reactive

Routing Protocols,” in 20th IEEE International Conference on Advanced Information

Networking and Applications (IEEE AINA-06), vol. 2. Vienna, Austria: IEEE, April

2006, pp. 57–61.

[31] Z. J. Haas, “A new routing protocol for reconfigurable wireless networks,” in IEEE

International Conference on Universal Personal Communications (ICUPC), 1997, pp.

562–565.

[32] Z. J. Haas and M. R. Pearlman, “The Performance of Query Control Schemes for

the Zone Routing Protocol,” IEEE/ACM Transactions on Networking (TON), vol. 9,

pp. 427–438, August 2001.

[33] S. Capkun, M. Hamdi, and J.-P. Hubaux, “GPS-Free Positioning in Mobile ad-hoc

Networks,” in 34th Annual Hawaii International Conference on System Sciences

(HICSS 2001), Big Island, Hawaii, January 2001.

[34] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a

context-aware application,” ACM/Springer Wireless Networks, vol. 8, pp. 187–197,

March 2002.

[35] N. B. Priyantha, A. K. Miu, H. Balakrishnan, and S. Teller, “The cricket compass

for context-aware mobile applications,” in 7th ACM International Conference on

Mobile Computing and Networking (ACM MobiCom 2001), Rome, Italy, July 2001,

pp. 1–14.

[36] G. G. Finn, “Routing and Addressing Problems in Large Metropolitan-Scale Inter-

networks,” USC/ISI, ISI Research Report ED290427, 1987.

Bibliography 119

[37] T.-C. Hou and V. Li, “Transmission Range Control in Multihop Packet Radio

Networks,” IEEE Transactions on Communications, vol. 34, no. 1, pp. 38–44,

January 1986.

[38] H. Takagi and L. Kleinrock, “Optimal Transmission Ranges for Randomly Dis-

tributed Packet Radio Terminals,” IEEE Transactions on Communications, vol. 32,

no. 3, pp. 246–257, March 1984.

[39] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed delivery

in ad hoc wireless networks,” in 3rd International Workshop on Discrete Algorithms

and Methods for Mobile Computing and Communications (DIALM 1999). Seattle,

Washington, United States: ACM, 1999, pp. 48–55.

[40] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wire-

less Networks,” in 6th ACM International Conference on Mobile Computing and

Networking (ACM MobiCom 2000), Boston, MA, 2000, pp. 243–254.

[41] B. Leong, B. Liskov, and R. Morris, “Greedy Virtual Coordinates for Geographic

Routing,” in 15th IEEE International Conference on Network Protocols (ICNP 2007),

Beijing, China, October 2007, pp. 71–80.

[42] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS Free Coordinate Assignment

and Routing in Wireless Sensor Networks,” in 24th IEEE Conference on Computer

Communications (IEEE INFOCOM 2005), Miami, FL, March 2005.

[43] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and I. Stoica,

“Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets,”

in USENIX/ACM Symposium on Networked Systems Design and Implementation

(NSDI 2005). San Francisco, CA: USENIX, 2005, pp. 329–342.

[44] Q. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang, “GLIDER: Gradient

Landmark-Based Distributed Routing for Sensor Networks,” in 24th IEEE Con-

ference on Computer Communications (IEEE INFOCOM 2005), Miami, FL, March

2005.

[45] Y. Zhao, Y. Chen, B. Li, and Q. Zhang, “Hop ID: A Virtual Coordinate-Based Routing

for Sparse Mobile Ad Hoc Networks,” IEEE Transactions on Mobile Computing,

vol. 6, no. 9, pp. 1075–1089, September 2007.

120 Bibliography

[46] C.-H. Lin, B.-H. Liu, H.-Y. Yang, C.-Y. Kao, and M.-J. Tasi, “Virtual-Coordinate-

Based Delivery-Guaranteed Routing Protocol in Wireless Sensor Networks with

Unidirectional Links,” in 27th IEEE Conference on Computer Communications (IEEE

INFOCOM 2008). Phoenix, AZ: IEEE, April 2008.

[47] J. Ledlie, C. Ng, D. Holland, K.-K. Muniswamy-Reddy, U. Braun, and M. Seltzer,

“Provenance-Aware Sensor Data Storage,” in 21st International Conference on Data

Engineering Workshops (ICDEW 2005), Workshop on Networking Meets Databases

(NetDB). Atlanta, GA: IEEE, April 2005, pp. 1189–1189.

[48] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable and

robust communication paradigm for sensor networks,” in 6th ACM International

Conference on Mobile Computing and Networking (ACM MobiCom 2000), Boston,

MA, August 2000, pp. 56–67.

[49] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed

Diffusion for Wireless Sensor Networking,” IEEE/ACM Transactions on Networking

(TON), vol. 11, no. 1, pp. 2–16, February 2003.

[50] N. Sadagopan, B. Krishnamachari, and A. Helmy, “Active query forwarding in

sensor networks,” Elsevier Ad Hoc Networks, vol. 3, no. 1, pp. 91–113, January

2005.

[51] D. Braginsky and D. Estrin, “Rumor Routing Algorithm For Sensor Networks,” in

1st Workshop on Sensor Networks and Applications (WSNA), Atlanta, GA, September

2002.

[52] C. Avin and C. Brito, “Efficient and robust query processing in dynamic environ-

ments using random walk techniques,” in 3rd ACM/IEEE International Symposium

on Information Processing in Sensor Networks (IPSN 2004). Berkeley, CA: ACM,

April 2004, pp. 277–286.

[53] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, “GHT:

A Geographic Hash Table for Data-Centric Storage,” in 1st ACM International

Workshop on Wireless Sensor Networks and Applications (WSNA 2002), Atlanta,

GA, September 2002.

Bibliography 121

[54] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-Centric

Storage in Sensornets,” ACM SIGCOMM Computer Communication Review, vol. 33,

no. 1, pp. 137–142, January 2003.

[55] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu, “Data-

Centric Storage in Sensornets with GHT, a Geographic Hash Table,” ACM/Springer

Mobile Networks and Applications (MONET), Special Issue on Wireless Sensor Net-

works, vol. 8, no. 4, pp. 427–442, August 2003.

[56] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker, “DIFS: A

Distributed Index for Features in Sensor Networks,” in 1st IEEE International

Workshop on Sensor Network Protocols and Applications, May 2003, pp. 163–173.

[57] D. Ganesan, D. Estrin, and J. Heidemann, “Dimensions: why do we need a

new data handling architecture for sensor networks?” ACM SIGCOMM Computer

Communication Review, vol. 33, no. 1, pp. 143–148, January 2003.

[58] B. Sheng, Q. Li, and W. Mao, “Data Storage Placement in Sensor Networks,” in

7th ACM International Symposium on Mobile Ad Hoc Networking and Computing

(ACM Mobihoc 2006), Florence, Italy, May 2006, pp. 344–355.

[59] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Gane-

san, “Building efficient wireless sensor networks with low-level naming,” in 18th

ACM Symposium on Operating Systems Principles (SOSP). Banff, Alberta, Canada:

ACM, 2001, pp. 146–159.

[60] B. Krishnamachari, D. Estrin, and S. Wicker, “The Impact of Data Aggregation

in Wireless Sensor Networks,” in International Workshop Distributed Event Based

System (DEBS 2002), Vienna, Austria, July 2002.

[61] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A Tiny AGgrega-

tion Service for Ad-Hoc Sensor Networks,” in 5th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 2002), Boston, MA, December 2002.

[62] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic Gossip: Efficient

Aggregation for Sensor Networks,” in 5th ACM/IEEE International Symposium on

Information Processing in Sensor Networks (IPSN 2006). Nashville, TN: ACM,

April 2006, pp. 69–76.

122 Bibliography

[63] T. E. Daniel, R. M. Newman, E. I. Gaura, and S. N. Mount, “Complex query process-

ing in wireless sensor networks,” in 2nd ACM Workshop on Performance Monitoring

and Measurement of Heterogeneous Wireless and Wired Networks (PM2HW2N 2007).

Chania, Crete Island, Greece: ACM, 2007, pp. 53–60.

[64] R. Steinmetz and K. Wehrle, Eds., Peer-to-Peer Systems and Applications. Springer,

2005, vol. LNCS 3485.

[65] A. Oram, Ed., Peer-to-Peer - Harnessing the Power of Disruptive Technologies.

O’Reilly, 2001.

[66] D. Eastlake and P. Jones, “US secure hash algorithm 1 (SHA1),” IETF, RFC 3174,

September 2001.

[67] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A

scalable peer-to-peer lookup service for internet applications,” in ACM SIGCOMM

2001. San Diego, CA: ACM, August 2001, pp. 149–160.

[68] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. Kaashoek, F. Dabek, and

H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet

Applications,” IEEE/ACM Transactions on Networking (TON), vol. 11, no. 1, pp.

17–32, February 2003.

[69] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, and H. Balakr-

ishnan, “Building Peer-to-Peer Systems with Chord, a Distributed Lookup Service,”

in 8th Workshop on Hot Topics in Operating System (HOTOS), Ilmau, Germany,

May 2001, pp. 81–86.

[70] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems,” in IFIP/ACM International Conference

on Distributed Systems Platforms (Middleware), Heidelberg, Germany, November

2001, pp. 329–350.

[71] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-

Addressable Network,” in ACM SIGCOMM 2001, San Diego, CA, 2001, pp. 161–

172.

Bibliography 123

[72] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed Hashing in

a Small World,” in 4th USENIX Symposium on Internet Technologies and Systems

(USITS 2003), Seattle, WA, March 2003, pp. 127–140.

[73] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Con-

sistent hashing and random trees: distributed caching protocols for relieving hot

spots on the World Wide Web,” in 29th ACM Symposium on Theory of Computing.

El Paso, TX: ACM, 1997, pp. 654–663.

[74] I. Chakeres and C. Perkins, “Dynamic MANET On-Demand (DYMO) Routing,”

Internet-Draft (work in progress) draft-ietf-manet-dymo-10.txt, July 2007.

[75] C. E. Perkins, E. M. Belding-Royer, and S. R. Das, “Ad hoc On-Demand Distance

Vector (AODV) Routing,” RFC 3561, July 2003.

[76] S. Gwalani, E. M. Belding-Royer, and C. E. Perkins, “AODV-PA: AODV with Path

Accumulation,” in IEEE International Conference on Communications (IEEE ICC

2003), Anchorage, AK, May 2003.

[77] I. D. Chakeres and L. Klein-Berndt, “AODVjr, AODV simplified,” ACM SIGMOBILE

Mobile Computing and Communications Review, vol. 6, no. 3, pp. 100–101, July

2002.

[78] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron, “Virtual Ring

Routing: Network routing inspired by DHTs,” in ACM SIGCOMM 2006. Pisa,

Italy: ACM, September 2006.

[79] T. A. Herring, “The Global Positioning System,” Scientific American, vol. 274, no. 2,

pp. 44–50, February 1996.

[80] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of reliable

multihop routing in sensor networks,” in 1st ACM Conference on Embedded Net-

worked Sensor Systems (ACM SenSys 2003). Los Angeles, California, USA: ACM,

November 2003, pp. 14–27.

[81] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Morris, “Performance

of multihop wireless networks: shortest path is not enough,” ACM SIGCOMM

Computer Communication Review, vol. 33, no. 1, pp. 83–88, 2003.

124 Bibliography

[82] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic Routing Made Practi-

cal,” in USENIX/ACM Symposium on Networked Systems Design and Implementation

(NSDI 2005). San Francisco, CA: USENIX, 2005.

[83] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, “Geographic

Routing without Location Information,” in 9th ACM International Conference

on Mobile Computing and Networking (ACM MobiCom 2003), San Diego, CA,

September 2003.

[84] K. Liu and N. Abu-Ghazaleh, “Aligned Virtual Coordinates for Greedy Routing in

WSNs,” in 3rd IEEE International Conference on Mobile Ad Hoc and Sensor Systems

(IEEE MASS 2006). Vancouver, Canada: IEEE, October 2006, pp. 377–386.

[85] B. N. Karp, “Geographic routing for wireless networks,” PhD Thesis, Harvard

University, 2000.

[86] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

munications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[87] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A

Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, January 2005.

[88] A. Awad, R. German, and F. Dressler, “P2P-based Routing and Data Management

using the Virtual Cord Protocol (VCP),” in 9th ACM International Symposium on

Mobile Ad Hoc Networking and Computing (ACM Mobihoc 2008), Poster Session.

Hong Kong, China: ACM, May 2008, pp. 443–444.

[89] A. Awad, C. Sommer, R. German, and F. Dressler, “Virtual Cord Protocol (VCP): A

Flexible DHT-like Routing Service for Sensor Networks,” in 5th IEEE International

Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2008). Atlanta, GA:

IEEE, September 2008, pp. 133–142.

[90] A. Awad, L. R. Shi, R. German, and F. Dressler, “Advantages of Virtual Addressing

for Efficient and Failure Tolerant Routing in Sensor Networks,” in 6th IEEE/IFIP

Conference on Wireless On demand Network Systems and Services (IEEE/IFIP WONS

2009). Snowbird, UT: IEEE, February 2009, pp. 111–118.

[91] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in European Simu-

lation Multiconference (ESM 2001), Prague, Czech Republic, June 2001.

Bibliography 125

[92] C. Sommer, I. Dietrich, and F. Dressler, “A Simulation Model of DYMO for Ad

Hoc Routing in OMNeT++,” in 1st ACM/ICST International Conference on Simula-

tion Tools and Techniques for Communications, Networks and Systems (SIMUTools

2008): 1st ACM/ICST International Workshop on OMNeT++ (OMNeT++ 2008).

Marseille, France: ACM, March 2008.

[93] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A Performance

Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” in 4th

ACM International Conference on Mobile Computing and Networking (ACM Mobi-

Com 1998). Dallas, TX: ACM, October 1998.

[94] F. Dressler, R. Nebel, and A. Awad, “Distributed Passive Monitoring in Sensor

Networks,” in 26th IEEE Conference on Computer Communications (IEEE INFOCOM

2007), Demo Session. Anchorage, AK: IEEE, May 2007.

[95] A. Awad, R. Nebel, R. German, and F. Dressler, “On the Need for Passive Monitoring

in Sensor Networks,” in 11th EUROMICRO Conference on Digital System Design

- Architectures, Methods and Tools (DSD 2008). Parma, Italy: IEEE, September

2008, pp. 693–699.

[96] A. Awad, R. German, and F. Dressler, “Efficient Routing and Service Discovery in

Sensor Networks using Virtual Cord Routing,” in 7th ACM International Conference

on Mobile Systems, Applications, and Services (ACM MobiSys 2009), Demo Session.

Kraków, Poland: ACM, June 2009.

	Abstract
	Kurzfassung
	Introduction
	Motivation
	Contribution
	Organization of the Dissertation

	Data Management in Wireless Sensor Networks
	Wireless Sensor Networks
	General Characteristics of Sensor Nodes
	Applications

	Data Transmission
	Data Naming and Indexing
	Data Storage
	Local Storage
	External Storage
	In-Network Storage
	Analytical Comparison

	Data Processing
	Local Processing
	In-Network Processing
	External Processing

	Peer-To-Peer Technology
	Unstructured Peer-To-Peer
	Structured Peer-To-Peer

	Summary

	Related Work
	Chord
	Dynamic MANET on Demand
	Virtual Ring Routing
	Geographic Hash Tables
	Geographic Routing Without Location Information
	Hop ID
	Summary

	Virtual Cord Protocol
	Overview
	Setting up the Cord
	Routing on the Cord
	Greedy Routing
	Failure management

	Data Replication
	Local Replication
	Global Replication

	Further Extensions
	Refinement of the Cord
	Reactive Implementation
	Cooperative Storage with VCP

	Summary

	Simulation and Evaluation
	Simulation Environment
	Evaluation Metrics and Scenarios
	Performance Evaluation of VCP
	Join Overhead and Join Duration
	Quality of Routing Paths
	Influence of the Network Size
	Influence of the Traffic Load
	Cord Refinement

	Comparison with Other Protocols
	Path Length
	Delay
	MAC Layer Collisions
	Network Load

	Failure Performance
	Success Rate with Node Failures
	Communication Overhead with Node Failures
	Collision with Node Failures
	Delay with Node Failures
	Path Length with Node Failures

	Replication Performance
	Local Replication on Neighbors
	Local Replication on Adjacent Nodes
	Global Replication

	Summary

	Implementation in a Lab Environment
	The BTnode Sensor Node
	Sensors and Actuator Boards
	Pimoto
	Implementation
	Prototype and Demo
	Summary

	Conclusion
	List of Acronyms
	Bibliography

