N-COMPACTNESS AND θ-CLOSED SETS

Mathematics Department, An-Najaf University
Mawaniad, Almah
and
email: math@mathematical-biotechnology.aqz@gmail.com
Birezil, Pakistan
Mathematics Department, Birezil University, P.O. Box 14
Mohammad Saleh

Proposition 2.4. For a space X with the topology τ, the following are equivalent:

1. X is a Hausdorff space.
2. For all nested open sets $A \subseteq B$, there exists a point $x \in B \setminus A$.
3. For all points $x \in X$, there exist disjoint open neighborhoods U_x and V_x.
4. For all points $x, y \in X$, there exist disjoint open neighborhoods U_x and V_y.

Example 2.1. Let X be with the topology τ, then X is Hausdorff if and only if there exists a Hausdorff space Y with X as a dense subspace of Y. In this case, X is Hausdorff if and only if Y is Hausdorff.

2. Basic Results

\square 4.2. Theorem 2.7. A space X is Hausdorff if and only if for any two disjoint closed subsets A and B of X, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Corollary 2.3. A space X is Hausdorff if and only if for any two disjoint closed subsets A and B of X, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 2.8. A space X is Hausdorff if and only if for any two disjoint closed subsets A and B of X, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Corollary 2.4. A space X is Hausdorff if and only if for any two disjoint closed subsets A and B of X, there exist disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
Definition 3.4. Let X be a set. A family \mathcal{F} of subsets of X is said to have the finite intersection property if, for every finite collection $\{F_1, F_2, \ldots, F_n\} \subseteq \mathcal{F}$, the intersection $F_1 \cap F_2 \cap \cdots \cap F_n$ is non-empty.

Theorem 3.2. A Hausdorff space (X, \mathcal{H}) is X-closed if and only if every family of subsets of X that has the finite intersection property is a finite union of closed sets in X.

Proof. Let F be X-closed and \mathcal{F} be a family of sets such that \mathcal{F} has the finite intersection property. We want to show that $\bigcap \mathcal{F}$, the intersection of all sets in \mathcal{F}, is non-empty. If $\bigcap \mathcal{F}$ were empty, then \mathcal{F} would not have the finite intersection property, a contradiction. Therefore, $\bigcap \mathcal{F}$ is non-empty.

Corollary 3.2. For a space X, the following are equivalent:

(a) X is X-closed.
(b) For every family \mathcal{F} of subsets of X, if $\bigcap \mathcal{F}$ is non-empty, then $\bigcap \mathcal{F}$ is a finite union of closed sets.
(c) For every family \mathcal{F} of subsets of X, $\bigcap \mathcal{F}$ is a finite union of closed sets in X.

Theorem 3.6. For a space X, the following are equivalent:

(a) Every finite family of X-closed sets with the finite intersection property has non-empty intersection.
(b) Every finite family of X-closed sets is finite.
(c) Every finite family of X-closed sets with the finite intersection property is finite.
(d) A Hausdorff space (X, \mathcal{H}) is X-closed.
Corollary 4.7. If X is compact and every point set is G-closed, then

\[X \text{ is a normal space if and only if } X \text{ is a compact space.} \]

Corollary 4.8. If X is a normal and completely regular space, then X is a Hausdorff space.

Corollary 4.9. If X is a normal and completely regular space, then X is a normal space.

Definition 4.2. A space X is said to be compactly closed if X is a Hausdorff space.

Theorem 4.1. A Hausdorff space X is compactly closed.

Proof. Let A be a closed subset of X, then A is compactly closed.

Theorem 4.2. A Hausdorff space X is compactly closed if and only if X is a normal space.

Theorem 4.3. Let X be a normal space and let A be a closed subset of X. Then A is compactly closed if and only if X is a Hausdorff space.

As a consequence of Theorem 4.3 we get the following corollaries.

Corollary 4.10. If X is a completely regular normal space, then X is a compact Hausdorff space.

Corollary 4.11. If X is a compact Hausdorff space, then X is a normal space.

Corollary 4.12. If X is a normal space, then X is a Hausdorff space.

4. Normed spaces and G-closed sets

definition 4.4. A set A in a normed space X is called G-closed if there exists a closed set B in X such that A = \(X \setminus B \).

Theorem 4.4. If A and B are two closed sets in a normed space X, then A \(\cap \) B is a G-closed set.

Proof. Let x be a point in A \(\cap \) B. Then x is in both A and B. Since A and B are closed, x is in \(X \setminus (X \setminus A) \) and in \(X \setminus (X \setminus B) \). Hence x is in \(X \setminus (X \setminus (A \cup B)) \), which is a closed set containing x. Therefore x is in A \(\cap \) B.

Corollary 4.5. A normed space X is compactly closed if and only if X is a Hausdorff space.

212
Theorem A.6. Let \(\mathcal{X} \) be a complete linearly connected space with \(X \). Then \(X \) is a complete linearly connected space if and only if \(X \) is locally connected.

Theorem A.7. If \(X \) is a complete linearly connected space and \(\mathcal{X} \) is a complete linearly connected space with \(X \), then \(\mathcal{X} \) is a complete linearly connected space with \(X \).

Theorem A.8. Let \(\mathcal{X} \) be a complete linearly connected space with \(X \). Then \(X \) is a complete linearly connected space if and only if \(X \) is locally connected.

Theorem A.9. Let \(\mathcal{X} \) be a complete linearly connected space with \(X \). Then \(X \) is a complete linearly connected space if and only if \(X \) is locally connected.

Theorem A.10. Let \(\mathcal{X} \) be a complete linearly connected space with \(X \). Then \(X \) is a complete linearly connected space if and only if \(X \) is locally connected.

Theorem A.11. A complete linearly connected space with \(X \) is a complete linearly connected space with \(X \).

Corollary A.1. Every compact subset of a complete linearly connected space is compact.

Corollary A.2. Every compact subset of a complete linearly connected space is compact.

Proof. Let \(\mathcal{X} \) be a complete linearly connected space with \(X \). Then \(X \) is a complete linearly connected space with \(X \).

Theorem A.12. A complete linearly connected space with \(X \) is a complete linearly connected space with \(X \).

Proof. Let \(\mathcal{X} \) be a complete linearly connected space with \(X \). Then \(X \) is a complete linearly connected space with \(X \).
Theorem 4.16. Let X be a Hausdorff space and $A \subseteq X$. Then the

\check{g}-continuous

function $f : X \to \{0, 1\}$ is the inverse image of a \check{g}-closed subset of a Hausdorff \check{g}-continuous g-

Hausdorff space \check{g}-

Theorem 4.17. Let $f : X \to Y$ be a Hausdorff space if f is \check{g}-

continuous, then X is connected and f is \check{g}-continuous. Since A is a closed subset of X, $X - A$ is Hausdorff, then X is Hausdorff and A is Hausdorff space.

Theorem 4.18. Let $f : X \to Y$ be \check{g}-continuous and X be \check{g}-compact. If each closed set in X

is \check{g}-compact, then X is \check{g}-compact.