
Adding Ownership Domain Annotations to and

Extracting Ownership Object Graphs from
MiniDraw

Nariman Ammar Marwan Abi-Antoun

December 2011

Department of Computer Science
Wayne State University

Detroit, MI 48202

Abstract

We conducted a case study in adding ownership domain annotations to and extracting hierarchical object
graphs from a small pedagogical object-oriented framework written in Java. We describe, using examples
from the actual system, how we incrementally annotated the code then used static analysis to extract Own-
ership Object Graphs (OOGs) depicting the run-time structure of the system. We also discuss a preliminary
evaluation of the extracted OOG and how we refined it before providing it to external developers.

Keywords: case study, ownership domains, ownership object graphs, static analysis, reverse engineering

Contents

1 Introduction 3

2 Background 4

2.1 Review of the Scholia Approach . 4
2.2 Review of Ownership Domain Annotations . 5

2.2.1 Ownership Domains . 5
2.2.2 The Annotation Syntax . 5
2.2.3 External Libraries . 7
2.2.4 Special Annotations . 7

2.3 Ownership Object Graph (OOG) . 7

3 Study Setup 8

3.1 Subject System . 8
3.2 Architectural Extractors . 9
3.3 Tools and Instrumentation . 9

4 Procedure 10

4.1 Adding Annotations . 11
4.1.1 Adding AliasXML Files . 11
4.1.2 Selecting the Top-Level Domains . 11
4.1.3 Selecting the Root Class . 11
4.1.4 Applying Annotation Defaulting Tool . 12
4.1.5 Propagating Domain Parameters . 13
4.1.6 Propagating Domain Inheritance . 13
4.1.7 Fixing Annotation Warnings . 13

4.2 Extracting Initial OOGs . 14
4.3 Refining Initial OOGs . 14

4.3.1 Possible refinements of an OOG . 15
4.3.2 Move an object between sibling domains . 15
4.3.3 Abstract a low-level object . 16
4.3.4 Merge objects that share a common super-type . 17
4.3.5 Set the labeling types . 17

5 Evaluating the OOG 18

5.1 Further Refinements . 18
5.2 How does an OOG answer key program comprehension questions? 18

6 Discussion 23

6.1 Architectural extractors’ effort estimates . 23
6.2 Architectural extractors’ thought process . 24
6.3 Evaluation of the extracted OOG . 24

7 Conclusion 25

1

List of Figures

1 Ownership domain annotation syntax illustrated on a small example. 4
2 Top-level OOG for above example (Fig. 1). 8
3 MiniDraw metrics snapshot. 9
4 The root class used in MiniDraw to extract OOG. 12
5 An OOG for BreakThrough. 15
6 MiniDraw OOG. 18
7 An expanded view of the OOG. 19
8 Implementation of the Observer pattern, between BoardDrawing and GameStub. 20
9 Different instances of Map are placed in different domains. 23
10 developers should not get a persistent reference to the fListeners list, therefore it should be

declared in a private domain. 23

2

1 Introduction

The software engineering research community has identified the importance of diagrams for program com-

prehension. Diagrams can represent the code structure, the runtime structure or the behavior of a software

system. Diagrams can help developers to understand and modify the code, or to measure the potential

impact of a planned modification [9].

There are multiple kinds of diagrams, and each diagram can answer some of the questions that developers

may ask. In this report, we are concerned about diagrams of the run-time structure. For a given system,

these diagrams can be either missing, or they are available, can be inconsistent with the code or lack much

detail. So, it is often preferred to extract the diagram directly from the code, to ensure that the diagram is

consistent with the code, and that it fully reflects the implementation.

Abi-Antoun and Aldrich have recently proposed the Scholia approach to statically extract from object-

oriented Java code a hierarchical Ownership Object Graph (OOG), which is a diagram of the runtime

structure. Producing an OOG for a system is an iterative process which involves three steps: adding

annotations to the code to specify the design intent, extracting initial OOGs, then refining the extracted

OOGs to make them convey design intent.

In this report, we present a case study in adding annotations to and extracting OOGs from a medium-

sized, pedagogical, object-oriented framework. This case study was conducted in preparation for a controlled

experiment that evaluated the usefulness of the OOGs as diagrams of the runtime structure that complement

diagrams of the code structure such as class diagrams. Since we gave the OOG to developers and asked

them to do code modifications on the system, we briefly report on a preliminary evaluation of the extracted

OOGs with the experimenter prior to the experiment.

Outline. This report is organized as follows. Section 2 provides some background on Scholia including the

ownership domain annotation syntax and the OOG graphical notation. Sections 3 describes the study setup.

Section 4 describes the process of adding annotations (Section 4.1), extracting initial OOGs (Section 4.2)

and refining them (Section 4.3). Section 5 evaluates the information content of the OOG, and discusses how

the OOG answers key program comprehension questions about the system. We round out the report with a

discussion of some issues and limitations (Section 6) and conclude.

3

1 @Domains ({ "owned ", "MAPS" })

2 @DomainParams({"U","L","D"})

3 @DomainInherits({"StandardDrawing <U,L,D>", "BoardGameObserver <U,L,D>"})

4 class BoardDrawing extends StandardDrawing

5 implements BoardGameObserver {

6

7 protected @Domain ("MAPS <D,MAPS <D>>") Map <Position , List <BoardFigure >> figureMap =

8 new HashMap <Position , List <BoardFigure >>();

9

10 protected @Domain ("owned <shared , D<U,L,D>>") Map <String , BoardFigure > propMap = null;

11

12 protected @Domain ("L<U,L,D>") FigureFactory factory ;

13 protected @Domain ("L") PositioningStrategy adjuster ;

14

15 @DomainReceiver("D")

16 public BoardDrawing(@Domain ("L<U,L,D>") FigureFactory factory ,

17 @Domain ("L") PositioningStrategy adjuster ,

18 @Domain ("D<U,L,D>") PropAppearanceStrategy propChanger) {

19 ...

20 }

21 ...

22 }

23

24 @Domains ({ "owned " })

25 @DomainParams({"U","L","D"})

26 @DomainInherits({"ImageFigure <U,L,D>"})

27 class BoardFigure extends ImageFigure {

28

29 private @Domain ("L<U,L,D>") Command command ;

30

31 public BoardFigure (@Domain ("shared ") String image , @Domain ("shared ") Point origin ,

32 boolean isMobile , @Domain ("L<U,L,D>") Command command) {

33 ...

34 }

35 ...

36 }

Figure 1: Ownership domain annotation syntax illustrated on a small example.

2 Background

2.1 Review of the Scholia Approach

Abi-Antoun and Aldrich [2] recently proposed the Scholia approach to extract a diagram of the runtime

structure from an object-oriented system. The approach relies on adding annotations to the code, then

running a static analysis to extract a hierarchical Ownership Object Graph (OOG). The extracted OOG can

be refined by modifying the annotations or by changing the settings on the static analysis. The annotations

implement the Ownership Domains type system, that ensures that the annotations are consistent with each

other and with the code.

4

2.2 Review of Ownership Domain Annotations

2.2.1 Ownership Domains

An ownership domain is a conceptual group of objects with an explicit name and explicit policies that govern

how a domain can reference an object in other domains [3].

There are two types of ownership domains:

Private domains provide strict encapsulation and make an object strictly owned by another. A public

method cannot return an alias to an object inside a private domain, although the Java type system allows

returning an alias to a field marked as private. The architectural extractor can declare and use only one

private domain per class. The name has to be owned since the name is hard-coded in the typechecking tool.

For example, the class BoardDrawing declares the private domain owned and stores the field propMap of type

Map in it.

Public domains provide logical containment and make an object conceptually part of another. Having

access to an object gives the ability to access objects inside all its public domains. The architectural

extractor can declare and use public domains as much as he required. Public domain can have any name

other than the private domain name, owned. For example, BoardDrawing declares a the public domain MAPS

to hold a figureMap object.

2.2.2 The Annotation Syntax

The annotations use existing language support for Java 1.5 annotations. We illustrate the ownership domain

annotations using code examples from MiniDraw (Fig. 1). In this section, we briefly explain the annotation

syntax.

Domain Declaration @Domains. The architectural extractor must declare a domain before using it. For

example, the architectural extractor declared the domains owned and MAPS (Line 1) before using them.

Domain Use @Domain. Each object is assigned to a single ownership domain that does not change at

runtime. We indicate the domain of an object by annotating each reference to that object in the program.

For example, the following statement declares the reference adjuster of type PositioningStrategy in the

domain L.

protected @Domain ("L") PositioningStrategy adjuster ;

Domain parameters declaration @DomainParams. Domain parameters allow objects to share state.

Domain parameters can be declared and used as follows: The architectural extractor must declare the

5

domain parameters at the type declaration level before using them on the instances of that type. For

example, the architectural extractor declared three domain parameters U, L and D on the type BoardDrawing,

corresponding to the three domains UI, LOGIC and DATA, respectively (Fig. 1). After declaring domain

parameters at the class level, they can be used to annotate the following:

• Object declarations. If at the type declaration there is a domain parameters declaration, then the

architectural extractor must add the same number of domain parameters at any object instantiation of

that type to match the declared domain parameters. For example, the type BoardDrawing uses three

domain parameters, so any instance of the type BoardDrawing must has three domain parameters

at the object instantiation statement. In the following example, the architectural extractor placed

boardDrawing object in the domain parameter D with three domain parameters, U, L and D, that map

the domain parameters declared at the class level:

@Domain ("D<U,L,D>") BoardDrawing boardDrawing;

• Parameterized types. To specify domains for the parameterized code elements such as Hashtable.

For example, the following code fragment has a HashMap, which has two parameterized elements, key

and values:

@Domain ("owned <shared ,shared >") Map <String ,Image > name2Image ;

The architectural extractor specified the domain for each one of these elements as follows: he used

the shared domain for the keys of the type String and a shared domain for the values of the type

Image, where the HashMap itself is in the domain owned, because it is owned by the class inside which

it is declared.

Also, a parameterized type, in itself, can have domain parameters declared at the class level. In that case,

the architectural extractor must specify the domain for each element of the parameterized type together with

its domain parameters. For example, the parameterized type Map in the following statement has elements

that map from String to BoardFigure for keys and values, respectively:

protected @Domain ("owned <shared , D<U,L,D>>") Map <String , BoardFigure > propMap = null;

The architectural extractor placed the String elements into shared and the BoardFigure elements into

the domain D with a list of domain parameters <U, L,D>.

Domain Inheritance @DomainInherits. Ownership domain annotations support type hierarchy by passing

domain parameters from a sub-type to the corresponding super-types. Architectural extractors use the

6

@DomainInherits statement to pass domain parameters from one type to all of its super-types:

@DomainInherits ({Super -Type <Domain -Parameters > ,...})

For example, the class BoardDrawing has two super-types (Fig. 1):

...

@DomainInherits({"StandardDrawing <U,L,D>", "BoardGameObserver <U,L,D>"})

class BoardDrawing extends StandardDrawing implements BoardGameObserver { ...

2.2.3 External Libraries

Ownership domain annotations use external XML files, AliasXML files, to add annotations to classes from

library code that are in use, such as the type java.util.Map from the Java Standard Library. The architec-

tural extractor can generate AliasXML files for these types to be able to add annotations to them. AliasXML

files are type-specific but not project-specific, so they can be generated once and reused for multiple projects

2.2.4 Special Annotations

There are special annotations that add expressiveness to the ownership type system:

lent. One ownership domain can temporarily lend an object to another and ensure that the second object

does not create persistent references to the first by marking it as lent.

unique. unique indicates an object to which there is only one reference, such as a newly created object, or

an object that is passed linearly from one domain to another.

shared. An object that is shared may be aliased globally but may not alias non-shared references, and little

reasoning can be done about shared references. Shared objects do not show on the OOG.

The special domains lent, shared and unique are built-in annotations, so the architectural extractor

does not have to declare them before using them.

2.3 Ownership Object Graph (OOG)

After adding annotations in the code, we use a static analysis to extract a hierarchical Ownership Object

Graph (OOG) from the annotated code (Fig. 2). The extracted visualization uses box nesting to indicate

containment of objects inside domains and domains inside objects. We use the following notation on an OOG

to represent the different components: a domain represented by a white-filled box with a dashed-border, an

object represented by solid-filled box, and a field reference represented by a solid edge. The object label

7

(a) Expanded OOG. (b) Collapsed OOG.

Figure 2: Top-level OOG for above example (Fig. 1).

obj:T indicates an object reference obj of type T, which we then refer to either as “object obj” or as “T

object”, meaning for brevity, “an instance of the T class”. The (+) symbol on an object or a domain indicates

that it has a collapsed substructure and can be expanded to show the collapsed substructure;

3 Study Setup

3.1 Subject System

For the study, we used MiniDraw, a pedagogical object-oriented framework implemented to support the

graphical aspects of board games [6]. MiniDraw comes with several applications, and we chose the Break-

Through boardgame application for our study. We chose MiniDraw because it is rich in object-oriented

design patterns and comes with several design diagrams including role diagrams, UML class diagrams, and

sequence diagrams [6]. We also wanted to use the extracted OOGs for a future controlled experiment which

compares OOGs to other diagrams.

According to the Eclipse metrics plugin [7], MiniDraw consists of around 1,500 lines of Java code, divided

into 31 classes, 17 interfaces and 5 packages (Fig. 3).

8

Figure 3: MiniDraw metrics snapshot.

3.2 Architectural Extractors

We will refer to people who added annotations and extracted OOGs as the architectural extractors. Three

architectural extractors participated in the process of adding annotations, extracting OOGs, and refining

extracted OOGs: two Ph.D. students from the SEVERE lab at Wayne State University and one of the

original developers of Scholia.

3.3 Tools and Instrumentation

We used three Eclipse plugins that support the process of extracting OOGs [1]:

The defaulting tool. This tool aims to reduce the annotation burden by automatically generating a set

of initial default annotations. The tool adds annotations to local variables, temporary variables of methods

and method’s formal parameters with lent; private and protected fields and the return value of private or

protected methods with owned; and String objects with shared.

The typechecker. After using the defaulting tool, architectural extractors often have to manually fix the

added annotations and add missing ones. To achieve that, they run a type checker to check for the following:

if there are missing annotations, if the domains are declared and used correctly, and if the annotations are

9

consistent with each other and with the code.

OOG extraction and viewing tool. The extraction tool extracts an OOG from the annotated code. The

architectural extractors can use this tool to view the extracted OOG in both a graph-view and a tree-view.

The tool has several features such as searching for an edge or an object either in the tree or on the graph,

selecting an object in the tree and tracing to the corresponding field declaration in the code, and collapsing

or expanding objects in the hierarchy to control the level of visual detail.

4 Procedure

In this section, we explain the general procedure we followed for adding annotations, extracting OOGs, and

refining the extracted OOGs. The process of producing an OOG often requires the following steps from the

architectural extractor:

Adding annotations: in this step, the architectural extractors add annotations to the code, run the

typechecker to type check the added annotations, and manually fix any annotation warnings. The goal of

this step is to minimize the number of annotation warnings. Since these warnings are indicators that the

OOG may be unsound, the architectural extractors must attempt to resolve most of these warnings before

moving to the next steps.

There are multiple ways of adding annotations to a system. In this study, we followed a strategy for

adding annotations that decreases the annotation burden with high quality annotations that reflect the

design intent. The architectural extractors follow the following procedure for adding annotations:

1. Adding AliasXML Files;

2. Selecting the Top-Level Domains;

3. Applying Annotation Defaulting Tool;

4. Propagating Domain Parameters;

5. Propagating Domain Inheritance;

6. Fixing Annotation Warnings;

Extracting initial OOGs: in this step, the architectural extractors run the static analysis to extract initial

OOGs and tweak the annotations to obtain a less cluttered OOG. The goal here is to reduce the number of

objects in the top-level domains.

10

Refining the extracted OOGs: in this step, the architectural extractors run the extracted OOGs by a

developer who is familiar with the code, then refine the OOG to make it reflect the developer’s mental model

of the system.

4.1 Adding Annotations

4.1.1 Adding AliasXML Files

The first step in adding annotations to MiniDraw was adding AliasXML files to annotate external libraries

such as the Java Standard Library. The architectural extractors reused AliasXML files from previously

annotated systems. Some components in these files were missing annotations since these components were

not used in previously annotated systems, so the architectural extractors had to add the missing annotations.

Also, some of the library code was missing AliasXML files, so the architectural extractors had to generate

and annotate new XML files for them. The number of AliasXML files used for annotating MiniDraw were 36

files, 14 of them were reused and 22 generated and annotated in this study, and can be used for any future

studies that may use the same libraries.

4.1.2 Selecting the Top-Level Domains

The architectural extractors were familiar with the three-tiered architecture, and they knew that MiniDraw

was designed following the MODEL-VIEW-CONTROL design pattern [6]. Therefore, they organized the objects

into three top-level tiers or domains as follows:

• UI: contains objects from the user interface tier. For example, objects of types DrawingEditor,

StdViewWithBackground, DrawingChangeListener, etc.;

• LOGIC: contains objects from the logic tier. For example, objects of types FigureFactory,

PositioningStrategy, BreakthroughFactory, etc.;

• DATA: contains objects from the data tier. For example, objects of types Position, BardFigure,

PropAppearanceStrategy, etc.;

4.1.3 Selecting the Root Class

In order to extract an OOG, the architectural extractors must specify a root class as a starting point for

the extraction tool. Since MiniDraw is a framework, the architectural extractors had the option to extract

11

1 @Domains ({ "UI", "LOGIC", "DATA" })

2 class BreakThrough {

3 @Domain ("LOGIC <UI ,LOGIC ,DATA >")

4 Game game = new GameStub ();

5

6 @Domain ("LOGIC <UI ,LOGIC ,DATA >")

7 BreakthroughFactory factory = new BreakthroughFactory(game);

8

9 @Domain ("UI <UI ,LOGIC ,DATA >")

10 DrawingEditor window = new MiniDrawApplication("Breakthrough Demo", factory);

11

12 public void init () {

13 window .open ();

14

15 @Domain ("DATA <UI ,LOGIC ,DATA >")

16 BoardDrawing <Position > drawing = (BoardDrawing <Position >) window .drawing ();

17

18 @Domain ("LOGIC <UI,LOGIC ,DATA >")

19 GameStub gameStub = (GameStub) game;

20 gameStub .addObserver (drawing);

21

22 @Domain ("LOGIC <UI,LOGIC ,DATA >")

23 BoardActionTool boardActionTool = new BoardActionTool(window);

24

25 window .setTool (boardActionTool);

26 }

27

28 public static void main(@Domain ("lent[shared]") String [] args) {

29 @Domain ("lent")

30 BreakThrough breakThrough = new BreakThrough();

31

32 breakThrough.init ();

33 }

34 }

Figure 4: The root class used in MiniDraw to extract OOG.

several OOGs for each of the framework applications. For the study, we chose the BreakThrough board

game application, so the root class in our case was BreakThrough (Fig. 4).

The architectural extractors declared the three top-level domains on this class declaration (Fig. 4). Then

they specified the domains of other objects in the root class. For example, they placed the BoardDrawing

object in the DATA domain (Line 15), the GameStub object into the LOGIC domain (Line 18), and the

window:MiniDrawApp object in the UI domain (Line 10).

4.1.4 Applying Annotation Defaulting Tool

The architectural extractors then applied the defaulting tool to add default annotations. While the annota-

tion defaulting tool served as a director of where the annotations should be added, some of the annotations

added by this tool were not correct, because it did not propagate domains other than lent, shared and

owned, for a limited number of cases. Moreover, it did not use domain parameters, public domains, or

12

domain inheritance. The architectural extractors later refined the added annotations manually to replace

some annotations with more precise ones while verifying that the modified annotations are consistent with

the old ones.

4.1.5 Propagating Domain Parameters

After deciding on the three top-level domains, the architectural extractors decided to declare three domain

parameters corresponding to each top-level domain:

• U : used to map the UI domain;

• L : used to map the LOGIC;

• D : used to map the DATA;

While the existence of unused domain parameters does not affect the extracted OOG, the typechecker

complains about the wrong number of domain parameters declared on each type declaration. Therefore, the

architectural extractors had to propagate these domain parameters to all type declarations in MiniDraw:

@DomainParams({"U","L","D"})

Since they had declared three top-level domains, the architectural extractors declared three domain

parameters on each class. After propagating the three domain parameters, they declared and used more

domains as needed.

4.1.6 Propagating Domain Inheritance

After propagating domain parameters to all types in the system, the architectural extractors scanned all

the types in MiniDraw, and for each type, if the type implements or extends other types, they added the

@DomainInherits statement, which contained the super-type together with the list of domain parameters:

@DomainParams({"U","L","D"})

@DomainInherits({"ImageFigure <U,L,D>"})

class BoardFigure extends ImageFigure {

4.1.7 Fixing Annotation Warnings

The architectural extractors followed the typechecker which generated warnings due to, but not limited to,

one of the following violations:

13

(1) Missing annotations. For example, in the following statement, the factory instance is missing an

annotation:

protected FigureFactory factory ;

(2) Mismatched formal domain parameters and actual domains. For example, in the following statement,

the number of actual domains declared on a variable of type FigureFactory does not match the required

number of formal domain parameters declared on the type FigureFactory:

protected @Domain ("L") FigureFactory factory ;

(3) Violations of the assignment rule. For example, if a variable of type BoardDrawing is assigned to the

M domain in one place, and another variable of type BoardDrawing was annotated with L in another place,

the typechecker will complain about the inconsistent annotations at assignment statements.

@Domain ("M") BoardDrawing b1;

@Domain ("L") BoardDrawing b2;

b1 = b2; // This will generate a warning

The architectural extractors classified the warnings, based on the message generated by the type checker,

into a prioritized list in hope of reducing the time for adding correct annotations by fixing the warnings in

a systematic way.

4.2 Extracting Initial OOGs

The initially extracted OOG was too shallow and cluttered, so the architectural extractors had to modify

the existing annotations to refine the extracted OOG and reduce the clutter in the top-level domains. At

this stage, the architectural extractors had the OOG in Fig. 5. In the following section, we explain how the

architectural extractors refined the initial OOG based on feedback from an external developer.

4.3 Refining Initial OOGs

Since the architectural extractors did not have full knowledge about all objects in the system, there was a risk

that the extracted OOG does not reflect the design intent in the code. In order to evaluate the correctness

of the extracted OOG, we gave it to a developer who knew more about the system as she had attempted

some code modifications on the system. The developer was the person who will be using the extracted OOG

in a later controlled experiment to evaluate its usefulness for external developers. Therefore, we refer to this

developer as the experimenter.

14

 UI LOGIC

 DATA

tool:
Tool

window(+):
MiniDrawApplication

boardFigure(+):
BoardFigure

boardDrawing(+):
BoardDrawing

(FigureChangeListener)

selectionStrategy:
StandardRubberBandSelectionStrategy

stdViewWithBackground:
StdViewWithBackground
(DrawingChangeListener)

factory:
BreakthroughFactory

game(+):
GameStub

adjuster:
ChessBoardPositioningStrategy

factory:
BreakthroughPieceFactory

command:
MoveCommand

to:
Position

selectionList:
ArrayList<Figure>

selectionHandler(+):
StandardSelectionHandler

Figure 5: An OOG for BreakThrough.

We first explain the possible OOG refinements then illustrate how the architectural extractors applied

some refinements based on feedback from the experimenter, using examples from MiniDraw.

4.3.1 Possible refinements of an OOG

The architectural extractors refined the initial OOGs either by modifying the existing annotations in the

code or by fine-tuning some of the static analysis settings as follows:

• Move an object between sibling domains;

• Abstract a low-level object;

• Move an object to a higher-level domain;

• Merge objects that share a common super-type;

• Set the labeling types;

4.3.2 Move an object between sibling domains

There were cases where the architectural extractors assigned some objects to wrong domains, according to

feedback from the experimenter, so they changed the annotations on these objects to place them in the

15

_lentBreakThrough___BreakThroughUIBoardActionTool_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughUIMiniDrawApplication_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughDATABoardFigure_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughDATABoardDrawing_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughUIStandardRubberBandSelectionStrategy_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughUIStdViewWithBackground_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughLOGICBreakthroughFactory_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughLOGICGameStub_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughLOGICChessBoardPositioningStrategy__
_lentBreakThrough___BreakThroughLOGICBreakthroughPieceFactory_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughLOGICMoveCommand_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_
_lentBreakThrough___BreakThroughDATAPosition__
_lentBreakThrough___BreakThroughDATAArrayList_Figure__BreakThrough__DATA_
_lentBreakThrough___BreakThroughDATAStandardSelectionHandler_BreakThrough__UI__BreakThrough__LOGIC__BreakThrough__DATA_

proper domains. For example, objects of type Position appeared in the domain U on the OOG, in the

refinement step they decided to move it to the sibling domain D, as in the following example:

public @Domain ("shared ")Point calculateFigureCoordinatesIndexedForLocation

(@Domain ("U<U,L,D>") Position location , int index){ ...

public @Domain ("shared ")Point calculateFigureCoordinatesIndexedForLocation

(@Domain ("D<U,L,D>") Position location , int index){ ...

4.3.3 Abstract a low-level object

Make an object part of another object. In this step, the architectural extractors made an ob-

ject conceptually part of another, by declaring a public domain inside the parent object and placing the

child object inside that domain. For example, an object of type SelectionHandler was instantiated

inside the class StandardDrawing, so, during the annotation process, the architecture extractors placed

the selectionHandler:SelectionHandler object inside the domain D. Later on, the experimenter re-

quested that this object should be pushed inside the drawing:StandardDrawing object, so the archi-

tectural extractors declared a pubic domain HANDLERS inside drawing:StandardDrawing and placed the

selectionHandler:SelectionHandler object in it to make it logically part of drawing:StandardDrawing,

yet accessible by other objects:

protected final @Domain ("HANDLERS <U,L,D>")SelectionHandler selectionHandler;

As another example, the experimenter reported that the map:Map<Position, List<Figure>> is not

architecturally significant and that it should not be in a top-level domain. So the architectural extractor de-

clared a public domain MAPs inside drawing:BoardDrawing and placed map:Map<Position, List<Figure>>

inside this domain as follows:

protected @Domain ("MAPS <D,MAPS <D>>") Map <Position , List <BoardFigure >> figureMap =

new HashMap <Position , List <BoardFigure >>();

The reason why the architectural extractors declared the map:Map<Position, List<Figure>> inside a

public domain in this case was because the map:Map<Position, List<Figure>> object should be accessible

by other objects in the system.

Make an object owned by another object. The architectural extractors treated different ob-

jects differently based on their usage in the system. For example, the experimenter required the

16

l:ArrayList<BoardFigure> to be also pushed underneath drawing:BoardDrawing. However, the archi-

tectural extractors used a different annotation in this case since the l:ArrayList<BoardFigure> object

should not be accessed by other objects, so they placed it inside a private domain, i.e., a domain declared as

owned, of the parent object. This kind of refinement was mostly applied to data structures. Similarly, the

experimenter requested that the selectionList:ArrayList<SelectionHandler> object (Fig. 5) should be

nested under its owning object instead of showing in the top level domains.

4.3.4 Merge objects that share a common super-type

The architecture extractors found the initial OOG to be cluttered, so they decided to apply the ab-

straction by types to merge objects, within the same domain, that share a common super-type. For

example, the architectural extractors found that the objects of types minidraw.standard.NullTool,

minidraw.standard.SelectionTool and minidraw.boardgame.BoardActionTool all share the super-

type minidraw.framework.Tool and reside in the same domain CONTROLLER. So, they added the type

minidraw.framework.Tool to the list of design intent types. With abstraction by types turned on, the

extraction tool merged the above objects into one object, tool:Tool.

4.3.5 Set the labeling types

Each object on the OOG can have extra decorating labels to provide more information about these objects.

For example, the architectural extractors used the following list of labeling types:

minidraw.framework.FigureChangeListener

minidraw.framework.DrawingChangeListener

minidraw.boardgame.BoardGameObserver

java.awt.event.MouseListener

java.awt.event.MouseMotionListener

java.awt.event.KeyListener

They added these types to the list of labeling types used by the extraction tool. Using these types caused

some objects like BoardDrawing to have the label BoardGameObserver. Such a label may help the developer

to understand that a Drawing object is an observer of the Game objects (Fig. 6)

17

 MODEL

 CONTROLLER

 VIEW

boardFigure(+):

BoardFigure

boardDrawing(+):

BoardDrawing

command:

MoveCommand

stdViewWithBackground:

StdViewWithBackground

to:

Position

adjuster:

ChessBoardPositioningStrategy

factory:

BreakthroughPieceFactory

game(+):

GameStub

standardRubberBandSelectionStrategy:

StandardRubberBandSelectionStrategy

tool(+):

Tool

window(+):

MiniDrawApplication

factory:

BreakthroughFactory

Figure 6: MiniDraw OOG.

5 Evaluating the OOG

5.1 Further Refinements

In addition to the above refinements of the initial OOG, we refined the OOG further. The full set of

refinements is discussed elsewhere [4, Chap.2]. Figure 7 shows the final OOG.

5.2 How does an OOG answer key program comprehension questions?

Understanding the object structure is fundamental to the program comprehension of object-oriented code.

As a diagram of the run-time structure, the OOG highlights some key facts about the system’s design that

the developers who use the MiniDraw framework need to learn. In this section, we evaluate the extracted

OOG as a diagram of the run-time structure by highlighting some key program comprehension questions

that we believe an OOG can help developers answer.

Instances matter in object-oriented code. In object-oriented design patterns, much of the function-

ality is determined by what instances point to what other instances. For instance, in the Observer design

18

 VIEW

 owned

 owned

 CONTROLLER

 owned

 TRACKERS

 MODEL

 owned

 MAPS owned

 LOCKS

 HANDLERS

 owned

 SELECTIONS

name2Image:
Hashtable<String,Image>fImageManager:

ImageManager

window:
MiniDrawApplication

stdViewWithBackground:
StdViewWithBackground

fTool:
NullTool

selectionTool:
SelectionTool

boardActionTool:
BoardActionTool

factory:
BreakthroughFactory

boardDrawing:
BoardDrawing

factory:
BreakthroughPieceFactory

game:
GameStub

selectionStrategy:
StandardRubberBandSelectionStrategy

board:
int[][]

adjuster:
ChessBoardPositioningStrategy

cachedNullTool:
NullTool

dragTracker:
DragTracker

boardFigure:
BoardFigure

selectAreaTracker:
SelectAreaTracker

command:
MoveCommand

to:
Position

fFigures:
ArrayList<Figure>

listenerList:
ArrayList<FigureChangeListener>

e:
FigureChangeEvent

propMap:
HashMap<String,BoardFigure>

listTo:
ArrayList<BoardFigure>

figureMap:
HashMap<Position,List<BoardFigure>>

fFigures:
ArrayList<Figure>

listenerList:
ArrayList<FigureChangeListener>

e:
FigureChangeEvent

propMap:
HashMap<String,BoardFigure>

thread:
Thread

fListeners:
ArrayList<DrawingChangeListener>

e:
DrawingChangeEvent

listenerHandler:
StandardDrawingChangeListenerHandler

selectionList:
ArrayList<Figure>

selectionHandler:
StandardSelectionHandler

Figure 7: An expanded view of the OOG.

19

_lentBreakThrough___BreakThroughVIEWMiniDrawApplication_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__DrawingEditorownedImageManager___ImageManagerownedHashtable_String_Image__shared__shared_
_lentBreakThrough___BreakThroughVIEWMiniDrawApplication_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__DrawingEditorownedImageManager__
_lentBreakThrough___BreakThroughVIEWMiniDrawApplication_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughVIEWStdViewWithBackground_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERNullTool_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERSelectionTool_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERBoardActionTool_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERBreakthroughFactory_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERBreakthroughPieceFactory_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERGameStub_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERStandardRubberBandSelectionStrategy_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERGameStub_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__Gameownedint______
_lentBreakThrough___BreakThroughCONTROLLERChessBoardPositioningStrategy__
_lentBreakThrough___BreakThroughCONTROLLERSelectionTool_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__SelectionToolTRACKERSNullTool_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERSelectionTool_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__SelectionToolTRACKERSDragTracker_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardFigure_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERSelectionTool_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__SelectionToolTRACKERSSelectAreaTracker_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughCONTROLLERMoveCommand_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELPosition__
_lentBreakThrough___BreakThroughMODELBoardFigure_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedArrayList_Figure__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardFigure_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedArrayList_FigureChangeListener__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardFigure_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedFigureChangeEvent_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__null_
_lentBreakThrough___BreakThroughMODELBoardFigure_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedHashMap_String_BoardFigure__shared__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__BoardDrawingMAPSArrayList_BoardFigure__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__BoardDrawingMAPSHashMap_Position_List_BoardFigure___BreakThrough__MODEL__BoardDrawing__MAPS_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedArrayList_Figure__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedArrayList_FigureChangeListener__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedFigureChangeEvent_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__null_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__FigureownedHashMap_String_BoardFigure__shared__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingLOCKSThread__
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingHANDLERSStandardDrawingChangeListenerHandler_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingChangeListenerHandlerownedArrayList_DrawingChangeListener__BreakThrough__VIEW_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingHANDLERSStandardDrawingChangeListenerHandler_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingChangeListenerHandlerownedDrawingChangeEvent_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__null_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingHANDLERSStandardDrawingChangeListenerHandler_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingHANDLERSStandardSelectionHandler_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__SelectionHandlerSELECTIONSArrayList_Figure__BreakThrough__MODEL_
_lentBreakThrough___BreakThroughMODELBoardDrawing_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL__StandardDrawingHANDLERSStandardSelectionHandler_BreakThrough__VIEW__BreakThrough__CONTROLLER__BreakThrough__MODEL_

class GameStub implements Game {

private BoardGameObserver observer ;

public void addObserver (BoardGameObserver observer) {

this.observer = observer ;

}

}

class BoardDrawing extends StandardDrawing implements BoardGameObserver {

protected Map <Position , List <BoardFigure >> figureMap = new HashMap <Position , List <BoardFigure >>();

}

Figure 8: Implementation of the Observer pattern, between BoardDrawing and GameStub.

pattern [8], understanding “what” gets notified during a change notification is crucial for the operation of

the system, but “what” does not usually mean a class, “what” means an instance.

Programming to an interface makes the code harder to understand. In object-oriented design, one

principle is to program to an interface rather than to an implementation class. MiniDraw follows this rec-

ommendation [5]. For example, in MiniDraw, the BoardDrawing class implements the BoardGameObserver

interface, and if a developer sees the relation between game:GameStub and boardDrawing:BoardDrawing

on the OOG, they would assume that they can access the boardDrawing:BoardDrawing object from the

game object (Fig. 6). To investigate further, they can trace to that specific instance in the code. However,

that instance will be declared as having the interface type BoardGameObserver inside the GameStub class

instead of the implementation class type BoardDrawing (Fig. 8). A feature in the OOG shows the type

BoardGameObserver as a labeling type on the boardDrawing object, which could help developers under-

stand why an object of type BoardDrawing would be declared in the code as being of the more general

type BoardGameObserver. Admittedly, developers can use the Eclipse Type hierarchy to understand the

inheritance relation between the interface BoardGameObserver and the class BoardDrawing.

Do specific instances really matter? An OOG does not pin things down to individual objects. Instead,

it abstracts objects by domains and types. For example, it merges several objects of the same or similar types

that are in the same domain. If the code creates many instances of the BoardFigure class at runtime, and the

latter are all in the MODEL domain in the BreakThrough object, the OOG shows one boardFigure object in the

MODEL domain (Fig. 6). Still, developers can select a canonical object on the OOG and trace to all the lines of

code that may create such an object. For example, the tool object on the MiniDraw OOG represents multiple

instances of multiple types that implement the Tool interface, i.e., boardActionTool:BoardActionTool,

ftool:NullTool, selectionTool:SelectionTool (Fig. 7). However, we merge these objects and show

them as only one box on the OOG (Fig. 5). Still the developer can trace to the different instances in the

code.

20

If despite merging objects, OOGs hold enough precision and are still useful for program comprehension,

an instance may not matter in terms of “the particular object”. It seems enough to pin things down just to

objects of a type that are within a domain. So this leads us to refine the question:

Does information about types+ ownership+ domains answer key questions in program compre-

hension? We believe that what really matters is the role an instance is playing, and information about

types+ownership+domains give us a richer language for describing that role than type alone. For instance,

we can express facts like “an object of type A in domain D in an object of type B”, that we show as triplets

≺A,D,B≻. So the question becomes: how often does the ability to distinguish the role of instances not just by

type, but by named groups (domains) or by position in the run-time structure (ownership), matter for code

modification tasks?

We believe an OOG is useful during coding tasks because it conveys that information. We also believe

that there are situations where types are not enough, but domain and ownership information give developers

exactly what they need for some of the tasks especially those that require searching for a data structure

owned by an object. Indeed, the code in the case of MiniDraw uses many HashMap instances, and the

one that the developer really needs is the HashMap in the MAPS domain in the boardDrawing object (of

type BoardDrawing). This fact can be represented as the triplet ≺HashMap, MAPS, BoardDrawing≻ and is

visually obvious on the OOG (Fig. 7).

We also believe that such examples are reasonably common in object-oriented code. For

MiniDraw, we were able to count at least 10 such instances (Table 5.2). The OOG (Fig. 7)

graphically displays some of these triplets. For example, according to the MiniDraw doc-

umentation, some of the responsibilities of the Drawing interface are expressed in smaller

and more fine-grained interfaces. Namely, DrawingChangeListenerHandler defines the man-

agement of listeners or observers, and Selectionhandler defines the selection handling re-

sponsibility. The OOG shows both selectionHandler:StandardSelectionHandler and

listnerhandler:DrawingChangeListenerHandler inside a public domain HANDLERS underneath

drawing:BoardDrawing. Also, the OOG shows selectionList:ArrayList<Figure> in a public do-

main SELECTIONS inside selectionHandler:StandardSelectionHandler, since each drawing maintains

a temporary, possibly empty, subset of all figures called a selection and those are handled by the

selectionHandler:StandardSelectionHandler. Also, non-architecturally significant objects such as

map:Map<Position, List<Figure>> and l:ArrayList<BoardFigure> are inside drawing:BoardDrawing

instead of being in the top-level domains. The architectural extractors declared map:Map<Position,

21

Table 1: Examples from MiniDraw to illustrate facts about the runtime structure in terms of a triplet object
of type A owned by domain D in an object of type B or ≺A,D,B≻.
Object of Type A ...in domain D ...in an Object of Type B
selectionHandler:StandardSelectionHandler HANDLERS boardDrawing:BoardDrawing

listenerHandler:StandardDrawingChangeListenerHandler HANDLERS boardDrawing

figureMap:HashMap<Position,List<BoardFigure>> MAPS boardDrawing:BoardDrawing

selectionList:ArrayList<Figure> SELECTIONS selectionHandler:StandardSelectionHandler

thread:Thread LOCKS boardDrawing:BoardDrawing

fListeners:ArrayList<DrawingChangeListener> owned listenerHandler:StandardDrawingChangeListenerHandler

thread:Thread LOCKS boardDrawing:BoardDrawing

selectAreaTracker:SelectAreaTracker TRACKERS selectionTool:SelectionTool

dragTracker:DragTracker TRACKERS selectionTool:SelectionTool

cachedNullTool:NullTool TRACKERS selectionTool:SelectionTool

List<Figure>> inside a public domain MAPS inside drawing:BoardDrawing. Also, trackers in

MiniDraw are part of the SelectionTool according to the JavaDoc. As a result, the OOG shows

the dragTracker:DragTracker and selectAreaTracker:SelectAreaTracker objects in a public domain,

TRACKERS, inside the tool:SelectionTool object.

The special nature of the top-level domains. Domains are not just at the top level of an OOG. They

can appear at different levels based on how much information a developer wants to see and the level of detail.

However, on an OOG, a top-level domain expresses the design intent related to architectural tiers. MiniDraw

follows the Model-View-Controller design pattern, and we express this on the OOG by showing objects in

three top-level domains, namely, MODEL, VIEW, and CONTROLLER. This fact helps developers locate where to

make changes in the code. For instance, if a developer has to do a code modification that is related to the

user interface of the application, and they see the window:MiniDrawApp object inside the VIEW domain, then

most probably, the modification will take place in the MiniDrawApp class.

Also, the points-to relations between objects across different domains tells develop-

ers how objects communicate across architectural tiers. For example, we show the list of

DrawingChangeListenerHandlers (fListeners:List<DrawingChangeListener>) inside a private do-

main under DrawingChangeListenerHandler which is inside drawing:BoardDrawing (Fig. 7). Moreover,

fListeners:List<DrawingChangeListener> points to a StdViewWithBackground object, which in-

dicates that the elements in the list could be of any type. In this particular case, they are of type

StdViewWithBackground. This placement of objects can help developers understand better how the

drawing:BoardDrawing, which is a MODEL component, and StdViewWithBackground objects, which is a

VIEW component, communicate using the observer design pattern.

Distinction between public and private domains.

The visual distinction between public and private domains on the OOG provides developers with hints

22

// Declare private domain "owned "

// Declare public domain "MAPS", "HANDLERS", ...

@Domains ({ "owned ", "LOCKS", "HANDLERS ", "MAPS" })

@DomainParams({ "U", "L", "D" })

@DomainInherits({ "StandardDrawing <U,L,D>", " BoardGameObserver <U,L,D>" })

class BoardDrawing extends StandardDrawing implements BoardGameObserver {

// Map each location to the set of images positioned on it

protected @Domain ("MAPS <D,MAPS <D>>")

Map <Position , List <BoardFigure >> figureMap = new ...;

// Map graphical (x,y) positions to the props of the game

protected @Domain ("owned <shared , D<U,L,D>>")

Map <String , BoardFigure > propMap = new ...;

...

}

Figure 9: Different instances of Map are placed in different domains.

Domains ({ "owned " })

@DomainParams({"U","L","D"})

@DomainInherits({"DrawingChangeListenerHandler <U,L,D>"})

class StandardDrawingChangeListenerHandler

implements DrawingChangeListenerHandler {

/** list over all associated listeners */

@Domain ("owned <U<U,L,D>>")

protected List <DrawingChangeListener > fListeners ;

...

}

Figure 10: developers should not get a persistent reference to the fListeners list, therefore it should be
declared in a private domain.

about which objects are strictly encapsulated, and which objects are only logically contained. MiniDraw

has many examples that illustrates this, for example, seeing the figureMap object declared inside the

MAPS public domain under drawing:BoardDrawing indicates that developers can get that object from

drawing:BoardDrawing by calling the public method getFigureMap() (Fig. 9).

On the other hand, the fact that fListeners:List<DrawingChangeListener> is declared in a private

domain inside DrawingChangeListenerHandler indicates that developers should not get a reference to this

object (Fig. 10). These facts could save developers from introducing hacks in the code such as declaring

public getter methods in order to access private objects.

6 Discussion

6.1 Architectural extractors’ effort estimates

For this study, we did not accurately record the time spent in annotating and refining the OOGs. The

annotation effort is currently estimated at around 1-hour per 1,000 Lines of Code [1], and we do not require

23

2 Ph.D. students for adding annotations to MiniDraw (1,500 LOC). In fact, MiniDraw was the first system

on which the two students practiced adding annotations and extracting OOGs. The third extractor was an

expert in adding annotations, so he mentored the first two extractors to ensure that they added good quality

annotations.

6.2 Architectural extractors’ thought process

One may argue that the architectural extractors need to read the entire code base and understand how the

system works prior to adding annotations. Even though the architectural extractors had access to a book

about the subject system which explains the design of the code and provides several UML diagrams, they

did not read the entire book in order to annotate the entire system. Extracting OOGs requires that the

architectural extractors focus on the structure of the system rather than its behavior, so they do not need

to have a global knowledge of how the system works in order to annotate the code. The static analysis to

extract OOGs, on the other hand, needs a root class, and is a whole program analysis. Therefore, to extract

an OOG that reflects the design intent in the code, the architectural extractors provide local hints and add

local, modular annotations. The annotations are modular in that they can be checked one class at a time.

After that, the architectural extractors use the type checker to check for inconsistencies. Then, they refine

the annotations incrementally without repeating the whole process.

6.3 Evaluation of the extracted OOG

We asked the experimenter, the first author of this report, to evaluate the initial OOG before using it in

a controlled experiment. One may argue that we have been biased by evaluating the initial OOG by the

experimenter, especially since the goal of the experiment was to evaluate the usefulness of this diagram

for external developers, and that we should have kept the diagram as-is. As we discussed in this report,

OOGs are extracted semi-automatically from the code using static analysis. We make an OOG relevant

for developers who are performing code modifications by making the OOG convey design intent and reflect

the designer’s mental model of the system. Therefore, the only reason why we asked the experimenter to

evaluate the diagram is that she was the only person, at the time of the study, who was familiar with the

MiniDraw code since she made a few modifications to the code while preparing for the experiment. In fact,

the experimenter made more refinements to the extracted OOG, as discussed elsewhere [4]. The goal of the

experiment, on the other hand, was to evaluate whether other outside developers can use the OOG to answer

some of their key program comprehension questions and understand the system’s design.

24

7 Conclusion

We conducted a case study in adding annotations to and extracting OOGs from a medium-sized, pedagogical,

object-oriented framework. The process of adding annotations and extracting OOGs required reasonable

effort from the architectural extractors who were able to extract OOGs at an adequate level of abstraction

for developers who will be using the diagram for future code modifications. The study was conducted in

preparation for a controlled experiment for evaluating the usefulness of the extracted OOGs for developers

doing code modifications on the system. Therefore, we provided a preliminary evaluation of the extracted

OOG. The refinement process did not require much effort from the architectural extractors, who refined the

OOG by incrementally refining the annotations in the code and the settings of the static analysis.

Acknowledgements

The authors thank Zeyad Hailat and Anas Al-Tirawi for their help with adding initial annotations to

MiniDraw. In addition, the authors thank other participants in a directed study course during Fall 2010 for

providing feedback during the MiniDraw case study.

25

References

[1] M. Abi-Antoun. Static Extraction and Conformance Analysis of Hierarchical Runtime Architectural
Structure. PhD thesis, Carnegie Mellon University, 2010. Technical Report CMU-ISR-10-114.

[2] M. Abi-Antoun and J. Aldrich. Static Extraction and Conformance Analysis of Hierarchical Runtime
Architectural Structure using Annotations. In OOPSLA, 2009.

[3] J. Aldrich and C. Chambers. Ownership Domains: Separating Aliasing Policy from Mechanism. In
European Conference on Object-Oriented Programming (ECOOP), 2004.

[4] N. Ammar. Evaluation of the Usefulness of Diagrams of the Run-Time Structure for Coding Activities.
Master’s thesis, Wayne State University, 2011. Available at: www.cs.wayne.edu/~mabianto/.

[5] H. B. Christensen. Frameworks: Putting Design Patterns into Perspective. InAnnual SIGCSE Conference
on Innovation and Technology in Computer Science Education (ITiCSE), 2004.

[6] H. B. Christensen. “Flexible, Reliable Software: Using Patterns and Agile Development”. Chapman and
Hall/CRC, 2010.

[7] Eclipse Metrics Plugin. http://metrics.sourceforge.net/, 2010.
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1994.
[9] P. Tonella and A. Potrich. Reverse Engineering of Object Oriented Code (Monographs in Computer

Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2004.

26

