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Abstract

In this article, we investigate some properties of quasi 6-continuity and
*"* faint continuity and their graphs. The notions of 8-Hausdorffness and

g-compactness are introduced.

1, Introduction

The concepts of O-closure and B-interior operators were first
introduced by Velicko. These operators have since been studied
ntexiéively by many authors. Although 8-closure operators are not
deméotents, the collection of all 8-open sets in a topological space (X, I')
: uns a topology Ty on X, weaker than T So far, numerous applications
of _sub_h operators have been found in studying different. types of
ontﬁmgjus like maps, separation of axioms, and above all, to many
) vtant types of compact like properties. In 1982, Long and Herrington
5] introduced faintly continuous maps as a generalization of weakly
ontinuous maps. Later in 1990, Noiri and Popa [8] introduced quast

n inuity as a generalization of 8-continuity.
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The purpose of this Paper is to study further these concepts. In

Section 2, we give some basic properties of these maps. Among other

results, it is shown that afunction f: X > ¥ is faintly continuous iff its

graph mapping ¢ = (x, F(x) is faintly continuous improving a result by
Long and Herrington. Similarly,
introduce the notion of 8-Hausdo

that the Preimage of a 8-Hausdorff injective quasi 6-continuous is

8-Hausdorff. We get similar results to some of these in {3, 4, 5, 6, 7, 8,9,
10, 11] applied to faint and quasi B-continuities,

for quasi o-oobﬁﬁﬁ.@. In Section 3, we
rffness and 8-compactness. It is shown

Foraset Ain a space X, let us denote by Ini(A) and A . the interior
and the closure of 4 in &, respectively. Following Velicko {12}, a point x of
a space X is called a 0-adherent point of a subset 4 of X fHFUNA = <z,

for every open set I7 containing x. The set of all 8-adherent points of A is
called the 6-closure of A, denoted by clsgA. A subset A of
called O-closed iff 4 =

a space X is
clsgA. The complement of 2 O-closed set is called

8-open. Similarly, the B-interior of a set 4 in X, written Intg A, consists of

those points x of A such that for some open set U containing x, o A A
set A is B-open iff 4 = Intg A, or equivalently, X ~ A is 0-cloged. One of
the most interesting weaker forms of compactness is closure compactness.
A subset 4 of g space X is called a closure compact subset or quasi-H-
closed (QHQ) if every open cover has a finite subcollection whose closures
cover A. A closure compact Hausdorff space is called H-closed, first
defined by Alexandroff and Urysohn [1]. A function f: X

or B-coniinuous (resp., weakly, strong

= Y is closure
{y) continuous if given any open set
Vin Y, there exist an open set U in X such that OV (resp.,
eV, (T A space Xis called Urysohn if for every x = ye X,
there exists an open set U containing x and an open set V containing y
such that U NV = 2. A function f:X o ¥ is said to be faintly

continuous (f.c.) (resp., quasi O-continuous (g.0.c.)) if the inverse image of
every 6-open set is open (B-open).
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2. Basic Results

In this section, we give some basic results of faint and quasi
O-continuities that will be needed in this paper.

It is clear that a space X is Hausdorff iff {x} is 6-closed, for every
x & X. Moreover, N.mwmnm X is Hausdorff iff every compact subset is
9-closed.

Lemma 2.1. Let f: X 5 Y be weakly (resp., closure) continuous.
Then the inverse image of every 8-open set is open (B-open).

Corollary 2.1. Every weakly (resp., closure) continuous function is
faintly (resp., quast O-continuous) continuous.

Corollary 2.2. Let f : X = Y be faintly (resp., quasi 8-continuous)
continuous, where Y is a Hausdorff-space. Then f has closed (0-closed)

point inverses.

As a consequence of Corollary 2.2, we get Theorem 6 in [2]. A quasi
B-continuous need not be weakly continuous as it is shown in the next
example.

Example 2.1. Let X = B with the cocountable topology 3., Y =
{0,1, 2} with 3= {®, {0}, 1}, {0, 1}, Y). Define 7 : X — ¥ as f (rationals)
=0, f(rrationals) =1. Then f is quasi G-continuous but not weakly
continuous.

The proofs of the following results follow easily from the definitions.

Theorem 2.1. Let f : X -> Y be faintly continuous and let ¢: ¥ — Z
be quasi O-continuous (resp., strongly continuous). Then gof : X - 7 is
faintly continuous (resp., continuous).

Theorem ww Let f:X - Y be continuous and let §:Y ~» Z be

faintly continuous. Then go f : X — Z is faintly continuous.

Theorem 2.3. Let f : X » Y be o quasi B-continuous and let g:Y
- Z be quasi B-continuous (resp., strongly continuouws). Then gof : X

~» Z 1is quasi B-continuous (resp., strongly continuous).
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In [3, 6, 10] it is shown that a function
closure) continuous iff its graph mapping g,

almost (resp., weakly,

f is almost (resp., weakly,
where g(x) = (x, f(x)), is
closure) continuous. Also, in [5, Theorem 14],
shown that if £ is weakly continuous, then the graph mapping is fa

continuous. Next, we improve this result and get similar results for
B-continuities.

it is
intly
quasi

Lemma 2.2. A function f: X

=Y isgbe(fe)atxe X iff for every
6-open set V containing Flx)

in Y there exists an open set U containing x
n Xsuch that f(U) ¢ V (f{U) c V).

Theorem 2.4. Let f: X —» ¥ be a mapping and let g : X — X x Y
be the graph mapping of f given by g(x) = (x, f(x)) for every point x € X.

Theng:X - X xY is fe.(resp., q8.e)iff f : X —» Y is fc. (resp., q.6.¢.).

Proof. We will give the proof for f.c. maps only. Suppose ¢ is fic.

Theorem 2.2 implies that fis f.c. Conversely, assume fisfe Let x ¢ X,

and let V'be a @-open subset of X x Y containing g{x). Then there exist
9-open sets U, W in X, Y, respectively,
gx)e UxW c V, since alx)

containing x, f(x) such that
is the graph mapping of £. By f.c. of f, there
exists an open set A of x such that flA)Ye W. Let B=U A. Then
HB)cUxWcV, proving that g is f.c.

The next theorem gives characterizations of fc.

(resp., g.0.c.) using
nets and filters.

Theorem 2.5. Let f : X — ¥. Then the following are equivalent:

(@) fisfe. (resp., q.8.c).

(o) For each x e X and for each filter base F converges (resp.,

O-converges) to x, f(F) B-converges to f(x).

(¢) For each xe X and for each net ,ﬂxgvpmﬁ converges (resp.,

S-converges) o x, {f(x, Voep O-converges to flx).

ON FAINT AND QUASI 8-CONTINUITIES 181

Similar to §-continuity [7, Theorems 3.3 .mEm 3.4] and following

similar arguments as in {4, Theorems 6 and 7], we get the following
results.

Theorem 2.6, Let f: X —» m Xo be given. Then fis g.8.c. (resp.,

ael

f.c) iff the oospdomﬁ.ﬁ.o.: with each projection m, is q.6.c. (resp., f.c.).

Theorem 2.7. Define Epﬂ. fo g Xe = mgmm Y, by {xq) >

{fulxe )} Then E fo 18 q0.c. (resp., fic) iff each f, : X, = Y, is g.0.c.
(resp., f.c.).

3. Applications

Definition 8.1. A space X is said to be 6-Hausdorff if for every
x # y & X, there exist 6-open sets Uy, V, such that U, N V, =@

It is clear that every 8-Hausdorff is Urysohn and every regular
T} -space is 0-Hausdorff, but a 6-Hausdorff space need not be regular.
Also, a Urysohn space is not necessarily a 6-Hausdorff space as shown in
the following example.

Example 3.1. Let X be the reals with the topology S whose basis is
generated by the sets of the form (a, b) and (a, b)- K, where K =

%.HI ine N+W. Then T is 8-Hausdorff but not regular.
it

Example 3.2. Let w be the first infinite ordinal and w; be the first
uncountable ordinal both with the order topology. Let R =
{fw) + 1) % (w + 1\ (wy, w)} with the product topology. The space R is
Tychonoff and it is called the Tychonoff plank. Let Bn = Rxn and £ =
RIUR2U R3 with (wy, », n) identified with (wi, ¥, n+1) whenever n
is odd and (x, w, n) identified with (x, w, n +1) whenever n is even;

place quotient topology on E. Let X be the space of E union two points ol
and q. A subset U7 of X is defined to be open if (1) U intersect £ is open in
E, (2) p in U implies there éxist some ¢ less than wy and ¢ less than w
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such that (x, y, 1) is in U whenever ¢ less than y and y is less than wy

and s is less than x and x is less or equaltow, @) gin U implies there
exist some ¢ less than w, and s less than w such that (x, v, 3) isin U

whenever ¢ less than y and y is less than or equal to wy and s is less than

x and x is less than w. The space X is Urysohn but not 8-Hausdorff since
the 8-open sets containing p and g intersect.

By a faint retraction (resp., quasi B-retraction, strong retraction) we
mean an f.c. (resp., g.8.c, s¢.) function f:X > A where A ¢ X angd Fla
is the identity function on A.

Theorem 3.1. Let 4 ¢ X and let f:X > A bea faint retraction of
Xonto A IfXisa B-Hausdorff space, then A is a closed subset of X.

Proof. Suppose not, then there exists a point x € A\ A. Since fisa
faint retraction, f(x) = x. Since X is B8-Hausdorff, there exist 8-open sets
U and V containing x and f(x), respectively, such that U NV = &, Now,
let W be any open set in X containing x. Then U W is an open set
containing x and hence UNWN A = &, since x ¢ A. Therefore, there
exists a point y e UNWMN A Since ye A4, f() = ye U and hence
f(y) € V. This shows that f(W) is not contained in V. This contradicts

the hypothesis that fis faintly continuous. Thus A is closed as claimed.

Theorem 3.2. Let f: X - ¥ bea f.c. and injective function. If Y is
8-Hausdorff, then X is Hausdorff.

Proof. For any distinct points %y, %p € X, since f is one-to-one, we
have f(x;)= f(xs). Since Y is a 0-Hausdorff, there exist 0-open sets
V1. V, containing f{x;) and f(xs), respectively, such that V; NV, = @.
But since f is fe. there exist open sets Up, Uy containing Xy, X3,
respectively, such that f(U) ¢ V3, and flUs) € Vo. Thus U; N U; =&,
proving that X is Hausdorff.

Now, we list following straightforward results.
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Theorem 3.3. Let A ¢ X and let f:X —» A beaquasi 8-retraction
of Xonto A. If X is 8-Hausdorff, then A is a 6-closed subset of X.

Theorem 3.4. et f: X - Y be a quast S-continuous and injective
function. If ¥ is 0-Hausdorff, then X is 8-Hausdor/ff.

Theorem 3.5.Let F: X > ¥ bea strong retraction of X onto A. If X
is Hausdorff, then A is a 8-closed subset of X.

Theorem 3.6. Let f: X > ¥V beq strongly continuous and bijective
function. If Y is Housdorff, then Xis a 8-Hausdorff space.

Similar to a.c. and weakly continuous functions, fic. (resp., g.6.c)
maps are not connected (do not preserve connectedness), since if
f:X>Y is fe (resp., @.6.c), then it need not be true that
F:X o f(X) is fe (resp., g.8.c) as we show in the next example,

However, the restricted map of fe. (resp., g.6.c.) in the domain is fe.
(resp., g.8.c.).

Example 3.3. Let X = B be the reals, U7 be the usual tepelogy, 3,
be the cocountable topology. Define f:(BU)— (R 3,) asf {rationals)
=0, f Q@rrationals)=1, then f is closure continuous, but f: (R, )

— f(X} = {0, 1} is not even fe. It is clear that fis not connected.

It is well-known that the image of compact is closure compact under
weakly continuous functions, the image of closure compact is compact
under strongly continuous functions and the image of closure compact is
closure compact under closure continuous functions. The following results
are similar to that applied to faint and quasi B-continuities.

Definition 3.2. A subset 4 of a space X is said to be theta compact

(briefly, 6-compact) if every cover of B-open sets of A has a finite subcover,
or equivalently A is compact in Tf.

It is clear that every closure compact subset is f-compact but not
conversely as in Example 3.2, if Uis 2 8-open set containing p and Vis a
9-open set containing g, then X\ (U {J V) is compact. But the space X is
not, H-closed.
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Lemma 3.1. 4 function f: (X, T) = (¥, 3) is faintly continuous iff
X, T)= (Y, 3) is continuous and f:(X,T)— (¥, 3) is quasi
8-continuous iff (X, Ty) = (¥, 39) is continuous. Also, f : {X,T) -
(¥, 5) is strongly continuous iff f : (X, Ty) — (¥, J) is continuous.

Lemma 3.2. A subset K < (X, ) is a O-compact subset iff K <
(X, Ty) is compact. Also, a space (X, T) is 6-Housdorff iff (X, Ty) is
Hausdorff. A subset A c X is 6-closed tn (X, T) iff A is closed in
(X, Ty).

The proofs of the following results are straightforward from Lemmas
3.1 and 3.2.

Theorem 3.7. Let f : X — Y be fc. and let K be a compact subset of
X. Then f(K) is a 0-compact subset of Y.

Theorem 3.8. Let f: X - Y be gb.c. and let K be a 9-compact
subset of X. Then f(K) is a B-compact subset of Y.

Theorem 3.9. Let f: X —» Y be strongly continuous and let K be o
8-compact subset of X. Then f(K) is a compact subset of Y.
Theorem 3.10. A 8-compact subset of a 6-Hausdorff space is B-closed.

Theorem 3.11. Every 0-clesed subsef of a @-compact space is
8-compact. .

Theorem 3.12. The product of 8-compact spaces is B-compact.

Theorem 3.13. A finite union of 8-compact is O-compact.

Theorem 3.14. Let f, ¢ be f.c. from a space X into a 8-Hausdorff
space Y. Then the set A = {x ¢ X : f(x) = g(x)} is a closed set.

Theorem 3.15. Let f. g be g.B.c. from a space X into a 6-Hausdorff
space Y. Then the set A = {x € X : f(x) = g(x)} is a O-closed set.

Definition 3.3. A function fis said to be 8-open if the image of every
open sget is ©-open. Similarly, a function f is said to be 6-closed if the
image of every closed set is 8-closed.
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Theorer 3.16. Let f : X - ¥ be f.c. 1 -1, onte. If X is compact and
Y is 6-Hausdorff, then { is 8-open.

Proof. Let U be an open subset of X, and thus X\U is a closed
subset of X. Hence, X\U is compact. Since f is f.c., Theorem 3.7 implies
that f(X\U) is 6-compact. Therefore, Theorem 3.10 implies that £(X\U)
= Y\ f(U) is 0-closed, and thus f(U) is 6-open.

The following results follow easily.

Theorem 3.17. Let f: X =Y be fe. If X is compact and Y is
0-Hausdor(f, then f is 9-closed.

Theorem 3.18. Let f : X = ¥ be g.8.c. 1 -1, onto. If X is 6-compact
and Y is 8-Hausdorff, then the image of B-open is 6-open.

Theorem 3.19. Let f: X - Y be ¢.8.c. If X is 0-compact and Y is
8-Hausdorff, then the image of B-closed is 8-closed.

Questions. (1) Does there exists a faintly continuous map which is
not quasi 8-continuous? .

(2) Is the composition of two faintly continuous maps faintly
continuocus?
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