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Summary

In this work, we investigate the active vibration isolation and damping of sensitive equip-
ment. Several single-axis isolation techniques are analyzed and tested. A comparison
between the sky-hook damper, integral force feedback, inertial velocity feedback and Lag-
Lead control techniques is conducted using several practical examples.

The study of single-axis systems has been developed and used to build a six-axis isola-
tor. A six degrees of freedom active isolator based on Stewart platform has been designed
manufactured and tested for the purpose of active vibration isolation of sensitive payloads
in space applications. This six-axis hexapod is designed according to the cubic configura-
tion; it consists of two triangular parallel plates connected to each other by six active legs
orhtogonal to each other; each leg consists of a voice coil actuator, a force sensor and two
flexible joints. Two different control techniques have been tested to control this isolator:
integral force feedback and Lag-Lead compensator, the two techniques are based on force
feedback and are applied in a decentralized manner. A micro-gravity parabolic flight test
has been done to test the isolator in micro-gravity environment.

In the context of this research, another hexapod has been produced; a generic active damp-
ing and precision pointing interface based on Stewart platform. This hexapod consists of
two parallel plates connected to each other by six active legs configured according to the
cubic architecture. Each leg consists of an amplified piezoelectric actuator, a force sensor
and two flexible joints. This Stewart platform is addressed to space applications where it
aims at controlling the vibrations of space structures while connecting them rigidly. The
control technique used here is the decentralized integral force feedback.
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Chapter 1

Introduction

1.1 Motivation of the research

This research began at the Free University of Brussels (ULB), in the Active Structures
Laboratory (ASL), in 1998 to find a solution for the six-degree-of-freedom vibration isola-
tion and suppression. Both ground and space applications have been taken into account
during this research.
Vibrations propagating into the mechanical systems can cause many problems at different
levels causing performance degradation for sensitive systems [1]. The proposed solution
in this work is to use a six-axis active hexapod based on Stewart platform configuration.
The rigidity of the legs of this hexapod determines the application to be used for; a
stiff hexapod, for example, is used as a rigid interface for active damping and precision
pointing applications while a soft hexapod is used, in general, for the purpose of active
isolation of vibrations. Notice here that introducing the appropriate design, soft Stewart
platform can be used for both precision pointing and vibration isolation.
One should avoid the confusion between the definitions of damping and isolation of vi-
brations. In a few words, damping is defined as the reduction of the response amplitude
of the system within a limited bandwidth near the natural frequencies of the system.
Vibration isolation is defined as the attenuation of the response of the system after its
corner frequency to cut-off all the disturbances after that frequency allowing all the sig-
nals below it to pass faithfully. The objective of this active vibration isolation research is
to develop a generic modular 6 degrees of freedom (d.o.f) isolator for space applications.
A similar project was developed at the Jet Propulsion Laboratory (JPL) in the mid ’90s
[2]. The objective of this project was to develop a generic multi-purpose 6 d.o.f. isolator
with standardized architecture and voice coil actuators. The application considered is
interferometry with independent pointing telescopes as represented in Fig.1.1.

1.2 Isolation objectives

The isolation objectives are illustrated in Fig.1.2; the ideal 6 d.o.f. isolation platform
should transmit the attitude control torque within the bandwidth ωc of the attitude control
system and filter all the high frequency components coming from vibrating equipment
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Figure 1.1: Schematic view of a future interferometric mission and possible locations for a multi-purpose
isolator

above ωc [3]. A single-axis active isolator combines a high attenuation rate in the roll-off
region with no overshoot at the corner frequency as will be shown in the next chapters.
To fully isolate two rigid bodies with respect to each other, we need six such isolators
judiciously placed, that can be controlled either in a centralized or decentralized manner.

Figure 1.2: Principle of the 6 d.o.f. vibration isolation and isolation objectives
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1.3 Various isolation architectures

There are two main cases where vibration isolation is necessary [4]:

• The operating equipment can generate an oscillating disturbance (force) propagating
into the supporting structure.

• The disturbance can be generated by the supporting structure propagating into the
sensitive equipment.

Car suspension can be considered as the most famous ground application of vibration
isolation. Many researchers focused their attention on vibration control in car suspension
to improve the riding comfort and to reduce the jerk effect on the body and components of
the car [5]. Other examples can be found in machine tools and other precision machines.
Machine tools need to function in high accuracy to achieve high precision in metal removal
processes, this is why there is a need to have efficient vibration isolation between the
machine and the noisy floor [6].
More attention in this research has been paid to sensitive optical payloads application.
The main principle of vibration isolation of sensitive payloads is to place an isolation stage
in the vibration transmission path (between the vibrating base and the sensitive payload)
so as to prevent the transmission of high-frequency vibratory forces between them [7]. To
discuss the concept of isolation in space applications, a review of the main ideas developed
in [8, 9] can be done here. Two architectures are proposed to isolate the sensitive payload
from the disturbing spacecraft carrier: multi-level actuation architecture and soft-mount
architecture.

1.3.1 Multi level actuation architecture

The multi level actuation architecture is depicted in Fig.1.3. It consists of three layers:

1. A coarse gimbal mechanism which acts as a high-pass filter and compensates for
major changes in attitude. Such a system passes all the disturbances beyond its
control bandwidth.

2. A soft mount dynamic isolation acting as a low-pass filter to isolate the disturbances
coming from the carrier. This can be achieved with flexural blades or magnetic
suspension (e.g. [10, 11])

3. An image motion compensation mechanism consisting of fast steering mirrors for
high bandwidth filter rejection.

1.3.2 Soft mount architecture

The soft mount architecture approach consists of interchanging the coarse gimbal and the
dynamic isolation of the multi level actuation architecture (Fig.1.4). The corner frequency
of the dynamic isolation is chosen as low as practically possible (at the limit, if the stiffness
of the soft mount is zero, the payload is a free flyer).
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Figure 1.3: Multi level actuation architecture

Figure 1.4: Soft mount architecture

The inertially reacting control is necessary because the semi-active soft mount cannot
pass the control torque necessary to point the payload (Fig.1.5). The Control Moment
Gyro (CMG) or Reaction Wheel control of the payload allows fast slews of the payload
with minimum carrier/payload interaction, but introduces a potential disturbance source
on the payload.

The preceeding discussion shows the need to have a generic multi-purpose 6 d.o.f. isolator
with standardized architecture, which could be used to isolate noisy components such as
a Reaction Wheel Assembly (RWA) as well as quiet ones (payloads). The isolator would
also have a pointing functionality to augment the pointing accuracy beyond that of the
reaction wheel assembly. The objective of this generic multi-purpose 6 d.o.f. isolator
is to integrate all the functionality of the three stages in Figures 1.3 and 1.4. This is
practically achieved through a Stewart platform [12, 13] with soft springs and active
augmentation. Figure 1.6 shows the six-axis active vibration isolator done by the JPL for
the purpose of active isolation in space applications, which was seminal in our project.



Active Isolation and Damping of Vibrations via Stewart Platform 5

Figure 1.5: (a) The slewing torque is provided by the base body and is transmitted through the isolation;
(b) the slewing torque is provided by the Control Moment Gyro (CMG) and not by the base body

Figure 1.6: JPL Multi-purpose generic active isolator based on Stewart platform with voice coil actuators

A general pointing/isolation control strategy is illustrated in Fig.1.7 where the same
actuators are used for isolation and pointing.
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Figure 1.7: Pointing/isolation control strategy for the generic multi-purpose 6 d.o.f. isolator

1.4 Active damping of structures

Future space structures are likely to be assembled of mechanical trusses. These truss
structures need to be made of strong, lightweight materials. However, to achieve the
requirements of high accuracy and performance for the sensitive payloads installed on
these structures, vibrations generated in the structures have to be damped using passive
or active control techniques. Active damping of space trusses can be achieved in various
ways; some of them have been studied extensively at the ASL over the past 15 years:

1. Integrating active struts in the structure by replacing some of its passive members
with active ones (Fig.1.8) [14]. The active strut consists of a force sensor and dis-
placement (piezoelectric) actuator; various configurations are shown in Fig.1.9.

2. By reinforcing the truss by a network of cables controlled by tendons (Fig.1.10)
[15, 16]. Both techniques have been tested very successfully in laboratory experi-
ments and simple techniques for predicting the closed-loop performance have been
developed [4].
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Figure 1.8: A schematic view showing an integrated active strut in a truss structure

Figure 1.9: Various designs of piezoelectric actuators (a) classical linear actuator (from PI) collocated
with a force sensor, (b) amplified design (from CEDRAT) collocated with a force sensor, (c) amplified
design equipped with flexible tips

An alternative way is explored in this thesis in the form of a generic active damping
interface which can be used to connect substructures together (Fig.1.11). The interface
consists of Stewart platform; every leg is an active strut formed of a force sensor and a
piezoelectric actuator controlled in a decentralized manner. The closed-loop poles can be
predicted by the same technique as in the previous configurations. Figure 1.12 shows the
ULB generic active damping interface designed and manufactured for this purpose.
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Figure 1.10: A schematic view showing a cable structure with active tendons

Figure 1.11: An active damping interface between two truss structures
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Figure 1.12: The ULB generic active damping interface

1.5 Organization of the thesis

This thesis consists mainly of six main chapters. After this introduction, chapter 2 will
include analysis of single-axis systems using soft actuators. The chapter begins with a
discussion of passive isolation and then advances to talk about active vibration isolation
discussing different control techniques. Experimental examples of single-axis systems will
be discussed showing the modelling and the experimental results. Six-axis active isolation
of vibrations is discussed, in general, in chapter 3. The chapter will show the general
configuration of Stewart platform besides the general kinematic and dynamic analysis
of the hexapods and it will concentrate on the soft Stewart platform. In this chapter,
the design, technology, modelling and experimental testing of the ULB soft hexapod will
be discussed in details; this hexapod has been designed, built and tested during this
research period. Chapter 4 will talk about systems using hard piezoelectric actuators.
In this chapter, the use of active struts in damping of vibrations will be disucussed.
Another application for the active struts is stiffness reduction; a control technique will be
presented to reduce the corner frequency of the system using proportional plus integral
control strategy. This chapter will also handle another piezoelectric Stewart platform
which is also designed, built and tested during the same period of this research to be
used for the purpose of active damping and precision pointing. Technological aspects,
modelling and experimental testing will be shown for this hexapod too. Conclusions and
future work will be discussed in the last chapter.
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Chapter 2

Single-axis vibration isolation

2.1 Introduction

Mechanical vibrations are present in varying levels in all locations where equipment work.
The adverse effect of these disturbances can range from negligible to catastrophic depend-
ing on the severity of the disturbance and the sensitivity of the equipment [1]. Vibration
control techniques in the form of vibration isolators have been developed to provide dy-
namic protection to all types of equipment [2]. In discussing vibration isolation, it is
useful to identify the three basic elements:

• The sensitive equipment (payload needed to be isolated).

• The support structure (disturbance source).

• The isolation mount.

Many vibration isolation systems using mixed types of actuators and control techniques
can be found in the literature (e.g. [3, 4]) but we will not go into details about them in
this work. In this chapter, we are going to concentrate on three main single-axis systems
of vibration isolation and only one of them will be developed and discussed in the context
of this thesis,

• The first system is the single-axis soft isolator connecting two rigid bodies. This
system will be developed into a six-axis isolator and will be discussed later in other
chapters.

• The second system is the single-axis soft isolator based on using inertial (seismome-
ter) feedback.

• The third system is the single-axis isolator using hard piezoelectric actuator and
intermediate passive mount.

To simplify the problem of vibration isolation, we begin in this chapter with the discussion
of a single-axis vibration isolation. In the next section we will show a detailed analysis
for a single-axis isolator providing a technique for the selection of a passive isolator [1, 5].
Next, some active control techniques will be discussed showing a comparison between them
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and the effect of the flexibility of the sensitive equipment on the stability of the system.
The last sections talk about two alternative isolators based on using seismometers as
feedback sensors for active vibration isolation with a practical example on using soft voice
coil actuator and another example using a hard piezoelectric actuator and intermediate
passive mount.

2.2 Single-axis passive isolator

Consider the single-axis isolator shown in Fig.2.1, where M is the mass of sensitive equip-
ment, k and c are the stiffness and damping of the isolator respectively.

Figure 2.1: Sensitive equipment mounted on a vibrating structure via passive isolator

The isolation mount consists of a linear spring in parallel with a passive damper. The

corner frequency of the system is ωn =
√

k/M and the amount of damping in the isolator

is defined by the damping ratio ξ; where c/M = 2ξωn. The transfer function in Laplace
transform, between the disturbance displacement xd and the payload displacement xc is
given by

xc(s)

xd(s)
=

1 + 2ξs/ωn

1 + 2ξs/ωn + s2/ω2
n

(2.1)

Figure 2.2 shows a general plot for the transmissibility Frequency Response Function
(FRF) of Equ.(2.1) where the abscissa is the ratio between the disturbing frequency ω
and the natural frequency ωn . Many lessons can be learned from this FRF:

1. When the disturbing frequency coincides with the the natural frequency of the sys-
tem, an overshoot appears showing that the system vibrates at this frequency with
high amplitudes.

2. The frequency where the curve crosses over the 0 dB line is reached when the dis-
turbing frequency is equal to ω =

√
2ωn [2]. This critical frequency is the point

where the influence of vibration isolation begins.

3. At very low frequency and much below the resonance, the displacement of the sen-
sitive payload follows faithfully the displacement of the disturbance source as if the
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isolator were infinitely rigid. However, at frequencies much higher than the reso-
nance, the curve rolls-off and the displacement of the payload decreases gradually
while the disturbance is constant.

4. When we increase the damping ratio ξ, the overshoot that appears at the natural
frequency decreases but, unfortunately, the sharpness of the roll-off at high frequency
decreases too.

5. To maintain the sharp roll-off at high frequency while decreasing the overshoot at
the resonance, active control is needed. Discussion of the active control of vibrations
will begin later in this chapter.

Figure 2.2: Transmissibility FRF of a passive damper for various values of damping ratio ξ

From Fig.2.2, one can see that when ξ = 0, the high frequency roll-off is 1/s2 (-40
dB/decade) while very large amplitude is seen near the natural frequency ωn. On the other
hand, when the damping ratio ξ is increased we reduce the overshoot at the resonance
but we reduce also the roll-off to 1/s (-20 dB/decade) [5, 6]. As a result, the design of
a passive damper involves a trade-off between the resonance amplification and the high
frequency attenuation.

2.3 Passive isolator selection

Isolation is attained primarily by maintaining the proper relationship between the dis-
turbing frequency and the system natural frequency. In order to design a passive isolator
for a vibrating system, the following technique can be followed:

1. Determine the minimum disturbing frequency ωd. For rotating equipment, the dis-
turbing frequency is equal to the angular speed of rotation. If there are several
disturbing frequencies one should take into account the one with the minimum fre-
quency which is the most important.
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2. Determine the maximum isolator natural frequency, ωn, that can provide isolation.
This natural frequency can be calculated by using the following equation

ωn =
ωd√

2
= 0.707ωd (2.2)

If the natural frequency of the isolator exceeds ωn calculated in this equation the
isolation will not perform properly, even it is quite possible that it will amplify the
vibrations. This step narrows the range of isolators to be selected from, but it tells
nothing about the level of isolation.

3. Determine, specifically, what natural frequency of the isolator gives the required
level of isolation. The desired level of isolation determines the transmissibility of
the system; if the level of isolation is 80% then the transmissibility T is 0.2. The
transmissibility FRF can be calculated from the following formula:

T =

√√√√√√
1 + (2ξ ωd

ωn
)2

(1 − ω2
d

ω2
n

)2 + (2ξ ωd
ωn

)2

(2.3)

Neglecting the damping (ξ = 0), T reads:

T =

∣∣∣∣∣∣
1

1 − (ωd
ωn

)2

∣∣∣∣∣∣ (2.4)

For ξ > 0 and at the resonance, ωd/ωn = 1, the transmissibility T has its maximum
value and is related to the damping ratio ξ by

Tmax =
1

2ξ
(2.5)

Reciprocating Equ.(2.4), one can calculate the natural frequency as given by

ωn =
ωd√

1 + 1
T

(2.6)

Equ.(2.6) gives the natural frequency ωn as a function of the disturbance frequency
ωd and the required attenuation T for an undamped isolator; it is valid only when
ωd/ωn > 1.

4. Eventually, knowing the required natural frequency of the isolator, one can select
the material and dimensions of the passive isolator that fits for the system according
to the application and the surrounding conditions of the system. There are many
commercial catalogues to select from (e.g. [7, 8, 9, 10]).
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2.4 Active vibration isolation

We have seen in the previous section that applying passive damping in the isolator leads
to reduce the overshoot at the resonance but it reduces the high-frequency attenuation
rate. This leads to the objective in designing an active isolation system, that is to achieve
a transmissibility which provides a -40 dB/decade attenuation at high frequency and at
the same time has no amplification in the vicinity of the corner frequency as presented in
dotted line in Fig.2.2. Active isolation is considered in space and terrestrial applications
like those in [11, 12].

2.4.1 The sky-hook damper

Consider the single-axis soft isolator connecting two rigid bodies as shown in Fig.2.3(a);
It consists of a soft spring k acting in parallel with a force actuator Fa, to isolate the
sensitive payload M from the disturbance source m. There is an accelerometer to mea-
sure the acceleration of the payload and the signal is integrated and fed back to the force
actuator. The equations governing the system are as follows:

disturbance source:

xd(s) =
1

ms2
(−Fa − Fk) +

1

ms2
Fd (2.7)

Sensitive payload

xc(s) =
1

Ms2
(Fa + Fk) (2.8)

Spring

Fk = −(xc − xd)k (2.9)

In the sky-hook damper technique, the feedback is based on the absolute acceleration of
the sensitive payload, s2xc, with integral controller g/s leading to the feedback equation:

Fa = −g

s
s2xc = −gsxc (2.10)

It can be clearly seen that the active control force is proportional to the absolute velocity
of the payload; this is why this technique is called ”skyhook damper”, an equivalent repre-
sentation is shown in Fig.2.3(b); imagining that the payload is suspended by a damper to
a point in the sky [13, 14]. Combining the above equations, we obtain the transmissibility
of the active isolation:

[Ms2 + gs + k]xc = kxd (2.11)

or

xc

xd

= [
M

k
s2 +

g

k
s + 1]−1 (2.12)
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Figure 2.3: (a):Single-axis soft isolator with acceleration feedback, (b): Equivalent sky-hook damper

From the foregoing equations, the corner frequency of the system is ωn =
√

k/M , the high

frequency decay rate is 1/s2, that is -40 dB/decade, can be chosen in such a way that the

isolator is critically damped (ξ = 1), this is achieved for a control gain g = 2
√

kM . This
way, we achieve a low-pass filter without overshoot at the corner frequency and with a
roll-off of -40 dB/decade as represented in dotted line in Fig.2.2. The open-loop transfer
function, between the actuation force Fa and the acceleration of the payload s2xc, can
easily be derived from the above equations and it reads:

G(s) =
s2xc(s)

Fa(s)
=

ms2

Mms2 + k(M + m)
(2.13)

The open-loop poles are the natural frequencies of the system without control. The rigid
body modes do not appear in the transfer function (Equ.(2.13)) because they are not
controllable from Fa. The root locus of the closed-loop poles when the gain is increased
is shown in Fig.2.4.

Figure 2.4: Root locus of the sky-hook damper

So far in the active isolator, we considered that the isolator contains only a spring. If we
add to the isolator a passive damper (dash-pot) with a damping coefficient c, the isolator
equation becomes:
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Fk = −(xc − xd)(k + cs) (2.14)

and the equation of motion becomes

[Ms2 + (g + c)s + k]xc = (k + cs)xd (2.15)

The transmissibility, then, reads

xc

xd

=
k + cs

Ms2 + (g + c)s + k
(2.16)

This equation shows that the damping adds a zero at (s = k/c) that corresponds to +20
dB/decade and, thus, decreases the high frequency attenuation rate to -20 dB/decade.
This means that the passive damping in the active isolator decreases the performance of
vibration isolation at high frequency.

2.4.2 Integral Force feedback

Looking at Equ.(2.8), one can see that the acceleration of the sensitive equipment is
proportional to the total force transmitted by the interface, F = Fa + Fk.

s2xc =
1

M
(Fa + Fk) =

F

M
(2.17)

Accordingly, the sky-hook damper can be obtained alternatively with the control config-
uration of Fig.2.5, where a force sensor has been substituted to the acceleration sensor on
the payload side of the interface. The governing equations (2.7) to (2.9) still hold and we
must add the sensor equation

F = Fa + Fk (2.18)

Figure 2.5: Force feedback isolator

It follows that the open-loop transfer function between the actuator force Fa and the
sensor force F is:

G(s) =
F

Fa

=
mMs2

mMs2 + (m + M)k
(2.19)
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The open-loop poles are the natural frequencies of the system without control. Equ.(2.19)
is identical to Equ.(2.13), except for the constant M relating the total force F to the
acceleration of the payload. As a result, the root locus of Fig.2.4 also applies to the
integral force feedback (IFF) controller which is totally equivalent to the acceleration
feedback. Taking into account the constant M relating the payload acceleration and the
total transmitted force, the transmissibility of the active isolator now reads

xc

xd

= [
M

k
s2 +

M

k
gs + 1]−1 (2.20)

Assuming H(s) as an arbitrary feedback controller, the transmissibility can be given in a
more general form by:

xc

xd

= [1 +
M

k
s2(1 + H(s))]−1 (2.21)

This result is interesting and could possibly be used in the design and selction of the ap-
propriate feedback controller for a given transmissibility. Although the control strategies
based on acceleration and force sensors are equivalent for the isolation of rigid bodies, the
force feedback has two advantages:

• Sensitivity: Force sensors with a sensitivity of 10−3N are commonplace and com-
mercially available; if we consider a sensitive payload equipment with a mass of
1000kg (e.g. telescope), the corresponding acceleration is 10−6m/s2. Accelerome-
ters with such a sensitivity are more difficult to find; for example, the most sensitive
accelerometer available in the Bruel & Kjaer catalogue is 2×10−5m/s2, (model 8318)

• Stability: When the payload is flexible, the behaviour of the acceleration and force
feedback are no longer the same; this is discussed below in the next section.

2.4.3 Sensitive payload with flexible appendage

Figure 2.6: Sensitive payload with flexible appendage

When the sensitive equipment is a flexible body, the behaviour of the acceleration feedback
and the force feedback are no longer the same, due to different poles/zeros configurations
of the two control strategies [15]. In fact, different sensor configurations correspond to
different locations of the zeros in the s-plane. To analyse this situation, consider the
system shown in Fig.2.6. The nominal numerical values used in the calculations of this
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example are m = 1.1kg, M = 1.7kg, k = k1 = 12000N/m, c1 = 0; the mass m1 of the
flexible appendage is taken as a parameter to analyse the interaction between the flexible
appendage and the isolation system. When m1 is small, the flexible appendage is much
more rigid than the isolation system and the situation is not much different from that
of a rigid body. Figure 2.7 shows the root locus plots for m1 = 0.5kg; the acceleration
feedback and the force feedback have similar root locus plots, with a new pole/zero pair
appearing higher on the imaginary axis; the only difference between the two plots is the
distance between the pole and the zero which is larger for the acceleration feedback; as a
result, the acceleration feedback produces a larger damping of the higher mode. On the
contrary, when m1 is large, the root locus plots are reorganized as shown in Fig.2.8 for
m1 = 3.5kg. In the case of force feedback (Fig.2.8.a), the poles and zeros still alternate on
the imaginery axis, leading to a stable root locus; this property is lost for the acceleration
feedback (Fig.2.8.b), leading to an unstable loop for the lower mode. In practice, however,
this loop is moved slightly to the left by the structural damping and the control system
can still operate for small gains (conditionally stable).

Figure 2.7: Root locus of the isolation system with a light flexible appendage (m1 = 0.5kg). (a)Force
feedback, (b)Acceleration feedback

Figure 2.8: Root locus of the isolation system with a heavy flexible appendage (m1 = 3.5kg). (a)Force
feedback, (b)Acceleration feedback
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2.4.4 Open-loop pole/zero pattern of a soft isolator with force feedback

The following result confirms the observation of the previous example:
If two arbitrary flexible, undamped structures are connected with a single axis soft isola-
tor with force feedback (Fig.2.9), the poles and zeros in the open-loop transfer function
F (s)/Fa(s) alternate on the imaginary axis [15].

Figure 2.9: Two arbitrary flexible structures connected with a single axis soft isolator with force feedback

The proof stems from the property of the collocated systems with energetically conjugated
input and output variables (e.g. force input and displacement output, or torque input
and angle output): For such a system, all the residues in the modal expansion of the
transfer function have the same sign and this results in alternating poles and zeros on
the imaginary axis [16, 17]. If we now examine the transfer function between the control
force Fa and the output of the force sensor F (Fig.2.9), although the actuator and sensor
are collocated, F and Fa are not energetically conjugated and the preceding property
does not apply. However, the total force F transmitted by the isolator is the sum of the
control force Fa and the spring force, k∆x, where ∆x is the relative displacement of the
two structures along the isolator axis,

F = k∆x − Fa

or

F (s)

Fa(s)
= k

∆x(s)

Fa(s)
− 1 (2.22)

Thus, the open-loop transfer function F/Fa is the sum of k∆x/Fa and a negative unit
feedthrough. The input Fa and the output ∆x involved in the transfer function ∆x/Fa

are energetically conjugated and, as a result, the transfer function ∆x/Fa has all its
residues positive and possesses alternating poles and zeros along the imaginary axis. The
addition of a feedthrough term does not affect the residues in the modal expansion; the
frequency response function (FRF) F (ω)/Fa(ω) (obtained from the transfer function by
setting s = jω, and which is purely real if the system is undamped) is obtained from the
FRF ∆x(ω)/Fa(ω) by moving it along the ordinate axis by the amount of feedthrough;
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Figure 2.10: FRFs k ∆x(ω)
Fa(ω) and F (ω)

Fa(ω) for an undamped structure (they are purely real). ωi are the
resonance frequencies and Zi are the transmission zeros. The unit feedthrough component which appears
in F/Fa alters the location of the zeros (from • to ◦) without changing the interlacing property.

this changes the location of the zeros, without, however, changing the interlacing property
(Fig.2.10).

2.5 Experiment with a single-axis isolator using force feedback

2.5.1 Experimental set-up

The concept of single-axis isolation has been verified experimentally with the setup shown
in Fig.2.11 [18, 19]. At the right hand side of this figure, we see a shaker used to produce
the disturbance signals to excite the system. The mass at the left hand side represents
the sensitive payload to be isolated; the payload has a mass of 0.5 kg. The mass in the
middle is exposed directly to the disturbance source and has a mass of 1.1 kg. The voice
coil soft actuator used for active isolation is imbedded inside the middle mass for better
alignment and to avoid the excitation of the lateral and torsional modes. A force sensor
is collocated axially between the actuator and the payload mass. Flexible tips, with high
axial stiffness and low bending stiffness, are used to connect the masses to the isolator
to reduce the effect of the lateral modes. The whole system has been hanged to the
ceiling by elastic springs to compensate for the gravity forces. It is worth saying here
that the soft passive mount introduces a soft connection that may not support the launch
loads in space applications without being locked, but it is necessary to attenuate a broad
band of disturbances [20, 21]. Figure 2.12(a) is a symbolic representation of the system
in Fig.2.11; the corresponding block diagram is shown in Fig.2.12(b) [12]. This model
assumes that both, the disturbance source and the sensitive payload, are rigid bodies.
This assumption neglects the effect of the flexible modes that may appear in the system
affecting the control authority and the stability of the system in some cases. Gm here
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Figure 2.11: Experimental setup of a single-degree-of-freedom isolator with a soft actuator

denotes the transfer function between the disturbing force Fd and the displacement xd.
GM denotes the transfer function between the force acting on the sensitive equipment F
and its displacement xc. The block denoted by k + cs represents the passive spring and
damper in the isolator. Fa denotes an active actuation force that can be added in parallel
with the passive isolator. From this block model, one can see that both displacements of
the disturbance and payload influence each other, this influence depends on the force in
the isolator. In other words, if the disturbing frequency is much lower than the corner
frequency of the isolator the payload will follow the disturbance source motion. On the
other hand, the oscillations of the payload will be attenuated when the system is disturbed
at a frequency much higher than its corner frequency. The predicted corner frequency of
the system is 4.5 Hz as shown in the FRF (Fig.2.13). Figure 2.13 shows the transmissibility
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function, between the displacement of the disturbance source and the displacement of the
payload, without control (open-loop) and with applying the sky-hook damper (integral
force feedback) with the proper gain (closed-loop). One can see that the signals before
the corner frequency are passed while all the disturbances after the corner frequency are
isolated with an attenuation rate of -40 dB/decade. Here, we assume a small passive
damping in the isolator(less than 1%).

Figure 2.12: (a)Single-axis isolator, (b)Dynamic model of the single-axis isolator

2.5.2 Experimental results

The system has been excited with a random signal between 1 to 100 Hz. IFF controller,
with the appropriate gain, is applied to the system. The force acting on the payload
sensitive mass is measured by the feedback force sensor, integrated, amplified and fed back
to the voice coil actuator (the integration is done analogically in the charge amplifier).

Figure 2.14 shows the transmissibility FRF between the displacement of the disturbance
source and the displacement of the payload mass with and without applying the control.
It is similar to the theoretical prediction in Fig.2.13 with one difference that the lateral
modes at high frequency did not vanish completely from the curve because the decoupling
and alignment of the system were not perfect. The experimental FRF shows, as well as
the theoretical one, that the low frequency signals are passed with a unity magnitude
up to the corner frequency where the vibration isolation begins and the curve attenuates
at a rate of -40 dB/decade. The closed-loop curve follows the path of the open-loop
one but without any overshoot at the resonance which is consistent with the theory of
active vibration isolation discussed before. -40 dB/decade roll-off at high frequency has
been obtained by minimizing the passive damping in the isolator. The passive damping
is reduced by eliminating the eddy current from the actuator; this has been done by
removing the metallic coil holder that produces this eddy current in the magnetic field.
A detailed design of the voice coil actuator will be given in the next chapter.
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Figure 2.13: Predicted transmissibility FRF (xc/xd), between the displacement xd of the disturbance
source and the displacement xc of the payload, with and without control

Figure 2.14: Experimental transmissibility FRF (xc/xd), between the displacement xd of the disturbance
source and the displacement xc of the payload, with and without control
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2.6 Single-axis vibration isolation using geophones

Geophones are the most commonly used velocity inertial sensors to measure seismic vibra-
tions. It is an electromagnetic sensor that measures the velocity and produces a voltage
signal thanks to the motion of a coil in a magnetic field (see appendix B). To discuss the
effect of inertial feedback on vibration isolation, consider the single-axis isolation system
shown in Fig.2.15 which consists of a disturbance mass m, a payload mass M , a force
generating actuator (voice coil) and a velocity feedback sensor (geophone).

Figure 2.15: Single-axis isolator using geophone sensor

This figure is similar to Fig.2.3(a) with a geophone replacing the accelerometer. All the
governing equations (2.7) to (2.9), therefore, still hold and the open-loop plant transfer
function between the actuation force and the payload velocity reads

G(s) =
sxc(s)

Fa(s)
=

ms

Mms2 + k(M + m)
(2.23)

This passive plant FRF has two conjugate poles near the imaginery axis and one zero at
the origin. The dynamics of the geophone Dg(s), between the payload velocity and the
voltage output of the geophone, can be expressed as a second order high-pass filter

Dg(s) =
V oltage

V elocity
=

s2

s2 + 2ξgωgs + ω2
g

(2.24)

where ωg is the resonance frequency and ξg is the damping factor of the geophone. This
adds two more conjugate poles and two other zeros to the system as can be seen from
Fig.2.16. When the velocity of the equipment is measured using the geophone, the geo-
phone dynamics have an influence on the response and the poles of the geophone appear
in the FRF as shown in Fig.2.17. A low-pass filter is added at higher frequency behind the
corner frequency of the system to cut-off the high-frequency disturbances and increase the
high-frequency attenuation rate. By increasing the control gain, the mode of the isolator
moves deep to the left hand side while the pole of the geophone moves the other way
towards the right half-plane leading the system to be conditionally stable. The damping
in the geophone increases the stability margin of the system allowing a higher damping for
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Figure 2.16: root locus of the single-axis isolator using geophone feedback

Figure 2.17: FRF between the actuation force and the velocity of the payload in the single-axis isolator
using geophone sensor

the isolator pole before the arrival of the geophone pole to the right-half plane (stability
limit).
Figure 2.18 shows a Nichols chart for the open-loop system (GH). The Nichols chart is
convenient in a way that it shows a magnification for the vicinity of the stability limits
where the 0 dB gain line meets the 180 degrees phase lines. Moving on the 0 dB line,
the horizontal distance between the curve and the +180 degrees line represents the phase
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margin at the lower unity gain point and the distance between the curve and the -180
degrees line represents the phase margin at the upper unity gain point. The constant gain
curves around the unity gain points are the closed-loop magnitudes of the system where
the maximum overshoot is fixed by the constant gain curve tangent to the open-loop FRF
(GH).

Figure 2.18: Nichols chart between the open-loop gain and the open-loop phase of the system

Looking at the open-loop FRF (Fig.2.17), one sees that the magnitude crosses the unity
line (0 dB) twice. Amplification occurs in the closed-loop magnitude of the transmit-
ted signal at the cross-over points if the phase at these points is close to 180 degrees.
To explain the existence of the overshoots (amplifications) in the closed-loop response,
consider the block diagram of the general feedback system shown in Fig.2.19. The plant
passive mechanical FRF is denoted by G and the compensator is denoted by H. The
characteristic equation of the system is (1 + GH = 0). This characteristic equation rep-
resents the denominator of the closed-loop transfer function that represents the effect of
the disturbance d on the output y and reads

y

d
=

1

1 + GH
(2.25)

The roots of the characteristic equation determine the stability of the system. When the
loop gain |GH| � 1, the closed-loop gain (magnitude) equals to unity and follows the
open-loop gain. When |GH| � 1, the closed-loop gain is reduced by increasing the gain of
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the compensator. The range where |GH| > 1 is called the bandwidth of the servo system.
In this range, the compensator has its highest effect on the response of the system. If
the loop gain |GH| ≈ 1 and the phase equals to 180 degrees, it changes its sign to be
(≈ −1). This change in the sign makes the denominator very small and the closed-loop
response very large which causes a rise (overshoot) in the gain appears as a new resonance
at the unity gain points. These overshoots lead the system to be conditionally stable. On
the contrary, using the acceleration feedback with integrator (sky-hook damper) leads to
unconditional stability (if the sensitive payload is a rigid body and if the sensor dynamics
are neglected). A comparison between geophone velocity feedback and sky-hook damper
is shown in Figures 2.20 and 2.21. Figure 2.20 shows the transmissibility between the
displacement of the disturbance source and the displacement of the sensitive equipment
using sky-hook damper and Fig.2.21 shows the transmissibility between the displacement
of the disturbance source and the displacement of the sensitive equipment using velocity
(geophone) feedback. The main distinctive feature is that using a perfect geophone with
proportional feedback would produce the same result as a perfect accelerometer with inte-
gral feedback (sky-hook). The piezo accelerometer, when connected to a charge amplifier
(contains a high-pass filter), could have the same dynamics as the geophone.

Figure 2.19: Block diagram of feedback system

To reduce the effect of the overshoots at the unity gain points on the stability of the system,
the phase margin of the system should be increased; in other words, the phase difference
should be increased between the closed-loop phase and the +180 degrees line near the
lower unity gain point and between the closed-loop phase and the -180 degrees near the
upper unity gain point. This overshoot phenomenon is inevitable in the inertial feedback
systems because the amplification near the unity gain points happens for phase margin
less than 60 degrees and most of the servos are designed with less phase margin because
the increase in the phase margin decreases the gain which reduces the performance of the
servo system. Here, the designer is advised to compromise between the servo gain and the
phase margin. The solution offered here to reduce the effect of these unwanted overshoots
is to use a phase lag and a phase lead compensators. The phase lag is addressed to the
low frequency unity gain point and the phase lead is addressed to the high frequency
unity gain point. The phase lag added to the feedback compensator serves to increase the
compensation gain which results in decreasing the closed loop magnitude (overshoots)
near to the low frequency unity gain point. The phase lead added at high frequency
unity gain point shifts the phase of the closed-loop away from the line of -180 degrees
which increases the phase margin and assures higher stability conditions. The use of the
Lag-Lead filter is illustrated in the next section.
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Figure 2.20: Displacement transmissibility of a soft single-degree-of-freedom isolator with control (dashed
line) and without control (solid line) using sky-hook damper

Figure 2.21: Displacement transmissibility of a soft single-degree-of-freedom isolator with control (dashed
line) and without control (solid line) using geophone feedback with Lag-Lead compensator
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2.7 Lag-Lead control using force feedback

The effect of the control law on the transmissibility of a single axis isolator is given by
Equ.(2.21). In the project of the ULB soft Stewart platform (chapter 3), two decentralized
feedback control laws have been tested; the Integral Force Feedback control (discussed
earlier in this chapter) and the Lag-Lead control discussed here. Similar to the comparison
between the sky-hook damper and the IFF discussed earlier in this chapter, the Lag-Lead
compensator with force feedback is compared here to the geophone velocity feedback
discussed in the previous section. The difference is that, although, a force feedback is
used here but the stability is not guaranteed as it is in the IFF.
Consider the single-axis system shown in Fig.2.22, where the two rigid bodies are con-
nected by an isolator and a force sensor is used to measure the force acting on the sensitive
payload M . The open-loop transfer function F/Fa can be expressed by the equation

G(s) =
F (s)

Fa(s)
=

Ms2xc(s)

Fa

=
mMs2

mMs2 + k(M + m)
(2.26)

Figure 2.22: A single-axis isolator using Lag-Lead feedback control technique

This control technique is similar to the IFF technique but instead of using integral control
in the feedback loop we use another compensator consisting of the following:

• High-pass filter HPF at 1 Hz, before the corner frequency of the isolator to attenuate
the system at low frequency reducing the influence of the low frequency disturbances.
If ωhpf and ξhpf are the cut-off frequency and the damping ratio of the high-pass filter,
respectively, then the HPF transfer function reads

HPF =
s2

s2 + 2ξhpfωhpfs + ω2
hpf

(2.27)

• Low-pass filter LPF at 11 Hz, beyond the corner frequency of the isolator to roll off
the system at high frequency, increasing the isolation performance. If ωlpf and ξlpf

are the cut-off frequency and the damping ratio of the low-pass filter, respectively,
then the LPF transfer function reads
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LPF =
ω2

lpf

s2 + 2ξlpfωlpfs + ω2
lpf

(2.28)

• Lag compensator near to the HPF to improve the transient response at low fre-
quency. If zlag and plag are, respectively, the zero and the pole of the Lag compensator
(zlag > plag), its transfer function reads

LAG =
s + zlag

s + plag

(2.29)

• Lead compensator after the LPF to increase the stability margin of the closed-
loop system. If zlead and plead are, respectively, the zero and the pole of the Lead
compensator (zlead < plead), its transfer function reads

LEAD =
s + zlead

s + plead

(2.30)

Figure 2.23: Open-loop FRF between the force F on the payload and the actuation force Fa

Figure 2.23 shows the open-loop FRF between the force F acting on the sensitive payload
and the actuation force Fa with the Lag-Lead compensator connected in series with the
plant (GH). From this bode plot, we can see that the gain curve crosses twice over the 0
dB line forming two unity gain points. At the lower unity gain point, the phase is close
to +180 and at the upper unity gain point, the phase is close to -180 degrees. This causes
a poor transient response at low frequency and a small phase margin at high frequency



32 2. Single-axis vibration isolation

point. This justifies the use of the Lag compensator near the low frequency unity gain
point and a Lead compensator near the high frequency unity gain point to push the phase
curve away from the stability limits. A clear representation of the open-loop system is
shown in Fig.2.24 which shows a Nichols chart for the open-loop system. As explained
before, Nichols chart magnifies out the vicinity of the stability limits where the 0 dB gain
line meets the 180 degrees phase lines. The horizontal distance, on the 0 dB line between
the curve and the +180 degrees line is the phase margin at the lower unity gain point and
the distance between the curve and the -180 degrees line represents the phase margin at
the upper unity gain point.

Figure 2.24: Nichols chart between the open-loop phase and the open-loop gain of the system

The advantage of using this controller is that it allows to have a lower corner frequency
for the closed-loop system and provides better isolation performance along the controller
bandwidth. The drawback of this control technique is that it is conditionally stable and
it produces overshoots at the unity gain points where the open-loop FRF crosses over
the 0 dB line. The reasons and effects of these overshoots are explained extensively in
the previous section. In addition, on the contrary to the integral controller, there is
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no guarantee that the controller will remain stable when the isolator is inserted in a
complicated structure.
Figure 2.25 shows the transmissibility FRF between the displacement of the disturbance
source xd and the displacement of the payload xc. The open-loop curve represents the
transmissibility without control where it levels at 0 dB till reaching the corner frequency
of the system. Beyond the corner frequency, the curve attenuates at -40 dB/decade.
The closed-loop curve shows the case when the Lag-Lead controller is applied. The two
overshoots seen here before and after the corner frequency correspond to the two unity
gain points mentioned earlier.

Figure 2.25: Transmissibility FRF xc/xd

2.8 Alternative concept of single-axis isolator

Reference [22] proposes a good example of vibration isolation instrument using inertial
feedback. A symbolic representation of the instrument is shown in Fig.2.26(a). M1

represents the payload mass to be isolated. Together, M1 and M2 form a seismometer;
where M1 is the inside mass and M2 is the outside proof-mass of the seismometer (M1 is
about ten times heavier than M2). M2 is hanged to M1 by a spring K2. The system of
M1, M2 and K2 is mounted to the base platform through another spring K1 and a force
generator voice coil actuator represented by F .
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Figure 2.26: The soft single-axis isolator: (a) A schematic diagram. (b) A block representation

In order to quiet M1, the relative motion of the the mass M2 with respect to M1 is
measured, filtered and fed back to the voice coil actuator. To modelize the system,
consider the block diagram shown in Fig.2.26(b); where G1 represents the passive FRF
(x1/xe), G2 represents the passive FRF (x2/x1) and H is the filter that will be discussed
later in this section. The displacement xe is the motion of the earth while the terms x1

and x2 denote the displacements of the masses M1 and M2, respectively.

The system has been modelled and simulated; the plant passive FRF between the force
acting on the mass M1 and the relative diplacement (x1 − x2) is shown in Fig.2.27. This
FRF shows the two natural frequencies of the system; the first frequency formed by M2

and K2 appears at 1.3 rad/sec and the second frequency formed by M1 and K1 appears
at 8.5 rad/sec.

A cascade filter is used to filter the measured signal of the relative displacement before
feeding it back to the voice coil actuator. The FRF of this filter is shown in Fig.2.28;
it consists of a high-pass filter, a Lag-Lead filter (a combination of a lag and a lead
compensators) and a low-pass filter; with a quality factor Q = 2 or less for each filter;
the quality factor is the reciprocal of the damping ratio divided by 2 (Q = 1/2ξ). Figure
2.29 shows the open-loop FRF of the system with the filter. The high-pass filter is used
to increase the roll-off of the gain of the system at low frequency to avoid the quasi-static
wandering signals from propagating into the system and the low-pass filter is used at high
frequency to cut-off the high-frequency disturbances. The Lag and Lead compensators
are used to reduce the effect of the overshoots at the closed-loop unity gain points.

Looking at Fig.2.30, one can see that the closed-loop transmissibility functions are dom-
inated by peak overshoots at the unity gain frequencies. As explained in the previous
section, these amplifications near the unity gain frequencies increase the settling time of
the system and reduces the stability margin. To reduce the effect of these overshoots, the
Lag-Lead compensation is used. The purpose of this compensator is to add a phase lag
near the low frequency unity gain point and a phase lead near the high frequency unity
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Figure 2.27: The plant FRF of the soft single-axis isolator between the force on M1 and the relative
displacement (x1 − x2).

gain point. The phase lag serves to increase the compensation gain and, thus, decrease
the closed-loop magnitude which, in turn, reduces the overshoot at low frequency. Thanks
to the Lag compensation, the low frequency peak is reduced significantly which improves
the settling time. The phase lead at the high frequency unity gain point shifts the phase
of the closed-loop away from the line of -180 degrees increasing the phase margin and
assuring higher stability for the system.

Using the previous notations shown in the block diagram in Fig.2.26(b), it can be easily
shown that the closed-loop transfer functions for this system are

x1

xe

=
G1

1 + H(G1 − G1G2)
(2.31)

x2

xe

=
G1G2

1 + H(G1 − G1G2)
(2.32)

Both transfer functions are plotted in the frequency domain in Fig.2.30. The open-loop
gain rolls off after the low frequency resonant when we consider the transmissibility (x2/xe)
while this occurs after the high frequency mode when one is interested in (x1/xe). In both
cases the increase in the compensator H leads to a decrease in the closed-loop transfer
function which rolls off one decade earlier than the lowest resonance.
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Figure 2.28: The FRF of the filter used in the feedback loop

Figure 2.29: The open-loop FRF of the system with the compensation filter
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Figure 2.30: The open-loop and close-loop transmissibility functions of the single-axis soft isolator. (A)
Open-loop (x2/xe), (B) closed-loop (x2/xe), (C) Open-loop (x1/xe), (D) Closed-loop (x1/xe)

2.9 Single-axis isolator using a piezo stack

In the previous section, we discussed a single-axis isolation system using a voice coil
actuator. Here, we will discuss an alternative single-axis isolation concept based on a
piezoelectric actuator. A single-axis vibration isolation system (Quiet pier) has been
invented by the Technical Manufacturing Corporation (TMC) to solve the problem of
the high corner frequency when using a piezoelectric actuator [23, 24]. This system (in
Fig.2.31) consists of a piezoelectric actuator represented by its extension δ and stiffness k,
a payload mass m1 and an intermediate passive mount. The intermediate mount consists
of a mass M and an elastomer with a stiffness k1 and a damping factor c1. The isolator
frequency formed by the stiffness of the actuator k and the intermediate mass M is equal
to 1000 Hz. The passive elastomer (represented by the spring k1 and the dashpot c1)
forms a new resonance with the payload mass m1 equals to 20 Hz. The two stiffness
values, k and k1, are in series; this results in having the corner frequency of the system
corresponding to the lower stiffness k1.

A geophone velocity sensor is installed at the intermediate mass M . The active control
strategy is based on feeding the signal of the geophone back to the piezoelectric actuator
after being properly filtered and amplified. This inertial feedback leads to quiet the inter-
mediate mass M which results in isolating the motion xc1 of the payload mass m1 from
the seismic disturbance xd. This system can be represented, in Laplace transform, by the
following equations of motion:
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Figure 2.31: A single-axis isolator using piezoelectric actuator and intermediate passive mount

The intermediate mass

Ms2xc = k(xd − xc + δ) − k1(xc − xc1) − c1s(xc − xc1) (2.33)

The payload mass

m1s
2xc1 = k1(xc − xc1) + c1s(xc − xc1) (2.34)

The plant FRF between the voltage input to the actuator and the velocity measured at
mass M is shown in Fig.2.32. From this FRF, one can see that the resonance formed by
the stiffness of the piezoelectric actuator and the intermediate mass M appears at 1000
Hz, while the resonance formed by the passive elastomer and the payload is at 20 Hz. A
zero appears just after the low frequency pole. Because of the high mass ratio between
the payload and the intermediate mass, where the intermediate mass is about 1/50 to
1/200 of the payload mass, this zero stays close to the low frequency resonance. The FRF
of the compensator is shown in Fig.2.33. It contains the geophone dynamics (high-pass
filter at 4.5 Hz), a low-pass filter at 300 Hz, and the two lag and lead compensators are
designed to be near the high-pass and the low-pass filters respectively.
Figure 2.34 shows the open-loop FRF between the voltage input to the actuator and
the velocity measured by the geophone. The gain (magnitude) of the open-loop transfer
function climbs at 40 dB/decade then levels at 40 dB when it reaches to 4.5 Hz at the
resonance frequency of the geophone. The geophone acts as a second order high-pass
filter that cuts the signals off below 4.5 Hz. The high frequency attenuation is achieved
by locating a low-pass filter at 300 Hz (before the resonance of the piezoelectric actuator).
A lag compensator is placed near the low frequency unity gain point (at 0.2 Hz), and a
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Figure 2.32: Plant FRF, of the single-axis isolator with intermediate mount, between the voltage input to
the actuator and the velocity of the mass M

Figure 2.33: FRF of the compensator



40 2. Single-axis vibration isolation

Figure 2.34: Open-loop FRF of the system, between the voltage input to the actuator and the velocity
output of the geophone, with the compensator

Figure 2.35: Transmissibility FRF between the seismic diplacement xd and the payload displacement xc1,
with control (closed-loop) and without control (open-loop).
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lead compensator is placed near the high frequency unity gain point (at 350 Hz). The ad-
vantage of adding this lag-lead compensation is to reduce the amplifications (overshoots)
that appear at the unity gain points when the loop is closed.
Figure 2.35 shows the transmissibility FRF between the seismic disturbance displacement
xd and the sensitive payload displacement xc1. The overshoots caused by inertial feedback
can be seen clearly on the two unity gain points of the closed-loop FRF. Using a phase lag
compensator near the low unity gain frequency reduced the overshoot which means better
transient response and lower settling time. Similarly, using a phase lead compensator near
the upper unity gain frequency could increase the phase margin which improves the sta-
bility conditions of the system. One can see clearly that despite using a hard piezoelectric
actuator, the passive vibration isolation occurs here near the low frequency resonance of
the passive mount (20 Hz). Moreover, the closed-loop active vibration isolation occurs
much lower than that (at 0.2 Hz) leading the system to have a high isolation performance
for a wide band of disturbances.
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Chapter 3

Six-axis active isolation

3.1 Introduction

In this chapter, we intend to discuss the six-axis vibration isolation, particularly, the
isolators based on Stewart platform. A detailed discussion about Stewart platform will
be given in this chapter, concentrating on the cubic architecture, the general kinematics
and dynamic modelling. To validate experimentally the multi-axis vibration isolation, a
new six-axis Stewart platform has been designed, manufactured and tested. This design
is based on implementing six soft electrodynamic (voice coil) actuators in the six legs of
the hexapod. A brief review of the current efforts done by other groups in building soft
Stewart platforms is shown here too. The general technological assembly of the ULB soft
Stewart platform will be explained discussing extensively the design of the actuators, the
membranes and the flexible joints. A finite element model and some analytical governing
equations will be used to analyse the effect of the flexible joints on the control authority.
Experimental results will be reviewed at the end of the chapter.

3.2 Stewart platform

A Stewart platform mechanism is an hexapod system consisting of six d.o.f. parallel
manipulator with variable link length. It is named upon D. Stewart who used this con-
figuration in 1965 to design a six d.o.f. flight simulator for training of pilots [1]. Others
claimed reaching the invention before Stewart [2]. However, the idea seems to have been
invented by V. Gough more than ten years before (in 1955), who designed a tyre testing
machine based on the cubic configuration of a six d.o.f. hexapod [3] (the cubic configura-
tion will be discussed in the next section).
In the context of large space structures discussed here (Fig.3.1) [4, 5], such a platform
can be used as:

• Active mount for quiet components.

• Isolation mount for a disturbance source.

• Active structural element of trusses for vibration control or geometrical reconfigura-
tion.
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Figure 3.1: Various uses of a Stewart platform in a truss structure(from [4])

Stewart platforms can be classified into two main groups according to the stiffness of the
legs; stiff and soft. The stiff design typically involves piezoelectric or magnetostrictive
legs whose extension can be controlled, while in the soft design, each leg acts essentially
as an axial spring in parallel with a voice coil actuator.

3.3 The cubic architecture

Stewart platforms are very popular parallel manipulators [6, 7, 8]. The dexterity of the
mechanism and its accuracy depends very much on its nominal geometry; various optimal
architectures have been developed [9]. The specific application considered here is fairly
different from most applications considered in robotic manipulators, in the sense that
the link elongations are very small, so that the kinematic configuration remains almost
unchanged. Thus, the Jacobian remains constant and can be evaluated from the nominal
configuration. The following characteristics play an important role in the design of a
Stewart platform for active vibration isolation and precision pointing:

• Uniformity of control capability in all directions.

• Uniform stiffness in all directions.

• Minimum cross-coupling amongst actuators.

• Simple kinematic and dynamic analysis.

• Simple mechanical design (minimum number of different components).

• Availability of collocated actuator/sensor pairs.

• Minimum rotational stiffness of the spherical joints (ideally zero).
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Figure 3.2: Cubic configuration of a Stewart platform

The ”cubic configuration” was invented by Gough [3] and has been used by Intelligent
Automation Inc. (IAI) [4] to fulfill most of the above properties. The nominal configu-
ration is obtained by cutting a cube by two planes as illustrated in Fig.3.2; these planes
constitute the base plates of the Stewart platform. The edges of the cube connecting
the base plates constitute the six legs of the platform. The cubic configuration has other
interesting features:

• The adjacent legs are orthogonal to each other resulting in a decoupled control action
in the three translational directions X, Y, Z, (Fig.3.2); actuators L1 and L4 control
the translation in the X direction, etc ... This feature also leads to a maximum
uniformity of control authority in all direction.

• The Stewart platform is symmetrical in its nominal configuration and all legs are
identical.

3.4 Kinematics and pointing performance of Stewart platform

3.4.1 Dimensioning of the cubic Stewart platform

Consider the schematic drawing shown in Fig.3.3 that represents the nominal configuration
of a cubic Stewart platform. Figure 3.3(a) is the cross-section through the XZ-plane and
Fig.3.3(b) shows the top view of the hexapod; the two triangles in dashed lines here
connect the points of anchorage of the legs on the two plates. The overall length of the
leg L is the basic parameter out of which all the kinematics are calculated:

L = l +
2e

sinθ
(3.1)

where l is the nominal length of the leg (active strut), e is the thickness of one of the
plates and θ is the nominal inclination angle of the leg in the vertical plane including
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Figure 3.3: Schematic drawing of Stewart platform; (a) side section, (b) top view

the leg; θ is constant in the cubic configuration hexapods, regardless any change in the
dimensions, and equals to 35.26 degrees. r is the radius of the circle including the points
of anchorage of the legs on the plates which are the points of intersection of the adjacent
legs. From the geometry:

r2 = L2 − Z2 (3.2)

This leads to the following values:

r

L
= cosθ =

√
2

3

Z

L
= sinθ =

√
1

3

3.4.2 Pointing performance

The Jacobian matrix J (defined in Appendix A) allows to transform the pointing control
requirements (in terms of δχ) into length requirements δq of the platform legs

δq = Jδχ (3.3)

where χ = {x, y, z, θx, θy, θz} is the translations and rotations of the mobile plate and q =
{q1, ..., q6} is the extensions of the six legs of the hexapod. This decoupling transformation
produces 6 independent actuator commands for the individual legs (Fig.3.4). Most often,
the pointing control involves only two pointing angles; in this case, the Stewart platform
has some built-in redundancy which can be exploited to account for possible actuator
failure, if some of the legs are locked with a fixed length [10, 11, 12, 13]. In these
configurations, the partial Jacobian is no longer square, but the decoupling matrix D is
the pseudo-inverse of the appropriate partial Jacobian matrix.
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Figure 3.4: Block diagram of pointing control problem including reconfiguration algorithm in case of
actuator failure

Figure 3.5: Leg configuration for performance calculations: (a) deformation of all the legs together to give
a pure vertical motion, (b) deformation of any two parallel legs to give a pure horizontal motion

Several algorithms have been put forward to solve the kinematics of the Stewart platform
for pointing purposes, some of them are discussed in [14, 15, 16, 17]. To estimate the
pointing performance of Stewart platform, consider Fig.3.5(a) which shows the motion
done by all the six legs together to provide a pure vertical (piston) motion (let’s call it
z). Figure 3.5(b) shows the motion done by two parallel legs to provide a pure horizon-
tal (shear) motion (let’s call it x). Consider moving the mobile plate in a pure piston
motion; in this case, all the actuators elongate with the same length. One can calculate,
analytically, the relation between the elongation of the leg δq and the piston motion δz
from trigonometric analysis

x2 = L2 − z2 = (L + δq)2 − (z + δz)2 (3.4)

This leads to the relation

δz ≈
√

3δq (3.5)

In the same manner, when one needs to move the platform in a pure shear motion, the
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two parallel legs that are parallel to the direction of motion will elongate together to
define this motion. The full-stroke of these two legs will be accompanied by a half-stroke
elongation of each of the other four legs. Applying the trigonometric relations again we
find

z2 = L2 − x2 = (L + δq)2 − (x + δx)2 (3.6)

This leads to the relations

δx ≈
√

3

2
δq (3.7)

and

δy ≈
√

2δq (3.8)

The pure rotational motion is defined by the elongation δq normalized by the nominal
length of the leg L. In the case of a pure rotation around the x-direction (if the x-axis
passes through an anchorage point of two adjacent legs), the following relation defines the
rotated angle δθx:

δθx ≈
√

6
δq

L
(3.9)

and δθy is given by:

δθy ≈ 3√
2

δq

L
(3.10)

To give a pure rotation around the vertical central axis, all the legs should elongate in
the way shown in Fig.3.5(b) but in alternative way (e.g. legs 1, 3 and 5 make a positive
motion and legs 2, 4 and 6 make a negative motion or vice versa). The pure rotation
around the vertical axis is proportional to the absolute extension/contraction of one of
the legs normalized by the nominal length of the leg:

δθz ≈
√

3

∣∣∣∣∣δqL
∣∣∣∣∣ (3.11)

Table 3.1 shows the maximum pure translations and rotations in the different degrees of
freedom. s is the total stroke of the actuator, δqi is the elongation in the ith leg and δχ is
the maximum pure translations and rotations travelled by the center of the upper plate.
When the motion is a combination of several directions it becomes more complicated. A
simple optimization technique can be made to calculate the different configurations that
give the maximum motions in the six d.o.f. of the platform. The maximum displacements
and rotations with the corresponding leg configurations are shown in table 3.2. Note that
the maximum motions shown in this table are not pure motions but they are coupled with
other motions at the same time.
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δχ δq1 δq2 δq3 δq4 δq5 δq6

xpure =
√

3
2s s/2 s/2 −s s/2 s/2 −s

ypure =
√

2s s −s 0 s −s 0

zpure =
√

3s s s s s s s

θx
pure =

√
6 s

L 0 0 s s −s −s

θy
pure = 3√

2
s
L −s −s s/2 s/2 s/2 s/2

θz
pure =

√
3 s

L s −s s −s s −s

Table 3.1: Maximum pure translations and rotations travelled by the mobile plate and the corresponding
leg configuration (s = the actuator stroke and L = the nominal length of the leg) (see Fig.3.3 for reference
axes and strut numbering)

δχ δq1 δq2 δq3 δq4 δq5 δq6

xmax −s −s −s s s −s

ymax s −s −s s −s s

zmax s s s s s s

θx
max −s s s s −s −s

θy
max −s −s −s s s −s

θz
max s −s s −s s −s

Table 3.2: Maximum coupled translations and rotations travelled by the mobile plate and the corresponding
leg configuration (s = the actuator stroke and L = the nominal length of the leg) (see Fig.3.3 for reference
axes and strut numbering)
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3.5 Current effort in soft Stewart platforms

Table 3.3 shows an overview of existing projects on soft Stewart platforms and a com-
parison between their main characteristics. The Jet Propulsion Laboratory (JPL) started
with the Six Axis Stewart Strut Experiment (SASSIE) [18]. Other projects took place in
other research centers; Hood Technology in cooperation with the University of Washing-
ton (HT-UW) developed an hexapod with a long stroke voice coil actuator and several
types of feedback sensors [19, 20, 21]. Honeywell developed another type of Stewart
platform with 1 Hz corner frequency to provide a wide band of vibration isolation using
accelerometers as the feedback sensors [22]. Other types of hexapods have been designed
and manufactured by the Naval Postgraduate School [23, 24], the University of Wyoming
[10, 11, 12] and CSA Engineering Inc. The last Stewart platform in table 3.3 has been
designed, manufactured and tested at ULB in the Active Structure Laboratory (ASL).
The ULB soft hexapod (Fig.3.7) is based on the cubic configuration using soft voice coil
actuators with a stroke of ±1500 µm and force feedback sensors. Decentralized force
feedback control strategy is used to damp actively the rigid body modes of the mobile
plate. The corner frequency of the hexapod is 4.5 Hz [25, 26].

The design of the leg is the main feature to take into account in the comparison between
the different designs of Stewart platforms. Figure 3.12 shows a comparison between three
different leg configurations. In the design of the JPL, one can see that the bending motion
of the leg is held in the flexible joints located at the two ends of the leg and the mobile
plate is offloaded by using an internal spring which increases the corner frequency of the
system. The coil is guided by two flexible membranes but it adds some passive damping
to the axial motion of the actuator. The design of the ULB has two major differences
from that of the JPL; there is no internal spring to compensate for the gravity force
which allows to have a lower corner frequency and there is no passive damping (no eddy
current in the coil) inside the actuator, which increases the possibility to get a higher
attenuation rate at high frequency. The design of the HT-UW adds a new concept by
fixing the permanent magnet to the base plate and installing the joint after the coil but the
drawback here is that the air gap in the actuator should be bigger to give more clearance
for the coil to move which reduces the performance of the actuator. Another contribution
in the design of the HT-UW is that it adds a new spring k2 in series with the leg because
the joints are elastomers which aims at increasing the attenuation at high frequency.
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Figure 3.6: JPL Hexapod [18]

Figure 3.7: ULB soft Hexapod [25]
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Figure 3.8: Hood Technology and University of Washington Hexapod [19]

Figure 3.9: Legs of the Honeywell Hexapod [22]
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Figure 3.10: Naval Postgraduate School Hexapod [23]

Figure 3.11: University of Wyoming Hexapod [10]
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Figure 3.12: Comparison between 3 different leg configurations; JPL, HT-UW and ULB
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3.6 ULB six-axis vibration isolator based on Stewart platform

3.6.1 Mechanical design of the ULB Stewart platform

The design of this soft Stewart platform is based on the cubic configuration discussed
earlier. The two main plates here are two aluminium triangles connected to each other
by means of six active struts. Each strut consists mainly of a voice coil actuator, a force
sensor and two flexible joints as shown in Fig.3.13. Figure 3.14 shows the hexapod; where
Fig.3.14(a) is a side view showing the inclination angles of the legs and Fig.3.14(b) is a
general view showing the triangular plates and their connection to the legs [25, 26, 27, 28].
In the assembly of such a soft system, one should take into account many parameters;
the design and manufacturing of the membranes, flexible joints and all the other parts
should be handled carefully. Moreover, the wiring system and the cables connecting the
actuators and sensors should be as soft as possible and passed carefully through the legs
so as not to influence the flexibility of the leg [29, 30].

Figure 3.13: Active strut of the soft hexapod (ULB design)

Figure 3.14: Views of the soft hexapod (ULB design); (a): Side view, (b): General view
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3.6.2 Actuator design

Each of the voice coil actuators used here consists of a permanent magnet and a current
carrying coil. The permanent magnet is a radial polarity toroid magnet with a ferro-
magnetic metal core manufactured by BEI KIMCO. The current carrying coil has been
developed and manufactured in house, because classical metallic supports have a signifi-
cant contribution to the damping through eddy-current. The eddy current adds passive
damping to the system in the axial direction of the leg which leads to reduce the roll-off
rate after the corner frequency. Figure 3.15 shows three different options for the design of
the voice coil. When reviewing the previous designs, we found in [18, 31, 32] that the au-
thors neglected the effect of this damping in the system in spite of its significant influence
on the high frequency attenuation. The same problem of passive damping was mentioned
in [23, 24] where it has been included in the representing model. On the contrary, in the
Honeywell design [22] a carbon fiber composite material has been used to construct the
coil holder (bobbin) in order to minimize the eddy current and reduce the passive damp-
ing. In our design, we could eliminate this problem completely by simply winding the coil
and sticking the turns to each other using a special strong adhesive without having any
holder from any kind. In terms of stability, this did not make any problem because the
force exerted by the actuator does not exceed 15 Newtons and the adhesive proved higher
strength. In order to hold the coil and the magnet up together, a set of components and
connections are manufactured and installed as shown in the exploded view in Fig.3.16.

Figure 3.15: Several design options of the voice-coils. Solution (b) is used in the ULB design
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Figure 3.16: The leg of the Stewart platform and its components; exploded view of the different parts of
the actuator, a flexible tip, a membrane and the internal design of the actuator
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3.6.3 The flexible membranes

To allow the current holder bobbin to move freely through the air gap of the permanent
magnet in the actuator, an alignment system is needed. The alignment system should
be adapted to the requirements of the vibration isolation. It must, therefore, have the
following characteristics:

• Low axial stiffness in the direction of the central axis of the actuator: the corner
frequency of the whole system depends on the axial stiffness of the strut.

• High radial stiffness in the direction normal to the actuator axis: the lateral flexi-
bility causes local modes in the leg that deteriorate the isolation authority at high
frequency; this is why these modes must be pushed as high as possible.

• Minimum friction and backlash.

• High repeatability and long life time: the actuator works in a vibrating mode with
different frequencies. This demands from the guiding to support this motion for
millions of cycles.

• Nonmagnetic characteristics: to avoid the magnetic forces due to the attraction of
the permanent magnet.

To achieve most of the previous requirements, two flexible membranes are manufactured
and installed as a guiding system. Beryllium Copper is selected to be the material of
these membranes because of its high yield strength and nonmagnetic behaviour, besides
its ability to relieve residual stresses that act like a prestressed composite when exposed
to mechanical processes. There are many shapes and designs of membranes found in
the literature as shown in Fig.3.17 [33]. In Fig.3.18 we show several design shapes of the
membranes that have been manufactured and tested at the ASL. Figure 3.18(c) represents
a design that proved to have the best compromise between large displacement and uniform
stress distribution.
Figures 3.19 and 3.20 show the result of a static finite element simulation where a constant
load is applied normally to the membrane. Figure 3.19 shows a map of the displacement
travelled by each element of the membrane as seen in the F.E.M model and Fig.3.20 shows
the stress distribution on the surface of the membrane. The objective of this simulation
is to optimize the different parameters of the membrane so as to have the design with
the highest possible displacement as well as the most uniform stress distribution on the
membrane. It is worth mentioning here that the manufacturing process has a significant
effect on the characteristics of the membrane. The mechanical metal removal processes can
induce high residual stresses in the membrane causing deformations that appear as ”click-
clack” behaviour (elastic instability) which limits the stroke and the implementation. To
avoid this problem, the process used here to produce the membranes is the photochemical
machining process (Etching).
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Figure 3.17: Different shape designs of the membrane from the literature [33]

Figure 3.18: several design shapes that have been designed and tested in the laboratory
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Figure 3.19: FEM displacement distribution of the membrane

Figure 3.20: FEM stress distribution of the membrane
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3.6.4 The flexible joints

To connect each leg to the support plates, some kind of spherical joint is needed. It is
avoided to use classical joints because they have a significant amount of backlash and
friction which is undesirable in precision engineering. Instead, flexible joints are used,
which eliminate the backlash and friction, at the expense of some additional parasitic
stiffness. The influence of the joints has been discussed by previous authors [11, 13,
19, 24]. The new ULB design of flexible joints has been based on having the following
characteristics:

• High axial stiffness: to pass the control force faithfully from the actuator to the
mobile plate.

• Low bending and torsion stiffness: to increase the authority of the active control as
will be discussed later. It turns out that this rotary stiffness of the flexible joints will
actually determine the zeros of the system.

• High shear stiffness: to push the local modes of the legs as high as possible. These
modes can reduce the isolation performance at high frequency if left close to the
corner frequency.

• Minimum friction and backlash.

To fulfil these requirements, several designs of flexible joints have been considered; they
are shown in Fig.3.21. In Fig.3.21(a) and(c), the joint has a high stiffness in axial direction
and low stiffness in the two bending degrees of freedom but the problem here is that the
bending ribs are thin and long and this softens the shear and torsion degrees of freedom
which is not desirable in the design. Figure 3.21(b) shows a new improved design of the
joints where bending flexibility here is caused by the rotation of the torsion rods which
have been made out of carbon fiber. It is based on a universal joint rather than a spherical
joint. This design of the flexible joint has been selected and manufactured for the current
design of the ULB Stewart platform. Figure 3.21(e) presents a commercial flexible tip
with a relatively high bending stiffness [34]. Figure 3.21(f) shows a classical coupling with
a low axial, bending and shear stiffness. The flexible joints shown in Fig.3.21(a),(b),(c)
and (e) behave like universal joints with minimum friction and backlash.

3.7 Dynamic modelling of an ideal Stewart platform

The dynamic modelling of ideal Stewart platforms has been discussed in [5, 18, 35]. The
hexapod based on the cubic architecture is interesting because it provides orthogonality
and symmetry in all the directions. The stiffness and the control capability is uniform here
and the coupling between the actuators is minimized. Following [18], Fig.3.22, depicts
the orientation of the nodes and the struts of this architecture; the triangular base plate
is formed by the connection of the nodes 1, 3 and 5; while the payload plate is formed by
the nodes 2, 4 and 6. The struts are the edges of the cube formed by connecting the nodes
of the base plate and the payload plate. The base plate reference frame {xb, yb, zb} has its
origin at node 0 and the payload reference frame {xr, yr, zr} has its origin at the geometric
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Figure 3.21: Several designs of flexible joints

center of the hexapod, node 8 (center of the cube). Assume that the base plate is fixed
and the payload plate is a mobile axisymmetric rigid body with a mass m and a principal
inertia axes aligned with {xr, yr, zr}, the principal moments of inertia Ix = Iy = mR2

x,
Iz = mR2

z, and with a center of mass located at an offset distance Zc from the center,
along the vertical axis zr. Another assumption is that the struts are rigid and the bending
stiffness of the flexible joints is neglected. The dynamic second order differential equation
of motion of the isolator is:

Mẍ + Kx = Bf (3.12)

Where, x = (xr, yr, zr, θx, θy, θz)
T is the vector describing the small displacements and

rotations in the frame {xr, yr, zr}, f = (f1, f2, ..., f6)
T is the active control force vector in

strut 1 to 6 respectively, K and M are the stiffness and mass matrices of the isolator and
B is the force Jacobian matrix which allows to express the active control forces in the
payload reference frame (Appendix A).

To establish the equation of motion and evaluate the eigenvalues of the cubic Stewart
platform [18], consider the estimation of the kinetic energy T of the mobile platform
expressed in the frame {xr, yr, zr}.
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Figure 3.22: Geometry and coordinate systems for the cubic hexapod isolator

T =
1

2
mv2 +

1

2
ωT Iω (3.13)

where m is a 3 × 3 diagonal mass martix, v is the translational velocity vector of the
center of mass of the mobile platform, I is the moment of inertia and ω is the angular
velocity of the payload. Expressing v in the reference frame {xr, yr, zr}, we get

v=


 ẋr + θ̇yZc

ẏr − θ̇xZc

żr




where θ̇i is the rotation around direction i and Zc is the distance in the z-direction between
the reference frame and the center of mass of the mobile plate. Since the principal axes
of inertia are aligned with {xr, yr, zr}, the rotation part becomes:

ωT Iω = Ix(θ̇x)
2 + Iy(θ̇y)

2 + Iz(θ̇z)
2 (3.14)

where Ix = Iy = mR2
x and Iz = mR2

z. Here, Rx and Rz are the radii of gyration.
In a general form, the kinetic energy can be calculated from the equation

T =
1

2
ẋT Mẋ (3.15)

where M is the global mass/inertia matrix and x = (xr, yr, zr, θx, θy, θz)
T is the global

translation and rotation vector. Equating Equ.(3.13) and Equ.(3.15) leads to the general
mass matrix M
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M = m




1 0 0 0 Zc 0
0 1 0 −Zc 0 0
0 0 1 0 0 0
0 −Zc 0 R2

x + Z2
c 0 0

Zc 0 0 0 R2
x + Z2

c 0
0 0 0 0 0 R2

z




(3.16)

The stiffness matrix K, resulting from the axial stiffness of the legs, can be calculated
using the stiffness formula [kBBT ] as shown in Appendix A, and is given by:

K = kBBT = k




2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0.5L2 0 0
0 0 0 0 0.5L2 0
0 0 0 0 0 2L2




(3.17)

Where, L is the length of each leg, which are identical, k is the axial stiffness and the
force Jacobian B is given by the following formula:

B =
1√
6




1 1 −2 1 1 −2√
3 −√

3 0
√

3 −√
3 0√

2
√

2
√

2
√

2
√

2
√

2
−L/2 L/2 L L/2 −L/2 −L

−L
√

3/2 −L
√

3/2 0 L
√

3/2 L
√

3/2 0

L
√

2 −L
√

2 L
√

2 −L
√

2 L
√

2 −L
√

2




(3.18)

The eigenvalues are found from Equ.(3.12), where the mass matrix M , the stiffness matrix
K and the Jacobian B are given by Equ.(3.16) to (3.18). This leads to the characteristic
equation

Mẍ + Kx = 0 (3.19)

or, in Laplace form

(Ms2 + K)x = 0 (3.20)

Solving this matrix equation for nontrivial solutions, the natural frequencies of the system
are obtained; the translation in the z direction (bounce mode) and the rotation around
the z direction (torsional mode) are decoupled and given by:

Ω3 =
√

2Ωo Ω6 =

√
2

ρz

Ωo (3.21)

Where Ωo =
√

k/m and ρz = Rz/L is the z-axis radius of gyration normalized to the
length of the leg. For most cases of interest ρz < 1 and Ω6 > Ω3. The remaining four
modes are lateral bending and shear. Their natural frequencies occur in two identical
pairs and are given by the roots of the equation:
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(2 − Ω2

Ω2
o

)(
1

2
− ρ2

x

Ω2

Ω2
o

) − 2ρ2
c

Ω2

Ω2
o

= 0 (3.22)

Where ρx = Rx/L is the x-axis radius of gyration normalized to the leg length and
ρc = Zc/L is the mass center offset normalized by the leg length. Note that if the center
of mass is at the geometric center (ρc = 0) and if ρx = 1/2 and ρz = 1, the hexapod will
have 6 identical natural frequencies, all equal to Ω3.

3.8 Closed-loop behaviour of the ideal Stewart platform

Assume that M is the inertia matrix of the Stewart platform, K is the stiffness matrix
and the vector F represents the forces and moments acting on the payload platform in a
coordinate system consistent with x. The governing equation of motion for this hexapod
in the Laplace transform is:

Ms2x + Kx = F (3.23)

A force sensor is located in each leg of the hexapod and collocated with the actuator of
that leg, then the output equation becomes:

y = −kq + f (3.24)

Where y = (y1, ..., y6)
T is the 6 force sensor outputs, q is the vector of leg extension

from the equilibrium position, k is the strut stiffness and f = (f1, ..., f6)
T is the active

control forces produced by the six actuators respectively, here F = Bf . We know that
the relationship between the leg extension and the payload frame displacement can be
expressed as q = Jx = BT x where J and B are, respectively, the velocity and force
Jacobian matrices shown in Appendix A and discussed in [10], we have

y = −kBT x + f (3.25)

Using the decentralized integral feedback with constant gain g, the control law is:

f = −g

s
y (3.26)

Including equations (3.25) and (3.26), the closed-loop equation of motion becomes:

Ms2x + Kx =
g

s + g
kBBT x (3.27)

But we know that K = kBBT , then

[Ms2 + K
s

s + g
]x = 0 (3.28)

Transforming the former equation into modal coordinates by , x = Φz, and taking into
account the orthogonality relationships ΦT MΦ = diag(µi) and ΦT KΦ = diag(µiω

2
i ), the

characteristic equation becomes:
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(s2 + Ω2
i

s

s + g
)zi = 0 (3.29)

Therefore, in closed-loop, every mode is the solution of the characteristic equation:

s2 + Ω2
i

s

s + g
= 0 (3.30)

or

1 + g
s

s2 + Ω2
i

= 0 (3.31)

The corresponding root locus is shown in Fig.3.23. Unless the 6 natural frequencies are
identical, a given value of gain g will lead to different pole locations for the various modes
and it will not be possible to achieve the same damping for all modes [18, 36]. This is
why it is recommended to locate the payload in such a way that the spread of the modal
frequencies is minimized.

Figure 3.23: Root locus of the modes of the six-axis isolator with integral force feedback

3.9 Effect of the flexible joints

In the previous set of equations we assumed having no structural damping in the system.
Another assumption was that all the stiffness is due to the axial stiffness of the actuators
(K = kBBT ). However, in the real system the spherical joints are replaced by flexible
joints to connect the active struts to the base plates of the Stewart platform. These flexible
joints have high axial stiffness and low bending stiffness. Thus, the stiffness matrix has
an additional contribution , Ke, according to the elasticity of the joints;

K = kBBT + Ke (3.32)

and the closed-loop equation becomes
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[Ms2 + Ke + kBBT s

s + g
]x = 0 (3.33)

One can see that the asymptotic solution of Equ.(3.33) as g → ∞ (transmission zeros)
are no longer at the origin (s = 0), but they are the solution of the eigenvalue problem

[Ms2 + Ke]x = 0 (3.34)

If we denote them by ωi, the closed-loop characteristic equation becomes

1 + g
s2 + ω2

i

s(s2 + Ω2
i )

= 0 (3.35)

where the transmission zeros ωi of the system are the asymptotic natural frequencies
when the axial stiffness of the legs goes to zero and the only stiffness left in the leg is
the bending and torsion stiffness of the joints. This important result shows that the
transmission zeros are controlled by the flexible tips; The shift of the zeros away from the
origin has a substantial influence on the practical performance of the Stewart platform as
will be shown in the finite element model and the experimental results discussed below.

3.10 Finite element model of the actual Stewart platform

To predict the behaviour of the hexapod in a comprehensive way, a finite element model
(FEM) has been built and simulated using SAMCEF finite element software. The finite
element model is based on using the super element technique, retaining the most important
degrees of freedom (DOF) of each component to reduce the total number of DOF of the
system.

3.10.1 Structure of the finite element model

The flexible joints are modelled as zero-friction-zero-backlash joints where the motion
is produced by the torsion of the carbon fiber rods (using the flexible joint shown in
Fig.3.21(b)). Figure 3.24(a) shows a Computer Aided Design (CAD) view and the finite
element model of the flexible joints; nodes 13 to 17 represent the main cross, the nodes 7
to 11 represent the upper yoke and the nodes 2 to 6 represent the lower yoke. The cross
and the two yokes are modelled as aluminium beams. Four carbon fiber beams connect
the yokes to the cross; the beams are shown in thick lines between (3-13), (6-14), (7-15)
and (10-16). These carbon fiber beams are the places where the motion is tolerated in
the flexible joint; the torsion of the rods (7-15) and (10-16) cause a rotation around the
axis (15-16), similarly, the torsion of the two rods between (3-13) and (6-14) results in a
rotational motion around the axis (13-14). The lines (2-1) and (11-12) are simple beams
to connect the joint to the adjacent parts in the leg. The encircled nodes 1, 17 and 12
are the only retained degrees of freedom in this model to create the super element. The
super element of the flexible joint has been created and used to construct the leg. The
two super elements of the flexible joints in the model of the leg shown in Fig.3.24(c) are
represented by the nodes (1,25,24) and (4,22,21).
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Figure 3.24: Details of the finite element model of one leg of the hexapod showing the CAD model and
the FEM model for the flexible joint, the actuator and the complete leg
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The actuator (Fig.3.24(b)) is modelled as two membranes connected to each other by 8
rigid beams at the circumference and a rigid beam in the center connecting between points
90 and 1. The upper membrane is formed by the points 91 to 98 and the lower membrane
is formed by the points 9 to 16. The membrane assembly is connected to another plate in
the bottom by rigid bodies. The lower plate formed by the points 214 to 221 represents
the field assembly and the permanent magnet. A beam is installed between points 90 and
212 to connect the actuator to the upper flexible joint. The force sensor has not been
taken into account because it was assumed as a rigid body with high stiffness. The lower
flexible joint is connected to the actuator through point 213. To create a super element
for the actuator, points (213,1,90,212), (9 to 16) and (91 to 98) have been retained. The
created super element of the actuator is shown in Fig.3.24(c) between the nodes 1 and
4. Eventually, the model of the total leg of the Stewart platform is shown in Fig.3.24(c)
between nodes 21 and 24, only the necessary nodes are retained to show the low frequency
axial and lateral motions of the leg.
The joint model has been tested and saved as a super element, the same has been done
for the model of the actuator, saving it as another super element. The super elements
of two flexible tips and one actuator are combined producing a new super element that
represents one full leg of the hexapod including all the compliance and inertia from the
various components. The six legs are configured with respect to each other according to
the requirements of the cubic architecture and the upper mobile plate of the hexapod is
modelled and combined to the system. The lower plate is considered to be fixed to the
ground, therefore, no representation of this plate appears in the model shown in Fig.3.25.
The complete model of the Stewart platform with the upper plate and six legs (without
using the super element technique) has 127000 DOF. This number of degrees of freedom
has been reduced to 1722 DOF by using the super element technique.

Figure 3.25: Finite element model of the ULB hexapod

The first six modes and mode shapes of the FEM are shown in Fig.3.26; the first piston
(bounce) mode is at 2.9 Hz, the two tilt modes are at 3.2 Hz, the twist mode is at 6.5
Hz and, eventually, the two shear modes of the mobile plate are at 9.5 Hz. In addition to
the six responsive modes in the frequency band 2.9-9.5 Hz, local modes of the legs appear
in the frequency band 72-115 Hz. These later frequencies represent the local modes of
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Figure 3.26: Mode shapes of the first six modes as seen in the finite element model of the hexapod
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the legs due to the lateral flexibility of the membranes from one side and the shear and
torsion flexibility of the flexible joints from the other side. The shapes of these modes
vary between shear, torsion and a mixture the two shapes. Note here that using the super
element model of Fig.3.24 will probably not produce a very accurate estimate of these
local modes.
The local modes deteriorate the vibration isolation performance at high frequency by
dominating the transmissibility of the system and reducing the roll-off after the corner
frequency. The mass and stiffness distribution of the actuator play a great role in the
frequency of these modes; the reduction of the mass of the actuator and/or approaching
the lower hinging point of the leg (joint) to the center of mass of the actuator will increase
the frequencies of these modes.

3.10.2 More on the flexible joints

This section extends the discussion of the influence of the flexible joints on the closed-
loop performance of the six degrees of freedom isolator. Recall that the current design
consists of a universal joint as shown in Fig.3.24(a); the cross is made of carbon fiber with
circular cross-section. Using Equ.(3.35), the root locus of the closed-loop system with IFF
is calculated and shown in Fig.3.27, where Ωi are the open-loop natural frequencies and
the open-loop zeros ωi are the closed-loop natural frequencies of the system obtained by
approaching the axial stiffness of the legs to zero. It is clear here that the joint stiffness
results in a substantial reduction of the closed-loop performance, especially for the shear
modes (modes 5 and 6).
To further illustrate the influence of the joint on the performance of the active isolator,
Fig.3.28 shows the root locus corresponding to an alternative design in which the cross
of the universal joint is now made of aluminium with a rectangular cross section (and
h � b so as to minimize the rotary stiffness). The results of Fig.3.28 have been obtained
by finite elements; this design has not been manufactured.

3.11 Preliminary ground test

Since this hexapod is intended for space applications, it is necessary to compensate for
gravity during the ground tests. This is achieved by external suspension springs attached
to the ceiling. However, the additional spring stiffness produces a shift in the corner
frequency of the isolator.
Figure 3.29 shows the open-loop frequency response function (FRF) of one leg between
the input signal to the actuator and the conditioned signal out of the force sensor (output
of the charge amplifier). As expected, the low frequency behaviour of the open-loop FRF
exhibits alternating poles and zeros; the low frequency rigid body modes of the suspension
are between 3.5 and 8.5 Hz. A low frequency zero appears here at 3 Hz resulting from
the stiffness of the flexible joints; the existence of this zero close to the modes reduces the
performance of the active control. In the previous section we discussed extensively how
to reduce the frequency of this zero and, thus, increase the control authority.
Another band of modes appears at high frequency around 1000 Hz; these modes represent
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Figure 3.27: Root locus of the first six modes with high bending stiffness of the joints (current design)

Figure 3.28: Root locus of the first six modes with Low bending stiffness of the joints (modified design)
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Figure 3.29: Open-loop FRF measured in one of the legs between the signal to the actuator as an input
and the signal out of the force sensor as an output

the local modes of the mobile platform. The existence of these modes induces no effect on
the system because they are located far enough from the corner frequency of the system
(4.5 Hz) which results in isolating the disturbance of these modes. Besides, they are not
physically relevant, because the payload should normally be attached to the payload plate.
Note that the local modes of the legs (in the vicinity of 100 Hz) do not appear in the
open-loop FRF of Fig.3.29, which shows that they are not observable/controllable; this
is somewhat surprizing because if one leg cannot control nor observe its own local modes,
it should normally control and observe those of the adjacent legs which are orthogonal.
These local modes appear clearly in the transmissibility FRF of the isolator, as we discuss
below.

Figure 3.31 shows the transmissibility function between the vertical acceleration (z-direction)
of the lower plate and the acceleration of the upper plate in the same direction. This FRF
is taken by exciting the system seismically with a random white noise signal that has a
frequency range from 1 to 200 Hz. Looking at the open-loop curve of Fig.3.31, the trans-
mission function is expected to attenuate at -40 dB/decade, ideally, because we make
sure that there is no passive damping in parallel with the isolator. However, the roll-off
of the FRF follows the expectations until approaching the local modes of the legs where
the local dynamics become dominant. In the non-controlled (open-loop) configuration,
the low frequency rigid body modes show overshoots with peaks higher than 0 dB. To
reduce these overshoots while keeping the attenuation at high frequency, a decentralized
force feedback active control strategy is applied. Six independent local single input single
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Figure 3.30: SISO control loop in each leg of the hexapod

output (SISO) control loops with equal gains are applied as explained in Fig.3.30. Two
controllers have been tested in this ground test:

• Lag-Lead controller.

• Integral force feedback controller.

Figure 3.31 shows a typical transmissibility FRF with and without active control. One
sees that the active control eliminates the overshoot of the rigid body modes while leaving
the high frequency behaviour essentially unchanged. The influence of the local modes of
the legs on the isolator performance near 100 Hz points out the importance of damping
the transverse vibrations of the legs.
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Figure 3.31: Open and closed-loop transmissibility functions measured between the lower and upper plates
(z-direction) in the ground test using Lag-Lead compensator.

3.12 Micro-gravity parabolic flight test

3.12.1 Experiment objectives

The main difficulty faced in testing this isolation system on ground is the compensation of
the static load due to gravity, any suspension system added here introduces a new stiffness
that increases the corner frequency of the system, reducing the isolation performance and
changing the characteristics of the system. Testing such a system in zero gravity (space
station) is costly and needs exhausting work of preparations. Furthermore, because of
the high competition on testing in the International Space Station (ISS), it has been
decided to begin with a micro-gravity test. One way to test the system in micro gravity
is the parabolic flight test. The advantages of testing in a parabolic flight is that the
micro-gravity time is relatively long (22 seconds) and there is more space and possibility
to stay with the experiment and to use the equipment one needs. This experiment has
been carried out in the frame of:

The 33rd ESA parabolic flight campaign of A300 ZERO-G, in Bordeaux-Merignac, FRANCE.
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3.12.2 Experiment description

Stewart platform

The ULB six-axis isolator based on Stewart platform is equipped with six voice coil actu-
ators and six force sensors in the six legs. For the purpose of performance measurement,
six accelerometers are placed on the base plate and six other accelerometers on the upper
mobile plate (Fig.3.37). The excitation signals propagating into the system are measured
by the force sensors and fed back independently to the six actuators in the legs to sup-
press the vibrations near the rigid body principal modes. The performance is obtained in
time and frequency domains (between the accelerometers of the lower and upper plates)
using the data acquisition in the DSP card (Dspace 1103) conducted by a normal personal
computer.
The Stewart platform has been installed on an excitation pad as shown in Fig.3.32. The
excitation pad consists of two (50cm x 50cm) aluminium plates 5 mm thick separated by
four springs. Two excitation shakers are installed on the pad; one of them is to excite the
twisting and the two shear degrees of freedom and the other is to excite the piston and
the two tilting degrees of freedom. The excitation shakers are driven by the DSP through
two power amplifiers (Fig.3.33). A locking device is added to the system to connect the
base plate and the payload plate, to avoid any damage of the system during the take-off
and the landing phases of the parabolic flight.

Figure 3.32: Stewart platform mounted on top of the excitation pad

Electronic devices

Two electronic boxes are used here: the control box and the acquisition box (Fig.3.34).
All the electronics have been specially designed and built in the laboratory with the help
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Figure 3.33: Stewart platform mounted on top of the excitation pad and disturbance sources

of the electronics team of Micromega Dynamics. The first electronic box (control box)
contains six current amplifiers with 1.5A output to drive the voice coil actuators and two
other current amplifiers with 0.75A to drive the two shakers. Seven (6 + 1 spare) charge
amplifiers, to amplify the signals of the force sensors for control and acquisition purposes,
are installed inside this box too. The second box (acquisition box) contains 13 (12 +
1 spare) charge amplifiers to amplify the signals of the accelerometers for performance
calculation. One of the main problems we faced in these electronics was the offset; the
amplification process caused an offset of 2-4 mV in the amplified signal. The influence
of this offset has been found significant on the closed-loop results of the system as will
be discussed later. A normal PC (200 MMX) with a Digital Signal Processing card DSP
(Dspace 1103) installed on it and connected to an input/output box via cables. The hard
disk of the PC has been installed in vertical position to resist the high accelerations.

The experiment rack

A mechanical frame with external dimensions (80×85×108 cm) has been built to hold
the whole system (Fig.3.35(a)). The frame has been assembled out of (6×6 cm) hollow
square aluminium tubes. The Stewart platform, the electronics and the computer has
been installed and fixed to the frame as shown in Fig.3.35(b). The electronics and the
PC computer were installed on the first level, the Stewart platform with the excitation
pad on the second level and the display, keyboard and the mouse were installed on the



Active Isolation and Damping of Vibrations via Stewart Platform 79

Figure 3.34: The electronics boxes used in the flight test

Figure 3.35: (a): The mechanical frame, (b): The complete set-up installation of the experiment on the
frame
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third level. In future tests, It is advised to install the keyboard in a lower level, because
it is more comfortable for the experimenter to stay on the floor of the aircraft during
the test. Figure 3.36 shows the actual picture of the experiment installed in the aircraft
where all the external edges of the frame are covered by a protection foam to protect the
experimenters from any shock during the micro gravity test.

Figure 3.36: Photo of the experiment set-up installed in the aircraft

3.12.3 In flight procedure

There was only one experimenter to fly with this experiment. Therefore, it was very
important to prepare the experiment to be done easily and rapidly. The general tasks
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executed by the experimenter are as follows:

1. After the take-off of the airplane and before the first parabola the computer is
switched on, the accelerometers and the sensors are checked, the locking device is
unlocked and the set-up is prepared for the experiment.

2. During each parabola, the control desk program is turned on, exciting the system
and making the data acquisition automatically to be saved on the PC hard disk.

3. Between two parabolas the acquired data are saved and the accelerometers and force
sensors are checked to be ready for the next parabola.

4. During all the parabolas, the accelerations, the forces and the input voltages to the
current amplifiers are measured and registered in time domain.

5. After the last parabola, the locking device is locked again, the acquired data is
collected, packed up and analysed and the test set-up is prepared for the next day.

Tasks of the first day (see Table 3.4)

1. The six voice coil actuators have been excited one at a time and the data is acquired
to build the open-loop FRF in each leg between the voltage input to the current
amplifiers and the force output from the collocated force sensor.

2. The two shakers are excited and the data from the twelve accelerometers is acquired
to assess the open-loop transmissibility of the isolator between the lower and the
upper plates.

3. Keeping the excitation on, a Lag-Lead controller has been applied and the control
loops are closed in a decentralized manner. The signals of the twelve accelerometers
are registered to assess the closed-loop transmissibility of the isolator between the
lower and the upper plates.

Parabola Task
1 Calibration of the program
2, 3, The two shakers are excited and the 12 acceleration
12, 13, signals are acquired in open-loop (without applying the control)
22, 23 to build the transmissibility FRF.
4, 5, The loop is closed with Lag-Lead compensator (gain=200)
14, 15, and the 12 acceleration signals are acquired in closed-loop
24, 25 (with applying the control) to bulid the transmissibility FRF.
6-11, The six actuators are excited one at a time
16-21, and the force and voltage signals are acquired to build
26-31 the FRFs in each leg between the actuator and the force sensor.

Table 3.4: Program of tasks executed during the first day of the flight test
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Tasks of the second day (see table 3.5)

In the second day, the same procedure of the first day has been repeated but with changing
the control strategy. A sky-hook (integral force feedback) control technique has been used
here to compare the results of the two control strategies.

Parabola Task
1 Calibration of the program
2, 3, The two shakers are excited and the 12 acceleration
12, 13, signals are acquired in open-loop (without applying the control)
22, 23 to build the transmissibility FRF.
4, 5, The loop is closed with Integral compensator (gain=60)
14, 15, and the 12 acceleration signals are acquired in closed-loop
24, 25 (with applying the control) to bulid the transmissibility FRF.
6-11, The six actuators are excited one at a time
16-21, and the force and voltage signals are acquired to build
26-31 the FRFs in each leg between the actuator and the force sensor.

Table 3.5: Program of tasks executed during the second day of the flight test

Tasks of the third day (see Table 3.6)

In the third day, it was foreseen to test the isolator with a payload (optical equipment)
but because of the changes in the characteristics of the expected payload it was impossible
to install the equipment on top of the isolator. This change led us to repeat the same
experiment in the third day sharing the time between the two control techniques and
varying the control gain taking three values of gain for each technique.

Parabola Task
1 Calibration of the program
2, 3, 4, The two shakers are excited and the 12 acceleration
14, 29, signals are acquired in open-loop (without applying the control)
30, 31 to build the transmissibility FRF.
5-7 The loop is closed with Integral compensator (variable gain=40,50,60)
and and the 12 acceleration signals are acquired in closed-loop
14-16 (with applying the control) to bulid the transmissibility FRF.
17-19 The loop is closed with Lag-Lead compensator (variable gain=100,150,200)
and and the 12 acceleration signals are acquired in closed-loop
20-22 (with applying the control) to bulid the transmissibility FRF.
8-13 The six actuators are excited one at a time
and and the force and voltage signals are acquired to build
23-28 the FRFs in each leg between the actuator and the force sensor.

Table 3.6: Program of tasks executed during the third day of the flight test
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3.12.4 Performance assessment calculation

Six accelerometers have been installed on the lower plate of the Stewart platform and six
other accelerometers on the upper plate as shown in Fig.3.37. The numbers {1, 2, 3, 4, 5, 6}
correspond to the accelerometers installed to measure the acceleration in the three trans-
lation directions x, y and z and the three rotations around these axes, respectively. The
translations are measured directly while the rotations are calculated by subtracting the
signals. For instance, to get the rotation around the x-axis, we subtract the signal of 3
from the signal of 4. Similarly, to calculate the rotation around the y-axis we subtract the
signal of 3 from the signal of 5, and the rotation around z-axis is obtained by subtracting
the signal of 2 from the signal of 6 and the values are normalized to the distance of the
sensor from the reference frame {x, y, z}.

Figure 3.37: Configuration of the twelve accelerometers fixed to the lower and upper plates

Figure 3.38 shows the configuration of each leg with respect to the upper and the lower
plates. The vector x1 corresponds to the vector of accelerations of the lower ends of
the six legs where each acceleration is in the direction parallel to the corresponding leg.
The vector x2 corresponds to the vector of accelerations of the upper ends of the six legs
where each acceleration is in the direction of the corresponding leg. In order to calculate
the performance of the system, one can transform the readings of the accelerometers
configured as in Fig.3.37 into accelerations parallel to the legs (Fig.3.38).
Assume that y2 is the (6 × 1) vector consisting of the acceleration readings measured
by the six accelerometers on the upper plate {7, 8, 9, 10, 11, 12} at a specific frequency
and u1 is the (6 × 1) vector consisting of the acceleration readings measured by the six
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accelerometers on the lower plate {1, 2, 3, 4, 5, 6} at the same frequency then,

y2 = Pu1 (3.36)

where P is the (6 × 6) transmissibility matrix having the six lower accelerations as inputs
and the six upper ones as outputs measured at the same frequency. The accelerations on
the lower plate u1 can be transformed into accelerations on the lower ends and parallel to
the six legs x1 by the equation

x1 = βu1 (3.37)

where β is a (6 × 6) transformation matrix. β−1 can be estimated from the geometry and
it reads
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(3.38)

The accelerations on the upper plate y2 can be transformed into accelerations on the
upper ends and parallel to the six legs x2 by the equation

y2 = ψx2 (3.39)

where ψ is a (6 × 6) transformation matrix. ψ can be estimated from the geometry and
it reads

ψ =
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(3.40)

Substituting the equations (3.37) and (3.39) into Equ.(3.36) results in the transmissibility
matrix between the accelerations of the lower ends of the legs x1 and the accelerations of
the upper ends of the legs x2

x2 = Gx1 = ψ−1Pβ−1x1 (3.41)

The transmissibility matrix G then reads

G = ψ−1Pβ−1 (3.42)

The total performance of the system is then calculated by estimating the 6-axis trans-
missibility transfer matrix that can be estimated over the desired frequency using the
Frobenius norm [20, 21, 32]
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Figure 3.38: Configuration of the displacements of one leg with respect to the upper and lower plates

F (ω) = (
6∑

k=1

6∑
l=1

|Gkl(jω)|2)1/2 (3.43)

This results in a single frequency response that represents the norm of the transmissibility
of the six-axis isolator.
Another way to assess the performance is to calculate the H2 norm as follows [37]

‖G‖2
2 =

1

2π

∫ +∞

−∞
trace[G(jω)G∗(jω)]︸ ︷︷ ︸

T

dω (3.44)

The H2 norm is interesting here because it is, in fact, the root mean square (rms) sum of
the norms of the individual modes.

3.12.5 Experimental results

The open-loop FRF between the voltage input to the current amplifier, used to drive the
actuator, and the signal output of the charge amplifier, used to condition the signal of the
force sensor, in each leg separately has been calculated from the measured signals in time
domain (using a white noise excitation). The procedure was repeated in all the six legs.
Figure 3.39 shows a measured FRF between the actuator and the force sensor in one of
the legs; this FRF shows two bands of modes: the first band ranges from 3.5 to 8.5 Hz and
represents the rigid body modes of the mobile plate and the second band of modes appears
between 600 and 1000 Hz and represents the bending modes of the triangular upper plate
of the Stewart platform. The zero appearing at 3 Hz is due to the bending stiffness of the
flexible joints and limits the control authority of the system. Another band of resonances
exist between 60 and 110 Hz but as already observed in the preliminary ground test, it
does not appear in this FRF because these latter frequencies are the local lateral modes
of the hexapod legs; which are neither observable by the force sensor nor controllable
by the actuator of that leg. Again, this is surprizing because it was expected from the
force sensor of one leg to observe the lateral modes of the adjacent orthogonal legs. More
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details about these modes will be shown in discussing the performance transmissibility
results.

Figure 3.39: Open-loop FRF between the actuator and the force sensor in one leg of the hexapod

The isolator has been tested first with a Lag-Lead compensator. Figure 3.40 shows the
transmissibility FRF between the signal of the accelerometer (#3) fixed in the z-direction
at the lower plate and the accelerometer fixed at the upper plate in the same direction
(#9). The curve indicated by (open-loop) is the z-direction transmissibility in open-loop
configuration while the curve called (closed-loop) is the transmissibility with applying the
Lag-Lead control technique. Figure 3.41 shows the part called T of the H2 norm of the
transmissibility with and without control calculated as explained previously in Equ.(3.44).
The isolator has been experimented again by using a sky-hook control technique (Integral
force feedback). This control technique is based on using a simple integration of the
measured force signals and feeding the signal back to the voice coil actuator. The stability
robustness property of this control strategy have been stressed in chapter 2. A high pass
filter has been added at low frequency to avoid the low frequency signals from propagating
into the system and to prevent the integration of the static component coming from
the offset of the electronics. Figure 3.42 shows the transmissibility FRF between the
accelerometer 3 fixed in the z-direction at the lower plate and accelerometer 9 fixed at the
upper plate in the same direction. The curve indicated by (open-loop) is the z-direction
transmissibility without control while the curve called (closed-loop) is the transmissibility
with applying the sky-hook control technique. Figure 3.43 shows the part called T of
the H2 norm of the transmissibility with and without control calculated as explained in
Equ.(3.44).
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Figure 3.40: Transmissibility FRF between the lower and the upper plates in vertical direction; without
control (open-loop) and with applying Lag-Lead compensator (closed-loop)

Figure 3.41: Six-axis transmissibility FRF between the lower and the upper plates; without control (open-
loop) and with applying Lag-Lead compensator (closed-loop)
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Figure 3.42: Transmissibility FRF between the lower and the upper plates in the vertical direction; without
control (open-loop) and with applying integral force feedback controller (closed-loop)

Figure 3.43: Six-axis transmissibility FRF between the lower and the upper plates; without control (open-
loop) and with applying integral force feedback controller (closed-loop)
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3.12.6 Discussion of the results

In spite of the short duration of the test (20 seconds), the results were encouraging; the
quality of the bode plots was good and less noisy than we expected (see Fig.3.43). Using
force feedback control strategies succeeded in removing the overshoots at low frequency
while having guaranteed stability. The integral force feedback proved to be more efficient
than the Lag-Lead controller especially at high frequency where it could even contribute
in damping the local modes as can be seen in Fig.3.43.
Recall that the ideal transmissibility functions for all the degrees of freedom consists of
a unit transmission (0 dB) at low frequency below the corner frequency of the isolator
and a −40 dB/decade attenuation rate at high frequency. Unfortunately, the high fre-
quency attenuation has been deteriorated by the local lateral modes of the legs of the
hexapod. These lateral modes are a mixture of shear and bending resonances formed by
the heavy masses of the voice coil actuators and the flexibility of the guiding membranes
and the flexible joints in each leg. The local dynamics of the legs are orthogonal to the
axial direction of the legs, which makes them neither observable by the force sensors nor
controllable by the actuators. There are three suggested solutions for this problem:

• Adding visco-elastic material to add some passive damping to the lateral motion of
the legs. This material can be added to the flexible joints or to the actuators or both.

• Redesigning the actuators to have lighter weight and higher lateral stiffness of the
membranes.

• Moving the center of gravity of the leg towards the bending point of the flexible
joints to reduce the effect of the inertia of the legs.

Looking at Fig.3.41, one can see that near the rigid body modes of the upper plate (up
to 10 Hz) the transmissibility has been reduced remarkably by the effect of the active
control. This controller is more or less in line with the expectations (from chapter 2); it
caused a reduction of the corner frequency and produced a substantial overshoot at low
frequency.
The integral force feedback technique (Fig.3.43) proved better than the Lag-Lead com-
pensator in terms of damping of the low frequency modes, and even the high frequency
lateral modes are influenced and reduced, even though, this does not change the fact that
the high frequency lateral modes are still problematic.

3.12.7 Remarks

At low frequency, the acquired signals are poor and noisy and there is a lack of information
which can be referred to:

1. The lack of sensitivity of the accelerometers at low frequency which reduces the
coherence between the excitation at the lower plate and the response of the upper
one. Figure 3.44 shows the coherence between the lower and the upper plates in the
vertical direction. This figure shows that the coherence is very bad below 3 Hz.
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2. The electronics have been manufactured in house and they contain a little amount
of the offset (2 - 4 mV). There are two sources of the offset; the first comes from
the charge amplifiers used for the force sensors and the second is from the power
amplifiers used to drive the control actuators. The offset coming from the charge
amplifiers has more influence than the one coming from the power amplifiers.

3. The sampling frequency in the DSP was limited to 2000 Hz by the large number of
inputs, outputs and calculations done by the DSP to run the control software of the
system.

4. The time available to acquire data is very short (20 seconds) which makes it difficult
to have better transfer functions.

5. The aircraft produces very high noise at various frequencies that disturb the mea-
surement.

Figure 3.44: Coherence between the lower and the upper plates in the vertical direction
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Chapter 4

Systems with piezoelectric actuators

4.1 Introduction

The main requirement on the supporting trusses in many space and ground applications is
stability rather than precision. This specification on the structural stability for scientific
space missions, combined with the requirement for lightweight structures, has triggered
extensive researches in the area of active damping of flexible structures. These have led
to numerous solutions, most of them are based on the integration of SMART actuators
and sensors in the structure itself. ASL is one of the pioneers in active strut control;
several methods have been investigated by the ASL for the active damping of mechanical
structures:

1. Replacing some bars of the truss by active struts [1, 2].

2. Using active tendons [3, 4].

3. Using six-axis damping interface based on Stewart platform (will be discussed in
details in this chapter).

In this chapter, we present some systems with stiff piezoelectric actuators. The main idea
is to show the use of active struts for the purpose of active damping of vibrations; an
active strut consists of a piezo stack providing a displacement actuator and a collocated
force sensor (Fig.1.9 shows three options of active struts). The active strut configuration
can be used for damping in connection with the Integral Force Feedback (IFF) controller
for various system architectures: Active truss [1], active tendon control of cable struc-
tures [5] and active support [6]. Later, we will emphasize that if we change the control
law to Proportional plus Integral (PI), the system can also be used for stiffness reduction.
This chapter will also discuss the design of a new six-axis active damping and precision
pointing interface based on the cubic Stewart platform using piezoelectric actuators.
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4.2 Active strut control

The research on active strut in the ASL began in the late 80’s. The first mechanical
structure used for this purpose is the active truss shown in Fig.4.1. Figure 1.8 shows a
schematic of a general truss with some of its members replaced by active struts; each of
them consists of a piezoelectric linear actuator colinear with a force sensor [2].

Figure 4.1: ASL active truss

If k is the stiffness of the active strut and δ is the extension of the piezo stack, the
piezoelectric loads applied axially to both ends of the active strut are (Fig.1.8)

p = kδ (4.1)

Assuming no damping in the structure, the governing equation of motion of the truss
excited by one single actuator is

Mẍ + Kx = bkδ (4.2)

where M is the global mass matrix of the truss, K is the global stiffness matrix and b is
the influence vector showing the location of the active strut in the global coordinates of
the truss. Knowing that the total extension q is the projection of the displacement on the
active strut (q = bT x), the output signal of the force sensor, proportional to the elastic
extension of the truss, is
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y = k(bT x − δ) (4.3)

Applying the IFF active control technique between the signal output of the force sensor
and the extension of the piezo actuator, the controller equation reads

δ =
g

ks
y (4.4)

Note the positive sign in the feedback law. Neglecting the hyteresis between the voltage
and the displacement of the piezo actuator, Equ.(4.4) can be considered between the signal
output of the force sensor and the signal input to the piezoelectric actuator. Combining
equations (4.3) and (4.4), we get

δ =
g

s + g
bT x (4.5)

Substituting δ into Equ.(4.2) and taking the Laplace transform, we get the closed-loop
characteristic equation

[Ms2 + K − g

s + g
(bkbT )]x = 0 (4.6)

The asymptotic solution of this characteristic equation as g → ∞ results in the asymptotic
values of the closed-loop poles that are equal to the zeros of the open-loop system; these
are solutions of the eigenvalue problem (Ms2 + K − bkbT )x = 0, corresponding to the
natural frequencies of the truss when the active strut has been removed.

Figure 4.2: Root locus for mode i

Changing the variables by x = Φz, Equ.(4.6) can be transformed into modal coordinates
to estimate the modal damping. Normalizing the mode shapes with ΦT MΦ = I and
taking into account that ΦT KΦ = diag(Ω2

i ) = Ω2, we get
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Figure 4.3: Frequency response between A and B, with and without control

[Is2 + Ω2 − g

s + g
ΦT (bkbT )Φ]z = 0 (4.7)

Assuming that the matrix ΦT (bkbT )Φ is diagonally dominant and neglecting the off-
diagonal terms

ΦT (bkbT )Φ ≈ diag(νiΩ
2
i ) (4.8)

where νi is the fraction of strain energy in the active strut when the truss vibrates accord-
ing to the mode i (more details can be found in [2]). Substituting Equ.(4.8) into (4.7),
we get

s2 + Ω2
i −

g

s + g
νiΩ

2
i = 0 (4.9)

For a small gain g, one can assume a solution of s ≈ −ξiΩi ± jΩi where ξi is the damping
ratio of mode i, this results in

ξi =
gνi

2Ωi

(4.10)

Denoting ω2
i = Ω2

i (1 − νi), the predicted root locus of the closed-loop poles reads

s2 + Ω2
i −

g

s + g
(Ω2

i − ω2
i ) = 0 (4.11)

or
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1 + g
s2 + ω2

i

s(s2 + Ω2
i )

= 0 (4.12)

It is shown in Fig.4.2; with a gain g = Ωi

√
Ωi/ωi, the maximum modal damping is given

by

ξmax
i =

Ωi − ωi

2ωi

(4.13)

Figure 4.3 shows some experimental results in the frequency domain for the first two
modes of the truss shown in Fig.4.1. The results show the FRF between an impulse force
at mid height of the truss and the acceleration at the top of the truss.
One interesting application of active struts is the active control of vibrations of high
precision machines (i.e. Lithography). The University of Twente in cooperation with
ASML has developed an interface for this purpose and called ”Smart Disk” [6]. It is
based on the principle of active struts described above and is used to support the lens of
the new generation of lithography machines.

4.3 Active tendon control

The active tendon control of cable structures has been investigated at ASL for more than
5 years [3, 4, 5, 7, 8]. The control concept is explained in Fig.4.4; the tendon consists of a
piezoelectric linear actuator colinear with a force sensor. The control law is also IFF. As
for the active truss described above, the closed-loop performance of the control system
can be predicted from the results of two modal analyses; one performed with all the cables
provides the open-loop poles (Ωi) and another one, performed after removing the active
cables, provides the zeros (ωi), and the closed-loop poles follow, once again, the root locus
shown in Fig.4.5. The active tendon control has been applied to a laboratory model of
space truss and to cable stayed bridges too [7, 8, 9].

Figure 4.4: Active damping of cable structures
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Figure 4.5: Root locus of the closed-loop poles for active tendon control

4.4 Frequency reduction

In the previous section, it has been shown that the active strut in connection with IFF
control technique can be used for active damping of vibrations. In this section, we will
show that the same concept of active strut can be used to reduce the frequency of a struc-
ture by replacing the IFF with a PI feedback control. As an application for the frequency
reduction, one can imagine adaptive structures that can change their resonance frequency
instantaneously to avoid being excited when the excitation frequency approaches a reso-
nance.
Consider the single-axis system connecting two rigid bodies shown in Fig.4.6; the dis-
turbance source m and the sensitive payload M are connected by a force sensor and a
piezoelectric actuator (represented by its elongation δ and spring stiffness k). The gov-
erning equation of motion for this system in Laplace transform is:

Ms2xc = −ms2xd = k(xd − xa) = F (4.14)

and

δ = xc − xa (4.15)
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Figure 4.6: Single-axis isolation using piezoelectric stiff actuator

The open-loop FRF between the extension of the piezo stack in the piezoelectric actuator
δ and the output of the force sensor F reads

F

δ
= k

Mms2

Mms2 + k(M + m)
(4.16)

Applying a force feedback control strategy using a proportional plus integral compensator,
the control law reads

δ =
g

ks
(1 + as)F (4.17)

Here ga is the proportional gain and g is the integral gain. The root locus for the closed-
loop poles of the this system is shown in Fig.4.7; it shows that increasing the loop gain
decreases the frequency of the closed-loop poles. If the proportional term is used alone,
the poles will move on the imagiary axis towards the origin but this means the risk of
destabilizing the system at any instant. The use of the integral controller here pushes
these poles deeper to the left half plane increasing the stability.

Figure 4.7: Root locus of a single-axis system with piezoelectric actuator and PI controller
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From the analytical calculation, the intermediate displacement xa is

xa =
sxc + g(as + 1)xd

s + g(as + 1)
(4.18)

From the foregoing equations, one can calculate the transmissibility FRF between the
disturbance displacement and the payload displacement, which is equal to

xc

xd

=
1

s2[(1 + ga)/ω2
n] + s[g/ω2

n] + 1
(4.19)

Equ.(4.19) implies that the corner frequency ωc of the system is determined by the pro-
portional gain of the compensator

1

ω2
c

=
1 + ga

ω2
n

(4.20)

The damping of the system is determined by the gain g of the compensator

g

ω2
n

=
2ξ

ωc

(4.21)

If ωn is much larger than ωc then (ω2
n/ω

2
c ) ≈ ga and

ga

k
=

1

Mω2
c

=
1

k∗ (4.22)

Here (1/k∗) is the closed-loop flexibility of the system and is proportional to the gain.
From the foregoing analysis, one can see that the closed-loop stiffness of the system is
inversely proportional to the control gain; in other words, if one increases the proportional
gain, the stiffness is reduced.

4.5 Experimental verification of frequency reduction

In this section, we discuss, experimentally, using the proportional plus integral (PI) con-
troller to reduce the frequency of the structure as discussed theoreticaly in the previous
section.
Consider the experimental set-up shown in Fig.4.8. It consists of two masses connected
to each other by an active member; the active member consists of a piezoelectric actuator
and a force sensor. Using an external shaker, the system is excited with a random signal
ranging from 1 to 800 Hz and the transmissibility FRF between the displacement of
the disturbance source body and that of the payload mass is measured (Fig.4.9). The
resonance of the system is found at 500 Hz.
A feedback system with a PI control law is applied to the system and the same FRF
measured again. Figure 4.9 shows the two measured FRFs: the open-loop (before stiffness
reduction) and the closed-loop (after stiffness reduction). The natural frequency of the
system has been reduced 50%; from 500 Hz to 250 Hz. The maximum reduction has been
obtained by increasing the gain of the proportional part of the compensator, but this
leads to the risk of walking along the imaginary axis which can lead to instability if the
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surrounding conditions change slightly. Thus, there is a need to increase the integral gain
too at the same time to increase the stability margin of the system.
In the same context, another expriment has been done. The same control technique has
been applied to the truss structure shown in Fig.4.1. The signals of the two force sensors,
in the two active struts of the truss, have been filtered using the (PI) compensator in
a Digital Signal Processor (DSP) and fed back to the piezoelectric actuators. The two
control loops have been closed independently, forming a decentralized controller. Again,
by increasing the proportional gain, the frequency of the active struts in the structure has
been reduced significantly. Figure 4.10 shows the first two modes of the FRF between

Figure 4.8: Experimental SDOF set-up with a piezoelectric actuator
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Figure 4.9: (xc/xd) Transmissibility of the SDOF system before and after frequency reduction

Figure 4.10: (F/δ) FRF shows the stiffness reduction in the struts of the active truss structure fo Fig.4.1
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the voltage input to one of the actuators and the force output from the collocated force
sensor. The open-loop FRF (before stiffness reduction) shows that the two modes are
located at 8.8 and 10.5 Hz. Using this control technique, they have been moved to 2.6
and 5 Hz, respectively.
A potential application of this is the adaption of structural resonances to a narrow band
disturbance of variable frequency.

4.6 A piezoelectric Stewart platform

Referring to the discussion in the begining of chapter 3, Fig.3.1 expresses the different
configrations and applications of Stewart platforms. Besides the ability of using it as
an isolation mount, Stewart platform can be used as an active damping mount and as
a structural active element. To fulfil these applications, the IAI has designed a Stewart
platform with magnetostrictive (Terfenol-D) actuators and cubic configuration in the early
90’s [10] (see Fig.4.11).
The potential applications for the piezoelectric Stewart platform are the following:

1. Precision pointing device.

2. Vibration isolation if combined with feedforward control.

3. Active damping interface and a possible combination with pointing.

In this latter case, from previous discussion, the idea is to use the same strategy as in
section 4.2 and to have strain energy concentration in the hexapod legs which would
guarantee controllability on the modes as discussed in Equ.(4.10) and Fig.4.2.
A brief review of the current designs of stiff Stewart platforms is discussed in the next
section showing a comparison between the different designs. The design, manufacturing
and applications of the ULB piezoelectric Stewart platform [11, 12, 13, 14, 15] is then
discussed in details.
Table 4.1 shows a comparison between some of the current stiff hexapods. One can notice
here that there is a wide range of actuators used to operate these Stewart platforms,
depending mainly on the stroke requested by the application. Piezoelectric actuators
can give good accuracy in pointing but their stroke is limited, to get long stroke for the
hexapod, rotary or DC motors can be used (i.e. CSA and PI) but the drawback is that the
resolution that can be achieved by the pointing system is reduced. Stiff Stewart platforms
are not preferred in vibration isolation unless combined with feedforward control, but they
are considered as appropriate generic active damping interfaces that can damp structures
very effectively if located in the appropriate manner. The hexapod produced at ULB-ASL
has become a commercial product [16]. It has been tested as a damping interface for a
truss structure and gave good results in terms of active suppression of vibrations.
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Figure 4.11: Intelligent Automation Inc. Hexapod [10]

Figure 4.12: CSA Engineering stiff Hexapod [17]
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Figure 4.13: ONERA/MATRA (SEPTRA) Hexapod [18]

Figure 4.14: MATRA/CSEM (MAIS) Hexapod [19]
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Figure 4.15: Physik Instruments Hexapod [20]

4.7 ULB piezoelectric Stewart platform

Figure 4.16 shows a picture of the ULB piezoelectric Stewart platform; Fig.4.16(a) shows
the complete Stewart platform where the connectors are the inputs to the actuators and
the wires are the outputs of the sensors; Fig.4.16(b) shows the hexapod with the upper
plate removed to show the details and configuration of the legs.

The hexapod consists of two parallel plates connected to each other by six active legs.
The legs are mounted in such a way to achieve the geometry of cubic configuration.
Each active leg consists of a force sensor (B&K 8200), an amplified piezoelectric actuator
(Cedrat Recherche APA50s) and two flexible joints as shown in Fig.4.17. In the ideal
situation, the hexapod needs to be hinged using spherical joints, but to avoid the problem
of friction and backlash, flexible tips are used instead of spherical joints. These flexible
tips have the following properties: zero friction, zero backlash, high axial stiffness and
relatively low bending stiffness. It will be shown in the next section that the bending
stiffness of these joints makes a limitation for the active control authority, because it shifts
the transmission zeros which decreases the closed-loop performance (a similar behaviour
was observed with the vibration isolator in the previous chapter).
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Figure 4.16: The stiff Stewart platform (ULB design); (a) complete hexapod, (b) the hexapod with the
upper plate removed
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Figure 4.17: The active leg of the stiff Stewart platform (ULB design)

4.8 Governing equations

Consider the piezoelectric hexapod integrated in a structure and let M and K be the
mass and stiffness matrices of the global passive system (structure + hexapod). Including
the equivalent piezoelectric forces, the dynamic equation governing the system reads

Ms2x + Kx = Bkδ (4.23)

where B is the force Jacobian matrix, k is the axial stiffness of the leg and δ = (δ1, ..., δ6)
T

is the vector of the 6 unconstraint displacements of the piezoelectric actuators; kδ repre-
sents the equivalent piezoelectric force in the leg as expressed in Equ.(4.1). As explained
before, there is a force sensor located in each leg of the hexapod and collocated with the
actuator. The corresponding output equation reads

y = k(q − δ) (4.24)

where y = (y1, ..., y6)
T is the 6 force sensor outputs and q = (q1, ..., q6)

T is the vector of leg
extensions from the equilibrium position. Taking into account the relationship between
the leg extensions and the payload frame displacements; q = BT x, the output equation
become:

y = k(BT x − δ) (4.25)

Using the decentralized IFF with constant gain g, the control law is:
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δ =
g

ks
y (4.26)

(note here that this is a positive feedback). This leads to the closed-loop equation of
motion:

[Ms2 + K − g

g + s
BkBT ]x = 0 (4.27)

The contribution of the hexapod to the general stiffness matrix of the system, K, includes
the axial stiffness k of the legs and also some bending stiffness due to the flexible tips
connecting the legs to the base plates. Without this parasitic stiffness, the transmission
zeros of the system, ωi (the asymptotic solution of the closed-loop equation, Equ.(4.27),
as g → ∞) would be located at the origin (removing one leg would produce a mechanism).
With the bending stiffness due to the flexible tips, these transmission zeros will be moved
away from the origin; there will be no more rigid body modes to appear when the axial
stiffness of the legs is removed. The zeros are the solution of the eigenvalue problem
[Ms2 + K − BkBT ]x = 0 corresponding to the axial stiffness of the leg being removed
from K.

To transform Equ.(4.27) into modal coordinates, one substitutes x = Φz and, assuming
that the mode shapes are normalized according to ΦT MΦ = I and that ΦT KΦ = Ω2,
Equ.(4.27) becomes:

[s2 + Ω2 − g

g + s
ΦT BkBT Φ]z = 0 (4.28)

From the analysis explained more deeply in [2] we have:

ΦT (BkBT )Φ ≈ diag(νiΩ
2
i ) (4.29)

where νi is the fraction of modal strain energy in the active legs when the structure
vibrates according to mode i. As in section 4.2, the frequencies of the transmission zeros
can be denoted as:

ω2
i = Ω2

i (1 − νi) (4.30)

and the characteristic equation can be written similarly as:

s2 + Ω2
i −

g

g + s
(Ω2

i − ω2
i ) = 0 (4.31)

or

1 + g
(s2 + ω2

i )

s(s2 + Ω2
i )

= 0 (4.32)
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4.9 Applications of the piezoelectric Stewart platform

4.9.1 High precision pointing device

An interesting application for the piezoelectric Stewart platform is positioning with high
resolution; such a device can be used for the purpose of fine pointing of optics, telescopes
and other precision devices [21, 22]. The kinematics of the hexapod has been discussed
in details in chapter 3 and appendix A.
The maximum stroke of the piezoelectric actuator used in our design is 55µm; for symmet-
ric operation, an offset voltage is applied so that the actual stroke is ±27.5µm. Following
the discussion of section 3.4.2, table 4.2 shows the maximum pure translations and rota-
tions in the different degrees of freedom. δqi is the elongation in the ith leg given in µm
and δχ are the maximum pure translations (in µm) and rotations (in µrad) travelled by
the center of the upper plate (see Fig.3.3 for reference axes and strut numbering).

δχ δq1 δq2 δq3 δq4 δq5 δq6

xpure = 33.7 13.75 13.75 -27.5 13.75 13.75 -27.5
ypure = 38.9 27.5 -27.5 0 27.5 -27.5 0
zpure = 47.5 27.5 27.5 27.5 27.5 27.5 27.5
θx

pure = 498 0 0 27.5 27.5 -27.5 -27.5
θy

pure = 431 -27.5 -27.5 13.75 13.75 13.75 13.75
θz

pure = 350 27.5 -27.5 27.5 -27.5 27.5 -27.5

Table 4.2: Maximum pure translations (in µm) and rotations (in µrad) travelled by the mobile plate and
the corresponding leg configuration (see Fig.3.3 for reference axes and strut numbering)

When the motion is a combination of several directions, a numerical technique is used
to calculate the different configurations that give the maximum motions in the six d.o.f.
of the platform. The maximum translations (in µm) and rotations (in µrad) and the
corresponding leg configurations are shown in table 4.3. Note that the maximum motions
shown in this table are not pure motions but they are coupled with other motions at the
same time.

δχ δq1 δq2 δq3 δq4 δq5 δq6

xmax = 45 -27.5 -27.5 -27.5 27.5 27.5 -27.5
ymax = 51.5 27.5 -27.5 -27.5 27.5 -27.5 27.5
zmax = 47.5 27.5 27.5 27.5 27.5 27.5 27.5
θx

max = 650 -27.5 27.5 27.5 27.5 -27.5 -27.5
θy

max = 575 -27.5 -27.5 -27.5 27.5 27.5 -27.5
θz

max = 350 27.5 -27.5 27.5 -27.5 27.5 -27.5

Table 4.3: Maximum coupled translations (in µm) and rotations (in µrad) travelled by the mobile plate
and the corresponding leg configuration (see Fig.3.3 for reference axes and strut numbering)

The signal to noise ratio of commercial power electronics for piezo actuators is about 80
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dB [23]. As the position noise is linearly proportional to the electrical noise, the resolution
of piezoelectric actuator is about 0.01% of its stroke. In present case, the piezo noise for
a 55µm stroke actuator should be 5.5nmrms. As the pointing commands in the hexapod
are transferred into motion of the upper plate, the noise is transferred too. To find the
RMS values of the noise on the platform, we can use

δxi =
√∑

j

(J−1
ij )2δq2

j (4.33)

where δxi is the transferred noise in the ith direction of motion of the platform, δqj is
the noise produced by the actuator in the jth leg and Jij is the Jacobian value relating
them (δqj = Jijδxi). Table 4.4 gives the resolution of the platform in the six degrees of
freedom.

δxi Resolution

xnoise 4.5 nmrms

ynoise 5.2 nmrms

znoise 3.9 nmrms

θx
noise 66.4 nradrms

θy
noise 57.5 nradrms

θz
noise 28.7 nradrms

Table 4.4: Resolution of the six degrees of freedom of the platform

4.9.2 Active damping interface

The test set-up consists of mounting the truss of Fig.4.1 on the upper plate of the hexapod
(Fig.4.18). The active struts of the truss are not used in this experiment; the aim is to
introduce active damping to the flexible modes of the structure using only the elongation
of the legs of the Stewart platform. The mode shapes of the global system are shown
in Fig.4.19; the modal fraction of strain energy (computed from finite element results) is
given in table 4.5. νi is the sum of modal fractions of strain energy in the six legs of the
hexapod when the structure vibrates according to the ith mode. Except for mode 3, all
these values are fairly large, which should result in high control authority of the active
damping.

A decentralized IFF control has been implemented on a DSP board with identical gains
for all loops. Figure 4.20 shows experimental results in time history; it shows the signal
of one of the force sensors located in the legs, in the following sequence of events: (i) an
impulse load is applied to the passive structure, we then observe the free response in the
open-loop, (ii) the control is switched on and we observe the free response in closed-loop.
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Figure 4.18: Passive truss mounted on the active damping interface

mode Frequency νi

1 3.82 Hz 65.2 %
2 4.21 Hz 56.7 %
3 45.35 Hz 2.7 %
4 65.62 Hz 14.9 %
5 78.97 Hz 14 %
6 87.44 Hz 68 %

Table 4.5: Modal fraction of strain energy in the hexapod legs corresponding to the first six modes of the
structure
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Figure 4.19: Mode shapes of the test structure (finite element calculations)
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Figure 4.20: Time response with and without control for impulse excitation

Figure 4.21: FRF between the voltage input to the actuator and the signal output of the force sensor in
one of the legs
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The FRFs, with and without control, shown in Fig.4.21 are obtained between the pertur-
bation signal applied to the piezo actuator of one leg and the signal of its collocated force
sensor. One can see that fairly high damping ratios can be achieved for the low frequency
modes (4-5 Hz) but also a significant damping is obtained for the high frequency modes
(40-90 Hz). As expected from table 4.5, the control influence on the torsion mode is
limited. An additional contribution to the lack of damping is the bending stiffness of the
flexible tips. The experimental root locus for the first two modes is shown in Fig.4.22 and
is compared to the estimated theoretical root locus from Equ.(4.32); Ωi and ωi are the
resonance and transmission zeros of the experimental FRF, respectively. ωi have been
found, experimentally, as the asymptotic values of the closed-loop poles when the gain
g → ∞.

Figure 4.22: Experimental root locus compared to the theoretical estimation
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Chapter 5

Conclusions and future work

5.1 Summary and conclusions

Chapter 1 introduces the motivation of this research and the applications on ground as
well as in space. Vibration isolation objectives are discussed, in general, and some iso-
lation architectures are shown. Active damping of structures is introduced here showing
the possibility to use the piezoelectric Stewart platform as an active damping interface
between truss structures.

Chapter 2 discusses single-axis systems using soft actuators. After a brief review of the
passive isolation, various active control techniques are discussed, showing the robustness
of the integral force feedback over the sky-hook damper when the isolated body is flexible
relative to the isolation mount. The stability of the IFF controller for an isolator connect-
ing arbitrary flexible structures has been established. Two other techniques of vibration
isolation have been discussed: using seismometers and using intermediate passive mount.

Chapter 3 addresses the general problem of six degrees of freedom vibration isolation.
The architecture and characteristics of the Stewart platform are discussed and the advan-
tages of the cubic architecture are stressed. After a review of on-going projects in foreign
teams, the detailed design of ULB Stewart platform is described and the contribution of
the various components to the performance of the global system is discussed. The flexible
joints connecting the legs to the base plates are pointed out as particularly important,
because they control the open-loop zeros of the system. Also, the eddy currents in the
voice coil holder should be minimized in order to maximize the high frequency decay rate
of the isolator. A finite element model of the Stewart platform has been developed, using
the technique of super elements; this leads to a small size model which can be integrated
in a global model.

Chapter 3 also reports on the microgravity tests performed in parabolic flight; two con-
trollers have been used: Lag-Lead and IFF, the latter has guaranteed stability, it also
performs better. The test campaign was sucessful, although, it clearly points out the
need to improve the lateral dynamics of the legs in order to improve the isolation perfor-
mance.
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Chapter 4 is devoted to stiff systems with pizeoelectric legs. The damping properties of
the active strut is first reviewed; it consists of a piezoelectric actuator collocated with a
force sensor and controlled according to positive IFF; several applications are discussed.
Next, various on-going projects using stiff Stewart platform are reviewed and the ULB
design is described in details. The use of the platform as active damping interface is
demonstrated sucessfully.

In this research, two Stewart platforms have been designed, manufactured and tested by
the author; a soft Stewart platform (chapter 3) with voice coil actuators for the purpose
of active isolation of vibrations and a stiff Stewart platform (chapter 4) with piezoelectric
actuators for the purposes of active damping and precision pointing.

The major conclusions regarding soft Stewart platforms are:

• They can be used efficiently for vibration isolation purposes.

• The corner frequency of the soft hexapod should be as low as possible and the modal
spread should be minimized.

• The design of the flexible joints has a great effect on the control authority and the
isolation performance.

• The lateral dynamics of the legs deteriorate the high frequency isolation performance
of the isolator.

As far as stiff Stewart platforms are concerned, the main conclusions are as follows:

• They can be used for vibration damping and precision pointing purposes.

• The damping performance is very good and can be predicted by a simple root locus
technique.

• Using an hexapod with piezoelectric actuators, combined damping and positioning
is feasible.

• The concept can be easily scaled up and down, and a family of active damping
interfaces can be developed, that can be used to assemble elementary passive trusses
into highly damped large space structures.

5.2 Future work

This study points out the following avenues to improve the performance of the six d.o.f.
isolator:

1. A redesign of the flexible joints between the legs and the support plates, in order to
reduce their parasitic stiffness and keep the open-loop zeros close to the origin while
keeping the axial stiffness and the overall strength needed during the launch of the
spacecraft. The use of superelastic material in the joint seems to be an attractive
option.
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2. Improving the lateral dynamics of the legs: the resonance peaks of the lateral modes
can be moved to higher frequency by reducing and redistributing the inertia along
the leg. Also, the membranes play a key role in the leg behaviour and their shape
and distance should be optimized to combine low axial stiffness with high frequency
lateral modes. On the other hand, the damping of the lateral modes should be
improved without adding damping to the axial motion of the leg. Fitting a tuned-
mass damper on the lateral modes of the legs should be examined.

As far as the system with piezoelectric actuators is concerned, the control strategy is sim-
ple robust, very effective and the closed-loop performances are easily predictible. It seems
that this technology is ready to be used in precision engineering. For space applications,
more studies are needed at system level, to investigate how modular structures can be
assembled with standard joints imbedding this technology. Achieving integrated modular
electronics is also an issue.
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Appendix A

Jacobian of the Stewart platform

In this appendix, we will use different notations from those used in the text of chapter 3
for clarity reasons and to follow those used in the robotics community [1]. To estimate
the Jacobian matrix that relates the elongation of the legs of the Stewart platform to the
motion of the platform, let us consider the vectorial representation of the hexapod shown
in Fig.A.1.

Figure A.1: Vectorial representation of the Stewart platform

{B} ≡ inertial reference frame of the lower platform (assumed fixed).
{P} ≡ reference frame at the center of mass C of the upper platform.
�ri ≡ position of the extremity of leg i in the lower platform.
�pi ≡ position of the extremity of leg i in the upper platform.
�xo ≡ The vector connecting the origin of {B} to that of {P}



126 A. Jacobian of the Stewart platform

�1i ≡ Unit vector along leg i.
R is the rotation matrix relating {P} to {B}, defined for example in terms of roll/pitch/yaw
angles: θ= (γ, β, α)T .
The relationship between {B} and {P} is completely defined by xo and θ; the Jacobian
J relates the elongation velocities of the legs, q̇i, to the velocity vector χ̇ = (vT ,ωT )T ,

where v = ẋo and ω = θ̇.

q̇ = Jχ̇ (A.1)

The analytical expression can be obtained by expressing the absolute velocity �vi of the
extremity Ai (the extremity Bi is fixed in the inertial reference frame {B}), and projecting

it along �1i, we get

�vi = �v + �ω × �pi

where �v is the absolute velocity of C and �ω is the angular velocity of the upper plate.

q̇i = �1i · (�v + �ω × �pi)

q̇i = �1i · �v − �1i · �pi × �ω

and, upon projecting in the appropriate reference frame,

q̇i = 1T
i v − 1T

i p̃iω

where we have used the antisymmetric matrix p̃i to express the cross product :
pi× ω = p̃i ω.
The above equation constitute the ith line of the Jacobian:

q̇ = Jχ̇ =


 . . . . . .

1T
i −1T

i p̃i

. . . . . .




(
v
ω

)
(A.2)

The right side of the equation can be expressed either in the inertial reference frame {B}
or in the reference frame of the upper platform {P}. If v and ω are expressed in the
moving frame {P},

1i =
1

li
[RT (xo − ri) + pi]

where it has been assumed that xo and ri are expressed in {B}. It follows that

−1T
i p̃i = −1

li
(xo − ri)

T Rp̃i

The velocity Jacobian matrix becomes

J =


 . . . . . .

1
li
[(xo − ri)

T R + pT
i ] − 1

li
(xo − ri)

T Rp̃i

. . . . . .


 (A.3)

The force Jacobian can be obtained from the virtual work theorem,
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fT δq = fT Jδχ = (FT ,TT )δχ

where f stands for the forces along the legs of the platform and F and T are respectively
the resultant force and the resultant torque applied to the upper platform. It follows that
F and T, expressed in the same reference frame as v and ω, are related to the forces
acting in the leg f by: (

F
T

)
= Bf (A.4)

where B = JT is the force Jacobian and equals to:

B =

(
. . . 1i . . .
. . . p̃i1i . . .

)
(A.5)

or in more details

B =

(
. . . 1

li
[RT (xo − ri) + pi] . . .

. . . 1
li
p̃iR

T (xo − ri) . . .

)
(A.6)

To calculate the general stiffness matrix of the platform, assuming that the only stiffness
exists here is the axial stiffness k of the leg. Equ.(A.4) gives(

F
T

)
= Bf = Bkδq (A.7)

where δq is the elongation of the legs. From Equ.(A.1) we know that δq = Jδχ = BT δχ,
then (

F
T

)
= [BkBT ]δχ (A.8)

This leads to conclude that the general stiffness matrix of the Stewart platform can be
found from the expression: [BkBT ]. This expression assumes that the joints at the end
of the leg behave perfectly, i.e have a zero bending stiffness. Further readings about the
kinematics of the hexapods can be found in [2, 3, 4, 5].
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Appendix B

Geophones

B.1 Design of the geophone

The basic principle of the geophone depends mainly on the production of a voltage in a
coil when a magnet is passed though it. One configuration of the conventional geophones
consists of a cylindrical magnet coaxial with a cylindrical coil as shown in Fig.B.1. In this
configuration, the coil is wound around a nonconductive cylinder to avoid the effect of
the eddy current that can be caused by the current induced in the coil. The wire forming
the coil is made up of a good conducting material like copper. The diameter of this wire
and the dimensions of the holding cylinder are designed according to the application.
The internal core is a permanent magnet selected to give the highest possible magnetic
field density B to maximize the induced voltage in the coil. The coil is attached to the
casing of the geophone by means of leaf springs (membranes); these springs are designed
so as to maintain alignment in the motion of the coil relative to the magnet keeping the
lowest stiffness possible in order to have a low resonant frequency for the geophone. For
commercial products of geophones, there are many providers [1, 2]
The reverse configuration is also possible (Fig.B.2); using a coil fixed to the casing while
the moving mass is the permanent magnet. Since the mass of the magnet is heavier than
that of the coil; this configuration leads to a lower natural frequency, but the moving part
is larger and heavier.

B.2 Modelling of the geophone

Geophone can be considered as a velocity sensor. No matter whether the proof-mass is
the coil or the magnet, one can model the instrument as shown in Fig.B.3.

Assume modelling a moving coil inertial sensor, the coil and the cylindrical holder are
represented by the proof-mass m which is mounted to the casing by means of a spring
and a damper. The governing equation of motion in Laplace transform for this system is:

ms2x + Cs(x − y) + K(x − y) = 0 (B.1)
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Figure B.1: Schematic view of a geophone [3], (a) The installation of the coil and springs. (b): A
cross-section of the geophone

Figure B.2: A moving magnet seismometer

Where x and y are the absolute displacements of the proof-mass and the casing, re-
spectively. Using the relative displacement of the proof-mass with respect to the casing
z = (x − y), the equation of motion becomes:

ms2z + Csz + Kz = −ms2y (B.2)

From the electromagnetic theory [4, 5], we know that the induced voltage V is related
linearly to the relative velocity ż by the relation:

V = Gsz (B.3)

Substituting the voltage instead of the relative velocity in Equ.(B.2) gives:

ms2V + CsV + KV = −Gms3y (B.4)
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Figure B.3: A simplified model for the seismometer

Knowing that the casing of the geophone is fixed to the vibrating body, the relation
between the absolute velocity of the casing ẏ and the induced voltage in the coil V is
given by:

G(s) =
V

ẏ
= −G

s2

s2 + 2ξgωgs + ω2
g

(B.5)

Equ.(B.5) expresses the open-loop transfer function of the geophone which senses the
absolute velocity of the vibrating body ẏ and induces a voltage V in the coil. Here

ωg =
√

K/m is the natural frequency of the seismometer, ξg = C/2mωg is the damping
ratio including the effect of the eddy current and G = Bl is the transduction constant,
where B is the magnetic field density generated by the permanent magnet and l is the
length of the coil. The transfer function in Equ.(B.5) is plotted in the frequency domain
in Fig.B.4. This bode plot shows that the amplitude ratio at low frequency is very small
and it becomes unity above the resonance frequency (behaviour of high-pass filter).

B.3 Sensitivity of the geophones

Equ.(B.5) gives the ratio between the output voltage and the velocity of the vibrating
body. This relation yields the ratio between the relative velocity ż and the absolute
velocity of the casing ẏ. Dividing Equ.(B.5) by ω2

g and substituting V = Gż, we get:

ż

ẏ
=

z

y
=

(s/ωg)
2

(s/ωg)2 + 2ξg(s/ωg) + 1
(B.6)

At high frequencies (above the natural frequency), since z = −y, the relative motion of
the seismic mass must be the same as that of the vibration to be measured. When the
natural frequency ωg of this instrument is low in comparison to the vibration frequency s,
the ratio s/ωg approaches to a large number and the relative displacement z approaches
to y regardless of the value of the damping ratio ξg, the mass m then remains stationary
while the supporting case moves with the vibrating body. The relative motion is converted
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Figure B.4: The open-loop bode plot for the geophone

to an electric voltage either by making the seismic mass as a magnet moving relative to
the coil or vice versa. Since the generated voltage is proportional to the rate of crossing of
the magnetic field, the output of the instrument will be proportional to the velocity of the
vibrating body. A typical instrument of this kind may have a natural frequency between
1 Hz to 5 Hz. The sensitivity of such instrument may be in the range of 2 V/ms−1 to 3.5
V/ms−1 with the maximum displacement limited to about 5 mm peak to peak [6]. When
a geophone is used to measure vibrations with a frequency below its natural frequency, the
proof-mass tends to follow the motion of the vibrating body rather than staying stationary.
This motion of the proof-mass following the casing reduces the relative motion which in
turn reduces the induced voltage. Here the sensitivity of the sensor (ratio between the
voltage and the casing velocity) becomes very small which restricts the performance of
the sensor and limits the range of usage of the instrument to frequencies above its corner
frequency. It is important to mention that both displacement and acceleration can be
obtained from the velocity sensor (seismometer) by means of the integrator provided in
most of the signal conditioner units.
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