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An optimal Empirical-Markovian approach is presented for the assessment of potential reha-
bilitation strategies as applied to flexible pavement at the project level. A simplified empirical
model is proposed to predict the heterogeneous transition probabilities associated with rehabil-
itated pavement based on the corresponding values associated with original pavement, future
traffic loading, and modified structural capacity. Therefore, the performance of rehabilitated
pavement can directly be controlled by the modified structural capacity. The modified struc-
tural capacity associated with a particular rehabilitation strategy is defined using the modified
layer coefficients with the corresponding modified structural numbers are used in the empir-
ical model to predict the relevant heterogeneous transition probabilities. These probabilities
are then used to estimate the annual distress ratings (DRs) associated with each potential
rehabilitation strategy for a specified analysis period. The optimal assessment of potential
rehabilitation strategies is carried out using the cost-effectiveness ratio defined as the ratio
of the life-cycle average DR to the life-cycle cost. The life-cycle cost can include cost items
such as initial construction cost, routine maintenance cost, and major rehabilitation cost. The
optimal rehabilitation strategy is the one associated with the highest cost-effectiveness ratio.
The presented case study has indicated the effectiveness of the proposed optimal approach in
developing and yielding dependable optimal rehabilitation strategies.

Keywords: flexible pavement; pavement rehabilitation; pavement performance; pavement
design; heterogeneous Markov chains; pavement management

1. Introduction
1.1. General background
Pavement management has traditionally dealt with establishing optimal maintenance and reha-
bilitation (M&R) schedules at the network level. Pavement management requires periodical
collection of pavement distress data, incorporation of a reliable performance prediction model,
definition of potential M&R strategies, and development of an effective decision-making cri-
terion to be optimised using an appropriate optimisation technique. Pavement management at
the network level mainly focuses on selecting and prioritising pavement projects over a speci-
fied analysis period (Gurganus & Gharaibeh, 2012; Jorge & Ferreira, 2012; Medury & Madanat,
2014; Saliminejad & Perrone, 2015; Shahin, 2005; Torres-Machí, Chamorro, Videla, Pellicer, &
Yepes, 2013). However, pavement management at the project level mainly focuses on identifying
the appropriate rehabilitation strategy to be applied at the optimal scheduling time. It essentially
involves the same steps required at the network level but the problem is considered much simpler
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to solve. It is also expected that the M&R strategies recommended at the project level to differ
from the ones suggested at the network level. Therefore, it is typically recommended that pave-
ment management at the project level be performed once a pavement project is ready to go for
design prior to construction (Cirilovic, Mladenovic, & Queiroz, 2014; Mohajerani & HE, 2014;
Priya, Srinivasan, & Veeraragavan, 2008; Santos, Ferreira, & Flintsch, 2015).

Pavement performance prediction is a key element in pavement management modelling
which is vitally needed to forecast the pavement future conditions. There are typically two
general types of performance prediction models, namely deterministic and probabilistic with
the latter being the most widely used one. Several versions of the probabilistic model were
used by different researchers to predict pavement performance with the most popular are the
Markovian-based ones (Abaza, 2016; Butt, Shahin, Carpenter, & Carnahan, 1994; Durango &
Madanat, 2002; Hong & Wang, 2003; Lethanh & Adey, 2013; Mandiartha, Duffield, Thomp-
son, & Wigan, 2012; Meidani & Ghanem, 2015). Different types of Markov chain were used
by several researchers including discrete-time Markov chain, discrete-time semi-Markov chain,
exponential hidden Markov chain, Poisson hidden Markov chain, random Markov chain, and
recurrent Markov chain (Abaza, 2015; Lethanh & Adey, 2013; Lethanh, Kaito, & Kobayashi,
2014; Meidani & Ghanem, 2015; Yang, Lu, Gunaratne, & Dietrich, 2006; Zhang & Gao, 2012).
While these researchers applied different forms of the Markov model, they all reported a good
degree of success in mainly predicting the performance of original pavements. In particular, the
discrete-time Markov chain with heterogeneous transition probabilities has proven to be effec-
tive in predicting the performance of original pavement (Abaza, 2015). However, limited work
has been done to predict the performance of rehabilitated pavement. A main advantage of the
proposed Empirical-Markovian approach is its ability to predict the heterogeneous transition
probabilities for rehabilitated pavement from the corresponding ones associated with origi-
nal pavement. Another advantage is its efficacy in incorporating the expected performance of
potential rehabilitation strategies to become an integrated part of the prediction decision-making
process.

1.2. Research objectives
The Empirical-Markovian approach is essentially proposed to predict the heterogeneous transi-
tion probabilities associated with rehabilitated pavement as a function of the corresponding ones
for original pavement, structural capacity factor, and traffic load factor. The two deployed fac-
tors are defined as ratios of the structural capacities and traffic load applications associated with
both original and rehabilitated pavements. The structural capacity of a particular rehabilitation
strategy is represented by the modified structural number (SN), which can be estimated from
the modified layer coefficients (AASHTO, 1993; Huang, 2004). The paper presents simplified
models for estimating the modified layer SNs especially in the case of a two-layer pavement
structure. The traffic load factor is defined using the 80 kN equivalent single axle load (ESAL)
applications.

The proposed optimal assessment approach requires the selection of a limited number of
potential rehabilitation strategies to be scheduled at different rehabilitation times. The proposed
Empirical-Markovian approach can estimate the long-term performances associated with the
selected potential rehabilitation strategies mainly relying on the predicted heterogeneous dete-
rioration transition probabilities. In particular, the life-cycle average distress rating (DR) is
estimated for each rehabilitation strategy over a specified analysis period. A cost-effectiveness
ratio is used to assess the various selected rehabilitation strategies, which is defined as the ratio
of the life-cycle average DR to life-cycle cost. The life-cycle cost can include routine mainte-
nance cost, rehabilitation cost, and initial construction cost. The optimal rehabilitation strategy
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is the one associated with the highest cost-effectiveness ratio. The main objectives and expected
outcomes of this research work can therefore be summarised as follows:

(1) Development of an empirical model that can predict the heterogeneous deterioration tran-
sition probabilities associated with rehabilitated pavement from the corresponding values
associated with original pavement considering the same pavement structure.

(2) Development of a mechanism to express the structural capacity of the rehabilitated
pavement as required by the previously outlined empirical model. It mainly relies on
the modified SNs associated with the pavement layers making up the pavement struc-
ture. Therefore, the performance of rehabilitated pavement can directly be controlled by
varying the structural capacity associated with a particular rehabilitation strategy.

(3) Using a long-term assessment indicator to evaluate the cost-effectiveness of the selected
potential rehabilitation strategies. The proposed indicator is simply the earlier outlined
cost-effectiveness ratio which needs to be maximised to yield the best rehabilitation
strategy.

(4) The selection of the best rehabilitation strategy for a given pavement project will identify
the layer thicknesses associated with plain overlay, cold milling and overlay, or recon-
struction. Most importantly, it will identify the scheduling time in years associated with
the best rehabilitation strategy.

1.3. Overview of discrete-time Markov model
Several versions of the discrete-time Markovian-based model were used in the literature to model
pavement performance (Abaza, 2016; Hong & Wang, 2003; Lethanh & Adey, 2013; Lethanh
et al., 2014; Li, Huot, Xie, & Haas, 1995; Li, Xie, & Haas, 1996; Mandiartha et al., 2012; Meidani
& Ghanem, 2015). The most popular are the ones deploying either homogeneous or heteroge-
neous Markov chains (Abaza, 2015). The homogeneous Markov chain assumes steady transition
probabilities (i.e. deterioration rates) over time, which does not accurately represent pavement
deterioration rates as they do increase over time due to the progressive increase in traffic loading
and progressive weakening of the pavement structural capacity. On the other hand, the heteroge-
neous Markov chain can incorporate a different set of transition probabilities for each transition
(i.e. time interval) within an analysis period comprised of (n) transitions. Equation (1) provides
the heterogeneous Markov model used to predict the state probabilities after (n) transitions, Q(n)

i ,
mainly replying on the initial state probabilities, Q(0)

i , and (n) transition probability matrices,
P(k). The state probabilities are represented by row vectors and they denote the proportions of
pavement that exist in the various condition states at a specified future time. Naturally, the sum
of the state probabilities at a given transition must equal one with the initial values assumed
equal to (1, 0, 0, . . . , 0) for new and rehabilitated pavements provided the number of deployed
condition states is adequately selected. A maximum of 10 condition states would be adequate to
satisfy this assumption (Abaza, 2015).

Q(n) = Q(0)

(
n∏

k=1

P(k)

)
, (1)

where,

Q(n) = (Q(n)

1 , Q(n)

2 , . . . , Q(n)
m ),

Q(0) = (Q(0)

1 , Q(0)

2 , . . . , Q(0)
m ).
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The heterogeneous transition probability matrix is (m × m) square matrix with (m) being the
number of deployed condition states. Equation (2) presents (10 × 10) special form of the tran-
sition matrix wherein two transitions are only allowed for each condition state, namely either
remaining in the same state (i) with P(k)i,i probability or transiting into the next worst state
(i + 1) with P(k)i,i+1 probability. Abaza (2015) reported the use of only two transitions is a
valid assumption provided the number of deployed condition states and transition length are
appropriately selected. It was reported that a Markov chain with 10 condition states (m) and
1-year transition length are proper values to satisfy this assumption. The matrix entries below
the main diagonal represent the pavement improvement rates which vanish in the absence
of maintenance and rehabilitation works as indicated by Equation (2). However, the P(k)i,i+1
transition probabilities denote the pavement deterioration rates which are vital in predicting
pavement performance. The sum of any row in the transition probability matrix must add
up to one.

P(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P(k)1,1 P(k)1,2 0 0 0 · · · 0
0 P(k)2,2 P(k)2,3 0 0 · · · 0
0 0 P(k)3,3 P(k)3,4 0 · · · 0
...

...
...

...
...

...
...

0 0 0 · · · 0 P(k)9,9 P(k)9,10
0 0 0 0 · · · 0 P(k)10,10

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

While Markov chain is typically applied at the network level as part of pavement man-
agement, it can still mathematically be used at the project level. The transition probabilities
are generally estimated from distress data for individual pavement classes making up the
pavement network. A pavement class is typically made up of pavement projects with similar
materials characteristics and traffic loading conditions, thus expected to exhibit similar long-
term performances. However, it is more reliable if the transition probabilities are estimated
at the project level as they would better represent the deterioration mechanism of individual
projects.

Pavement performance is typically defined using an appropriate pavement condition indicator
as a function of service time or accumulated traffic load applications. Among the most popular
pavement condition indicators are the present serviceability index, pavement condition index,
and international roughness index. Abaza (2016) used a similar indicator called pavement DR
which can be predicted from the state probabilities estimated using the outlined heterogeneous
Markov model. Equation (3) can be used to predict the distress rating at the kth transition,
DR(k), for an analysis period comprised of (n) transitions at the project level. The DR is pre-
dicted from the product sum of the state mean DRs (Ci) and state probabilities, Q(k)

i , considering
a Markov chain with 10 condition states. A DR scale of 100 points is used with each con-
dition state defined by equal 10-point DR range with the state mean DR is being represented
by the middle value of the corresponding range as indicated by Equation (3). It is to be noted
that higher DR values denote better pavements with the maximum and minimum predicted DR
values are being equal to 95 and 5 which correspond to new and totally damaged pavements,
respectively.

DR(k) =
10∑

i=1

Ci × Q(k)
i (k = 0, 1, 2, . . . , n), (3)
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where,

Q(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q(k)
1 , 90 < DR ≤ 100, C1 = 95

Q(k)
2 , 80 < DR ≤ 90, C2 = 85

Q(k)
3 , 70 < DR ≤ 80, C3 = 75

...
...

...
Q(k)

10 , 0 ≤ DR ≤ 10, C10 = 5

.

The estimation of one set of state probabilities requires one cycle of pavement distress assess-
ment while two consecutive cycles are needed to obtain an estimate of one set of transition
probabilities. A flexible pavement project is typically divided into a number of small pavement
sections which are individually surveyed for prevailing defects. Abaza (2016) proposed simple
models for estimating the observed DR for each section mainly relying on the two most signif-
icant pavement defects, namely cracking and deformation. Equation (4) presents an example of
such models wherein the pavement section is surveyed for localised defects.

DR =
⎛
⎝3AS −∑

i
SFCi ACi −∑

i
SFDi ADi

3AS

⎞
⎠× 100, (4)

where, ∑
i

SFCi ACi +
∑

i

SFDi ADi ≤ 3AS ,

∑
i

ACi +
∑

i

ADi ≤ As,

AS = entire surface area of the pavement section (m2), SFC = severity factor associated with a
localised cracked area taken on the values of 1, 2, or 3 for low, medium, or high severity, respec-
tively, AC = localised cracked area (m2), SFD = severity factor associated with a localised
deformed area taken on the values of 1, 2, or 3 for low, medium, or high severity, respectively,
and, AD = localised deformed area (m2).

The surveyed pavement sections are then assigned to the various deployed condition states
according to the DR ranges defined in Equation (3). Abaza (2016) proposed Equations 5(a) and
5(b) to estimate the 1st transition (k = 1) initial and terminal deterioration transition probabili-
ties, P(1)1,2 and P(1)m−1,m, deploying the numbers of pavement sections assigned to the relevant
condition states as obtained from two consecutive cycles of pavement distress assessment.
Equation 5(c) is used to the estimate the initial state probabilities, Q(0)

i .

P(1)1,2 = N (0)

1 − N (1)

1

N (0)

1

, N (0)

1 ≥ N (1)

1 , (5a)

P(1)m−1,m = N (1)
m − N (0)

m

N (0)

m−1

, N (1)
m ≥ N (0)

m , (5b)

Q(0)
i = N (0)

i

N
(i = 1, 2, . . . , m), (5c)

where, N (0)
i = initial number of pavement sections in state (i), N (1)

i = number of pavement
sections in state (i) after one transition, and N = total number of surveyed pavement sections.
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2. Methodology
An Empirical-Markovian approach for estimating the heterogeneous transition probabilities for
rehabilitated pavement along with an optimal approach for the assessment of potential pave-
ment rehabilitation strategies are presented in this section. The optimal approach takes into
consideration both the pavement life-cycle cost and performance.

2.1. Heterogeneous transition probabilities for original pavement
The application of the heterogeneous Markov model requires the availability of a transition prob-
ability matrix for each transition within the analysis period. Abaza (2015) proposed an empirical
model to estimate the required transition probability matrices mainly depending on the present
transition probability matrix, P(k = 1), and two main factors affecting pavement deterioration
over time, namely traffic load and pavement strength factors as presented in Equation (6). The
traffic load factor accounts for the progressive increase in traffic loading over time. It is defined as
the ratio of the 80 kN ESAL applications, W(k + 1), expected to take place during the (k + 1)th
transition to the corresponding value associated with the preceding transition. The future transi-
tion probabilities are expected to increase over time as the traffic load factor is expected to be
greater than one due to traffic load increases. Similarly, the pavement strength factor accounts for
the progressive decrease in pavement strength over time. It is defined as the ratio of the pavement
strength, S(k), at the kth transition to the corresponding value associated with the proceeding
transition. The strength factor is expected to be greater than one in the absence of any mainte-
nance and rehabilitation works, thus, resulting in higher future transition probabilities. Structural
capacity is typically used to represent pavement strength when considering applications related
to pavement rehabilitation and design. The two most popular empirical-based methods for pave-
ment design used the SN and gravel equivalent (GE) as reliable indicators of pavement structural
capacity, respectively (AASHTO, 1993; Caltrans, 2008).

P(k + 1)i,i+1 = P(k)i,i+1

(
W(k + 1)

W(k)

)A( S(k)
S(k + 1)

)B

(k = 1, 2, 3, . . . , n), (6)

where, W(k) = 80 kN ESAL applications expected to travel the pavement during the kth
transition, and S(k) = pavement structural capacity at the kth transition.

The empirical model indicated by Equation (6) can be used to estimate the deterioration
transition probabilities, P(k + 1)i,i+1, as required by the transition probability matrix defined
in Equation (2). The empirical model has two exponents (A and B) which can be estimated
from the minimisation of sum of squared errors (SSE) wherein the error is defined as the differ-
ence between the observed and predicted DRs. The predicted DR is estimated using Equation
(3) based on the state probabilities derived from the Markov model presented in Equation (1).
Abaza (2015) provided typical values for the exponents (A and B) considering two distinct types
of pavement performance as explained later.

2.2. Heterogeneous transition probabilities for rehabilitated pavement
In this paper, a model similar to the one presented in Equation (6) is proposed to estimate the dete-
rioration transition probabilities associated with rehabilitated pavement as defined in Equation
(7). The formulation of the new model is based on the main assumption that both the original
and rehabilitated pavements will exhibit similar performance trends as represented by their corre-
sponding performance curves shown in Figure 1. In particular, it is assumed that the performance
curve segment associated with rehabilitated pavement between the two transitions (n + k) and
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Figure 1. Typical life-cycle pavement performance curve and rehabilitation scheduling plan.

(n + k − 1) to be similar in trend to the corresponding one associated with original pavement
between the two transitions (k) and (k − 1). According to Figure 1, it is defined that pavement
rehabilitation is scheduled to take place at the nth transition, which is the same as the terminal
service time for original pavement.

The traffic load factor is defined as the ratio of the traffic load applications associated with reha-
bilitated pavement at the (n + k)th transition to the corresponding value associated with original
pavement at the (k)th transition as depicted in Figure 1. Similarly, the pavement strength factor
is defined as the ratio of the pavement strength associated with original pavement at the (k)th
transition to the corresponding value associated with rehabilitated pavement at the (n + k)th
transition. The strength factor used in Equation (7) can be less than one if the structural capac-
ity associated with rehabilitated pavement is larger than the corresponding one associated with
original pavement, which can contribute to improving the performance of rehabilitated pavement
or at least counterbalance the impact of increased traffic load applications. Also, environmental
and weather conditions can affect pavement deterioration, but they are neglected in Equation (7)
because they are expected to be similar for both original and rehabilitated pavements considering
the same pavement structure.

P(n + k)i,i+1 = P(k)i,i+1

(
W(n + k)

W(k)

)A ( S(k)
S(n + k)

)B

(k = 1, 2, . . . , n), (7)

Where, W(n + k) = 80 kN ESAL applications expected to travel the rehabilitated pavement
during the (n + k)th transition, W(k) = 80 kN ESAL applications expected to travel the original
pavement during the kth transition, S(n + k) = structural capacity associated with rehabilitated
pavement at the (n + k)th transition, and S(k) = structural capacity associated with original
pavement at the kth transition.

Equation (7) can be used to estimate the deterioration transition probabilities, P(n + k)i,i+1,
associated with rehabilitated pavement based on the corresponding equivalent values, P(k)i,i+1,
associated with original pavement for a service life of (n) transitions. Therefore, according to
Equation (7), the service life for rehabilitated pavement is considered to be the same as the
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one associated with original pavement (i.e. n transitions). The predicted deterioration transition
probabilities for rehabilitated pavement can then be used to estimate the corresponding distress
ratings, DR(n + k), using Equations (1) and (3).

2.2.1. Estimation of traffic load factor
A simplified expression for the traffic load factor, FL(n), used in Equation (7) can be derived as
presented in Equation (8). It is essentially derived based on the first-year 80 kN single axle load
applications (Wf) multiplied by the future economic factor, F(k), considering the two equivalent
transitions (n + k) and (k). The future economic factor deployed is simply the one used to convert
a present value to a future one. According to Equation (8), the traffic load factor is only dependent
on the uniform annual traffic growth rate (r), in decimal form, and rehabilitation scheduling time
(n) in transitions.

FL(n) = W(n + k)
W(k)

= Wf × F(n + k)
Wf × F(k)

= (1 + r)n, (8)

where,

F(k) = (1 + r)k.

The same expression for the traffic load factor can be obtained based on the ratio of the accu-
mulated 80 kN single axle load applications (WR) associated with rehabilitated pavement to the
corresponding value (Wo) associated with original pavement as indicated by Equation (9). This
essentially states that the ratio of traffic load applications associated with the two equivalent
transitions (n + k) and (k) is constant and equals to the ratio of (WR/Wo). The accumulated load
applications are computed from multiplying the first-year load applications (Wf) by the corre-
sponding traffic growth factor (G). The traffic growth factor used is the same one recommended
by the Asphalt Institute (Asphalt Institute, 1999).

FL(n) = WR

Wo
= Wf × G(2n) − Wf × G(n)

Wf × G(n)
= (1 + r)n, (9)

where,

G(n) = (1 + r)n − 1
r

.

2.2.2. Estimation of pavement strength factor
The pavement strength factor can be estimated using an appropriate relative strength indica-
tor such as the outlined SN used by AASHTO in its empirical-based pavement design method
(AASHTO, 1993). Additionally and as a simplification, it is assumed that the strength change rate
for original pavement to be equal to the corresponding one associated with rehabilitated pave-
ment considering the two transitions (k) and (n + k). This results in the strength factor, FS(n), to
be equal to the ratio of design structural number (SNo) associated with original pavement to the
corresponding value, SNR(n), associated with rehabilitated pavement as indicated by Equation
(10), an outcome that is similar to the one obtained for the load factor.

Fs(n) = S(k)
S(n + k)

= SN(k)
SN(n + k)

= SNo

SNR(n)
. (10)

The final empirical model for predicting the deterioration transition probabilities for reha-
bilitated pavement can then be represented by Equation (11) using the SN as an indicator of
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pavement strength. Generally, it is required to design rehabilitated pavement with SN higher
than the one associated with original pavement to compensate for the impact of increased traffic
load applications while maintaining similar performance trends.

P(n + k)i,i+1 = P(k)i,i+1[(1 + r)n]A
(

SNo

SNR(n)

)B

(k = 1, 2, . . . , n). (11)

The SN associated with original pavement is generally known but the one associated with
rehabilitated pavement needs to be estimated based on a proposed potential rehabilitation strategy
as outlined next.

2.2.3. Estimation of modified structural capacity
The pavement structural capacity can be defined using the SN as outlined earlier. The structural
number associated with original pavement (SNo) is determined from the product sum of the
original layer coefficients (aj ) and original layer thicknesses (Dj ) as presented in Equation (12a)
(AASHTO, 1993). Similarly, the structural number for rehabilitated pavement, SNR(n), is equal
to the sum of modified structural numbers, SNj (n), associated with all layers making up the
pavement structure as presented in Equation (12b). The modified SN for the j th layer is computed
as the product of the modified layer coefficient, a′

j (n), and modified layer thickness, D′
j (n). There

are generally two approaches for estimating the modified layer coefficients mainly depending on
either destructive or non-destructive testing of pavement (AASHTO, 1993; Huang, 2004).

SNo =
∑

j

SNj =
∑

j

aj × Dj , (12a)

SNR(n) =
∑

j

SNj (n) =
∑

j

a′
j (n) × D′

j (n). (12b)

The most popular flexible pavement structure consists of two layers, namely asphalt concrete
surface and aggregate base. The potential rehabilitation strategies typically involve plain over-
lay, cold milling and overlay, or complete removal/replacement of existing asphalt layer with
adjustment of existing aggregate base thickness. Therefore, the modified structural numbers,
SN1(n) and SN2(n), associated with the asphalt and aggregate layers can be determined using
Equations (13a) and (13b), respectively. In Equation (13a), the cold milling thickness (Dm) is
subtracted from the existing asphalt layer thickness (D1) with the outcome multiplied by the
modified layer coefficient, a′

1(n), to account for asphalt strength reduction at the time of rehabili-
tation (n). An addition is then made to account for the SN associated with the overlay as obtained
from multiplying the overlay thickness, �D1(n), by the corresponding overlay coefficient, a1(n).

SN1(n) = 1
2.5

[a′
1(n) × (D1 − Dm) + a1(n) × �D1(n)], (13a)

SN2(n) = 1
2.5

[a′
2(n) × D2 + a2(n) × �D2(n)]. (13b)

The modified SN for the aggregate base is similarly computed using Equation (13b) with
�D2(n) representing the change in base thickness in the case of complete removal of exist-
ing asphalt layer. All layer thicknesses used in Equations (13a) and (13b) are in centimetres;
therefore, the entire equations are divided by 2.5 as layer thicknesses have to be in inches
according to the AASHTO design method (AASHTO, 1993). While the literature provides
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several approaches for estimating the modified layer coefficients, the author proposes a sim-
plified solution for estimating the modified layer coefficient for asphalt concrete as presented in
Equation (14).

a′
1(n) = a1 × F1(n) = a1

DR(n)

C1
. (14)

The original asphalt layer coefficient (a1) is multiplied by the strength reduction factor, F1(n),
to yield an estimate of the modified asphalt layer coefficient, a′

1(n). The asphalt strength reduction
factor is estimated as the ratio of the distress rating associated with the nth transition, DR(n), to
the maximum distress rating, namely (C1) as defined in Equation (3). The aggregate base layer
generally experiences minor strength reduction and can be neglected; however, destructive/non-
destructive testing can be used to estimate the corresponding modified layer coefficient. Once
the modified SNs are estimated for all layers making up the pavement structure, then Equation
(11) can be used to predict the deterioration transition probabilities associated with rehabilitated
pavement. However, if it is assumed that the asphalt layer is the main contributor of pavement
deterioration and the impact of underlying layers is neglected, then Equation (15) can be used in
lieu of Equation (11).

P(n + k)i,i+1 = P(k)i,i+1[(1 + r)n]A
(

SN1

SN1(n)

)B

(k = 1, 2, . . . , n). (15)

Alternatively, Equation (16) can be used wherein the impact of the underlying layers is some-
what considered in the estimation of the transition probabilities compared to Equation (15). This
is because the value of the strength factor used in Equation (16) is mathematically higher than
the corresponding value deployed in Equation (15). Therefore, Equation (16) will relatively yield
higher transition probabilities compared to Equation (15), an indication that the underlying layers
have partially contributed to pavement deterioration. Equation (16) thus provides a more general
and realistic model if all relevant data are available.

P(n + k)i,i+1 = P(k)i,i+1[(1 + r)n]A
(

SNo

SNo − SN1 + SN1(n)

)B

(k = 1, 2, . . . , n). (16)

The performance curve portion associated with original pavement as shown in Figure 1 can be
developed using the distress ratings, DR(k), estimated from the deterioration transition proba-
bilities, P(k)i,i+1, predicted using Equation (6) as outlined earlier. Similarly, the performance
curve portion associated with rehabilitated pavement can be generated using the distress ratings,
DR(n + k), estimated based on the deterioration transition probabilities, P(n + k)i,i+1, predicted
using either Equations (11), (15), or (16).

2.2.4. Estimation of empirical model exponents
The two exponents (A and B) associated with the empirical models presented for estimating
the deterioration transition probabilities for both original and rehabilitated pavements can be
estimated using different techniques provided relevant pavement distress records are available.
Abaza (2015) applied the minimisation of SSEs as outlined earlier to estimate the two exponents
for original pavement. This study indicated that the value ranges of (A and B) are generally
(1.0–2.0) for performance with increasingly higher deterioration transition probabilities (i.e.
P1,2 < P2,3 < · · · < P9,10), and (0.0–1.0) for performance with decreasingly lower deteriora-
tion transition probabilities (i.e. P1,2 > P2,3 > · · · > P9,10). The exponent values for rehabilitated
pavement are expected to be similar provided the corresponding performance trend is also simi-
lar. A simpler technique to obtain estimates of the exponent values for rehabilitated pavement is
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to apply Equation (11) for two rehabilitated projects (x and y) with similar materials and traffic
characteristics but different input data as required by Equation (11). The outcome is Equations
(17a) and (17b) to be simultaneously solved for the two exponents after performing the required
linear transformations using the natural logarithmic function.

P(nx + 1)i,i+1 = Px(1)i,i+1[(1 + r)nx ]Ai

(
SNx

SNR(nx)

)Bi

(k = 1), (17a)

P(ny + 1)i,i+1 = Py(1)i,i+1[(1 + r)ny ]Ai

(
SNy

SNR(ny)

)Bi

(k = 1). (17b)

According to Equation (17), one estimate of the deterioration transition probabilities associ-
ated with each one of the two rehabilitated projects (x and y) is required to obtain a distinct set
of the exponents (Ai and Bi) for the ith transition probability. Therefore, if pavement distress
data are collected and used to estimate the transition probabilities associated with the two reha-
bilitated projects at the end of the first transition (k = 1), then it would be possible to obtain an
estimate of the corresponding exponents. Generally, a pavement network can be divided into a
small number of classes and one set of exponents can be developed for each pavement class.

2.3. Optimal assessment of potential rehabilitation strategies
The reliable assessment of potential rehabilitation strategies requires investigating both the rele-
vant cost and performance. The performance associated with a particular rehabilitation strategy
can be assessed using the performance curve derived as outlined earlier. A reliable indicator of
pavement performance is the average DR estimated over a specified analysis period. The average
distress rating (DRLC) computed over a life-cycle analysis period comprised of (2n) transitions
is presented in Equation (18), which accounts for the performances of both original and rehabili-
tated pavements as depicted in Figure 1. The optimal rehabilitation strategy can be considered to
be the one associated with the highest life-cycle average DR if performance is to be solely used
in the assessment process.

DRLC =

n∑
k=0

DR(k) +
n∑

k=0
DR(n + k)

2(n + 1)
. (18)

However, any reliable assessment of potential rehabilitation strategies must also take into con-
sideration the life-cycle cost. There are several cost items that can be considered in a life-cycle
analysis including initial construction cost, routine maintenance cost, and major rehabilitation
cost. However, the main cost item to be considered is the rehabilitation cost which can also
greatly affect routine maintenance cost. Generally, the appropriate rehabilitation strategy mainly
depends on the rehabilitation scheduling time; for example, extensive rehabilitation works are
required at advanced rehabilitation times. Life-cycle cost assessment of potential rehabilitation
strategies requires related cost items to be expressed as annual amounts since the rehabilitation
scheduling time (n) is a variable one, thus, resulting in a variable life-cycle analysis period com-
prised of (2n) transitions. Equation (19) can be used to convert the present value of the initial
construction cost (PIC) and rehabilitation cost (PRC) into equivalent annual costs. Rehabilitation
cost is essentially a future value but it is typically estimated based on current local prices. The
present cost is multiplied by the relevant economic conversion factor, f (A/P, i, 2n), using the
uniform annual discount rate (i), in decimal form, and an analysis period of (2n) transitions. The
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length of one transition is considered to be equal to one-year time interval, which is also the same
as the time length between successive cycles of pavement distress assessment.

AIC or ARC = PIC or PRC × f (A/P, i, 2n), (19)

where,

f (A/P, i, 2n) = i × (1 + i)2n

(1 + i)2n − 1
.

The optimal rehabilitation strategy can be considered to be the one associated with the lowest
life-cycle cost, but it may not necessarily be the same one with the highest life-cycle performance.
Therefore, the cost-effectiveness ratio (RCE) as defined in Equation (20) can be used as a reli-
able indicator to account for both life-cycle performance (DRLC) and life-cycle cost (ALC). The
optimal rehabilitation strategy becomes the one associated with the highest cost-effectiveness
ratio. Therefore, it is required to maximise the cost-effectiveness ratio considering a number of
potential rehabilitation strategies with a variable scheduling time (n). The optimal rehabilitation
strategy is thus the one applied at the optimal rehabilitation scheduling time.

Maximize : RCE = DRLC

ALC
= DRLC

AIC + ARC
. (20)

The optimal assessment process begins with selecting a number of potential rehabilitation
strategies for different scheduling times. The potential rehabilitation strategies typically include
plain overlay, cold milling and overlay, and reconstruction. Reconstruction includes complete
removal of the existing asphalt layer, possible adjustment of aggregate base thickness, and place-
ment of new asphalt layer. The optimal rehabilitation scheduling time generally ranges from 5
to 10 years with integer values are to be only selected in the optimal assessment process. The
structural number associated with rehabilitated pavement (SNR) is estimated as outlined earlier
with the corresponding deterioration transition probabilities are predicted using either one of the
presented empirical models. The deterioration transition probabilities are used to estimate the
distress ratings, DR(n + k), associated with rehabilitated pavement which are then used along
with the distress ratings, DR(k), for original pavement to compute the life-cycle average DR.
The life-cycle cost is also estimated using potential cost items and used along with the life-cycle
average DR to estimate the cost-effectiveness ratio. A sample presentation is next presented to
demonstrate the entire optimal assessment process.

3. Sample presentation
A case study is presented in this section that mainly focuses on predicting the performance
of a rehabilitated pavement structure using relevant heterogeneous deterioration transition
probabilities estimated from the proposed Empirical-Markovian-based model. A number of
potential rehabilitation strategies are then investigated for the purpose of identifying the optimal
rehabilitation strategy and its optimal scheduling time.

3.1. Performance of original pavement structure
The sample pavement structure under consideration belongs to a major urban arterial located in
the city of Nablus, Palestine, which was designed to withstand 5-million ESAL applications. The
pavement structure was constructed using 12-cm high-stability asphalt concrete (D1) and 50-cm
aggregate base (D2). The corresponding asphalt structural number (SN1) is 2.1 obtained using
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0.44 original layer coefficient (a1). Abaza (2015) predicted the original pavement performance
for this urban arterial using mainly the initial and terminal deterioration transition probabilities
(P1,2 and P9,10) with the remaining transition probabilities estimated from linear interpolation
as indicated by Equations (21a) and (21b) considering a Markov chain with 10 condition states.
Equation (21a) was used for pavement performance associated with increasingly higher deterio-
ration transition probabilities (superior performance) while Equation (21b) used for performance
with decreasingly lower deterioration transition probabilities (inferior performance). The initial
and terminal deterioration transition probabilities for the first transition (k = 1) were estimated
from pavement distress assessment and found to be (0.182 and 0.384) and (0.650 and 0.180) for
superior and inferior performance trends, respectively.

P(k)i,i+1 = P(k)1,2 + (i − 1)

(
P(k)9,10 − P(k)1,2

8

)
(i = 2, 3, . . . , 8), (21a)

where, P(k)1,2 < P(k)2,3 < · · · < P(k)9,10,

P(k)i,i+1 = P(k)1,2 − (i − 1)

(
P(k)1,2 − P(k)9,10

8

)
(i = 2, 3, . . . , 8), (21b)

where: P(k)1,2 > P(k)2,3 > · · · > P(k)9,10.
Abaza (2015) estimated the model exponents (A and B) associated with Equation (6) from the

minimisation of SSE and found to be (1.4 and 1.2) and (0.7 and 0.4) for superior and inferior per-
formances, respectively. Equation (6) was then used to predict the heterogeneous deterioration
transition probabilities for an analysis period comprised of 20 transitions. One year is consid-
ered to be equivalent to one transition. The annual DRs were estimated using Equation (3) with
Figure 2 showing the corresponding performance curves generated for the two types of pavement
performance. The superior performance was identified over the arterial segments that were built
on subgrade with good bearing strength while the inferior one was spotted over segments that
were built on subgrade with poor bearing strength.

Figure 2. Sample pavement performance curves for original pavement predicted using heterogeneous
Markov chain.
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Table 1. Sample modified SNs for potential rehabilitation strategies.

n DR (n) F1 (n) Dm (cm) �D1(n) (cm) SN′
1(n)

(a) Superior performance
5 83.96 0.884 0 2.5 2.31
6 80.90 0.852 0 3.0 2.33
7 77.56 0.816 0 3.5 2.34
8 73.96 0.778 0 4.5 2.44
9 70.08 0.738 0 5.5 2.53
10 65.98 0.695 0 6.5 2.61
(b) Inferior performance
5 64.22 0.676 2 6.5 2.33
6 58.75 0.618 2 7.5 2.41
7 53.53 0.563 3 9.0 2.47
8 48.57 0.511 3 9.5 2.48
9 43.86 0.462 4 10.5 2.50
10 39.41 0.415 4 11.5 2.61

Table 2. Sample cold milling thickness as a
function of asphalt strength reduction factor.

F1 (n) Dm (cm)a

1.0–0.7 0
0.7–0.6 2
0.6–0.5 3
0.5–0.4 4
0.4–0.3 5
0.3–0.2 6
0.2–0.0 –b

aCold milling thickness recommended not to exceed half
the existing asphalt thickness.
bComplete removal of existing asphalt concrete layer.

3.2. Performance of rehabilitated pavement structure
The performance of a sample of potential rehabilitation strategies to be applied to the outlined
original pavement structure has been considered in this section. The sample potential rehabilita-
tion strategies have been selected to mainly consist of cold milling and overlay. Table 1 provides
the selected cold milling thickness (Dm) and overlay thickness, �D1(n), for both types of pave-
ment performance. The cold milling thickness is selected using the tentative guidelines provided
in Table 2 mainly depending on the asphalt strength reduction factor, F1(n), which is computed
as defined in Equation (14). The rehabilitation scheduling time (n) has been varied from 5 to
10 years with the corresponding distress ratings, DR(n), estimated using the models provided in
Figure 2. The modified asphalt structural number, SN′

1(n), has been calculated using Equation
(13a) with the corresponding modified layer coefficient, a′

1(n), computed from Equation (14).
The overlay coefficient, a1(n), is assumed equal to 0.44. The overlay thickness has been selected
so there is a consistent gradual increase in the modified asphalt SN to counterbalance the progres-
sive increase in traffic loading with its value at 5-year rehabilitation scheduling time is greater
than the 2.1 value associated with the original asphalt layer.
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Table 3. Sample initial deterioration transition probabilities for potential rehabilitation strategies with
superior performance.

P1,2(n + k)

k P1,2(k) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

1 0.182 0.200 0.206 0.214 0.212 0.211 0.212
2 0.197 0.216 0.223 0.231 0.229 0.229 0.230
3 0.208 0.228 0.236 0.244 0.242 0.241 0.242
4 0.220 0.241 0.249 0.258 0.256 0.255 0.256
5 0.233 0.256 0.264 0.273 0.271 0.271 0.272
6 0.246 0.278 0.289 0.287 0.286 0.287
7 0.260 0.305 0.303 0.302 0.303
8 0.275 0.320 0.319 0.320
9 0.290 0.336 0.338
10 0.307 0.358

Table 4. Sample terminal deterioration transition probabilities for potential rehabilitation strategies with
superior performance.

P9,10 (n + k)

k P9,10 (k) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

1 0.384 0.421 0.435 0.451 0.447 0.446 0.447
2 0.415 0.456 0.470 0.487 0.483 0.482 0.484
3 0.439 0.482 0.497 0.515 0.511 0.509 0.512
4 0.464 0.510 0.525 0.544 0.540 0.538 0.541
5 0.491 0.539 0.556 0.576 0.571 0.570 0.572
6 0.519 0.587 0.609 0.604 0.602 0.605
7 0.548 0.643 0.637 0.636 0.639
8 0.580 0.675 0.673 0.676
9 0.613 0.711 0.714
10 0.648 0.755

Equation (15) is then used to predict the heterogeneous deterioration transition probabilities
associated with potential rehabilitation strategies, P(n + k)i,i+1, as a function of the heteroge-
neous transition probabilities for original pavement, P(k)i,i+1, 3% annual traffic growth rate (r),
2.1 original asphalt structural number (SN1), and the corresponding modified asphalt structural
numbers, SN′

1(n). Tables 3 and 4 provide the initial and terminal deterioration transition prob-
abilities, respectively, for superior performance while Tables 5 and 6 provide similar results for
inferior performance considering a variable rehabilitation scheduling time (n). The remaining
deterioration transition probabilities are then estimated using Equation (21) for each transition
within the analysis period. The results provided in Tables 3 and 4 indicate that the transition prob-
abilities are generally 9–16% higher than the values associated with original pavement whereas
the results in Tables 5 and 6 are 6–13% higher, an indication that the deployed rehabilitation
strategies are inadequate to maintain the same original deterioration transition probabilities.

The annual DRs associated with potential rehabilitation strategies, DR(n + k), are then esti-
mated using Equation (3) with results provided in Tables 7 and 8 for superior and inferior
performances, respectively. The exponents (A and B) of Equation (15) are assumed to take on
the same values as the ones estimated for the original pavement structure. This assumption is a
reasonable one provided the performance trends for both original and rehabilitated pavements
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Table 5. Sample initial deterioration transition probabilities for potential rehabilitation strategies with
inferior performance.

P1,2 (n + k)

k P1,2 (k) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

1 0.650 0.691 0.696 0.704 0.718 0.730 0.733
2 0.674 0.717 0.722 0.730 0.744 0.757 0.760
3 0.692 0.736 0.741 0.750 0.764 0.777 0.780
4 0.712 0.757 0.763 0.771 0.786 0.800 0.803
5 0.732 0.779 0.784 0.793 0.808 0.822 0.825
6 0.752 0.806 0.815 0.830 0.845 0.848
7 0.773 0.837 0.853 0.868 0.872
8 0.795 0.878 0.893 0.896
9 0.817 0.918 0.921
10 0.840 0.947

Table 6. Sample terminal deterioration transition probabilities for potential rehabilitation strategies with
inferior performance.

P9,10 (n + k)

k P9,10(k) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

1 0.180 0.191 0.193 0.195 0.199 0.202 0.203
2 0.186 0.198 0.199 0.201 0.205 0.209 0.210
3 0.192 0.204 0.206 0.208 0.212 0.216 0.216
4 0 .197 0.210 0.211 0.213 0.218 0.221 0.222
5 0.203 0.216 0.218 0.220 0.224 0.228 0.229
6 0.208 0.223 0.225 0.230 0.234 0.234
7 0.214 0.232 0.236 0.240 0.241
8 0.220 0.243 0.247 0.248
9 0.226 0.254 0.255
10 0.233 0.263

Table 7. Sample predicted DRs for potential rehabilitation strategies with superior performance.

DR (n + k)

k DR(k) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

0 95.00 95.00 95.00 95.00 95.00 95.00 95.00
1 93.18 92.99 92.93 92.86 92.87 92.88 92.88
2 91.16 90.76 90.63 90.48 90.50 90.51 90.51
3 88.97 88.33 88.11 87.89 87.92 87.94 87.94
4 86.58 85.69 85.37 85.05 85.10 85.13 85.13
5 83.98 82.79a 82.37 81.95 82.00 82.04 82.04
6 81.15 79.08a 78.54 78.61 78.65 78.65
7 78.05 74.79a 74.88 74.94 74.94
8 74.66 70.77a 70.84 70.85
9 70.93 66.32a 66.33
10 66.84 61.33a

aTerminal distress rating (DR(2n)).
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Table 8. Sample predicted DRs for potential rehabilitation strategies with inferior performance.

DR (n + k)

k DR (k) n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

0 95.00 95.00 95.00 95.00 95.00 95.00 95.00
1 88.50 88.09 88.02 87.96 87.82 87.70 87.66
2 82.16 81.37 81.25 81.12 80.86 80.63 80.56
3 76.04 74.91 74.74 74.56 74.20 73.87 73.76
4 70.14 68.72 68.50 68.28 67.82 67.40 67.27
5 64.47 62.78a 62.52 62.26 61.72 61.23 61.07
6 59.02 56.82a 56.53 55.92 55.36 55.18
7 53.80 51.07a 50.40 49.79 49.60
8 48.81 45.16a 44.51 44.30
9 44.05 39.52a 39.31
10 39.52 34.60a

aTerminal distress rating (DR(2n)).

Figure 3. Predicted performance curves for both original and rehabilitated pavements in the case of
superior performance (A = 1.4, B = 1.2).

are similar for the same project. The DRs provided in Tables 7 and 8 have been used to construct
Figures 3 and 4 for the cases of 5 and 10 years rehabilitation scheduling times (n). It can be con-
cluded from Figures 3 and 4 that the performance trends associated with rehabilitated pavement
are similar to the ones associated with original pavement considering both superior and inferior
performances, respectively. This conclusion considerably justifies the assumption made for using
the same exponent values as of the original pavement. In essence, this provides a means for val-
idating the efficacy of the empirical model presented in Equation (15) especially in the lack of
any distress data for rehabilitated pavement. The calibration procedure outlined in Abaza (2015)
can be used to obtain revised values of the model exponents (A and B) once adequate distress
records become available or simply applying Equation (17).
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Figure 4. Predicted performance curves for both original and rehabilitated pavements in the case of
inferior performance (A = 0.7, B = 0.4).

Table 9. Sample cost-effectiveness ratios for potential rehabilitation strategies.

n Dm (cm) �D1(n) (cm) PRC ARC AIC ALC DRLC RCE

(a) Superior performance
5 0 2.5 5.62a 0.63a 3.06a 3.69a 89.54 24.26b

6 0 3.0 6.75 0.64 3.06 3.70 88.11 23.81
7 0 3.5 7.88 0.65 3.06 3.71 86.54 23.33
8 0 4.5 10.12 0.75 3.06 3.81 85.02 22.31
9 0 5.5 12.38 0.83 3.06 3.89 83.40 21.44
10 0 6.5 14.62 0.89 3.06 3.95 81.64 20.67
(b) Inferiorperformance
5 2 6.5 19.12a 2.13a 3.06a 5.19a 78.93 15.21b

6 2 7.5 21.38 2.02 3.06 5.08 75.87 14.94
7 3 9.0 27.00 2.23 3.06 5.29 72.87 13.77
8 3 9.5 28.12 2.07 3.06 5.13 69.82 13.61
9 4 10.5 32.62 2.18 3.06 5.24 66.85 12.76
10 4 11.5 34.88 2.13 3.06 5.19 64.08 12.35

aAll cost rates are in the unit of $/m2.
bOptimal rehabilitation strategy based on the highest RCE.

3.3. Sample optimal assessment of potential rehabilitation strategies
Optimal assessment of potential rehabilitation strategies is to be performed using the cost-
effectiveness ratio as defined in Equation (20). The present rehabilitation cost rate (PRC) mainly
includes the cost of cold milling and overlay which is locally estimated at $2.25/m2 per cen-
timetre of the total cold milling and overlay thickness, Dm + �D1(n), with results provided in
Table 9. It is then converted to an equivalent annual cost (ARC) using Equation (19) with 2%
annual discount rate (i). The present value of the initial construction cost rate (PIC) is also locally
estimated at $50/m2. Similarly, it is converted to an equivalent annual cost (AIC) of $3.06/m2

using 20-year service life (2n) and equally assigned to all investigated rehabilitation strategies.
The annual life-cycle cost rate (ALC) is the sum of both the annual rehabilitation cost (ARC) and
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Figure 5. Flowchart depicting the main steps involved in predicting the life-cycle average DR for a
particular rehabilitation strategy.

annual initial construction cost (AIC) as provided in Table 9. The table also provides the life-
cycle average distress rating (DRLC) computed for each rehabilitation strategy using Equation
(18). The flowchart shown in Figure 5 summarises the main steps involved in the calculation of
the life-cycle average distress rating (DRLC) for a particular rehabilitation strategy.

The cost-effectiveness ratio (RCE) is determined as the ratio of the life-cycle average DR to
the life-cycle cost rate. The (RCE) values for superior performance are about 65% higher than
the corresponding ones for inferior performance. The optimal rehabilitation strategy is the one
associated with 5-year scheduling time considering both types of pavement performance, which
is essentially the one with the highest life-cycle average DR, but not necessarily the one with the
lowest life-cycle cost as in the case of inferior performance. It can also be noted that there is a
small variation range in the life-cycle cost rate compared to a larger one in the life-cycle average
DR especially in the case of inferior performance. In the case of superior performance, the life-
cycle cost rates associated with 5–7 years scheduling times (n) are very similar. The cost of
routine maintenance, if considered, would be the minimum in the case of 5-year scheduling time
and it is expected to exponentially increase with the increase in the rehabilitation scheduling time.
The terminal distress rating, DR(2n), as provided in Tables 7 and 8 can be used in conjunction
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with the cost-effectiveness ratio to select an optimal rehabilitation strategy. For example, in the
case of superior performance, the rehabilitation strategy with 8-year scheduling time can be
selected if a terminal DR of 70 is desired.

4. Conclusions and recommendations
The presented sample results have indicated that the proposed empirical model can yield reliable
estimates of the heterogeneous transition probabilities and consequently the future performance
of rehabilitated pavement mainly relying on the transition probabilities associated with orig-
inal pavement. However, it is important to point out that the presented Empirical-Markovian
approach has been verified considering only the typical performance trends shown in Figure 2.
The requirements for implementing the proposed Empirical-Markovian approach are also mini-
mal and mainly rely on pavement distress records and original pavement design parameters. Most
highway agencies periodically collect pavement distress data which can be used to estimate the
required transition probabilities. According to the presented empirical model, if rehabilitation is
to be scheduled after (n) transitions from the original construction date, then (n) estimates of
the transition probabilities are required for the original pavement. They can either be estimated
from historical pavement distress records or predicted using Equation (6) mainly relying on the
first-year transition probabilities (Abaza, 2015, 2016). However, if historical distress records are
unavailable for a specific highway, then distress data from a similar new highway can be col-
lected to estimate the first-year transition probabilities, which are then applied to predict the
remaining heterogeneous transition probabilities using Equation (6).

The presented sample results have indicated the reliability of the proposed cost-effectiveness
ratio in yielding optimal rehabilitation strategies deploying both the life-cycle performance and
life-cycle cost. The cost-effectiveness analysis results have indicated that the optimal rehabili-
tation strategy is the one associated with the highest life-cycle performance, but not necessarily
with the lowest life-cycle cost as in the case of inferior performance. They have also indicated
that significant improvements in the life-cycle performance can be achieved with mild increases
in the life-cycle cost especially in the case of inferior performance. The life-cycle cost can be
restricted to the initial construction cost and rehabilitation cost as performed in the sample pre-
sentation, but other cost items can be considered if so desired. The life-cycle performance can
be represented by the average DR as proposed in this paper or alternatively by the area falling
under the life-cycle performance curve. Another main advantage of the proposed Empirical-
Markovian approach is that it can effectively account for the structural capacity of the individual
rehabilitation strategies as represented by the corresponding modified SNs. In essence, the pro-
posed Empirical-Markovian approach provides a simplified performance–based procedure for
the design of flexible pavement. For example, in the case of reconstruction, the pavement engi-
neer can specify different values for the new asphalt concrete and aggregate base thicknesses and
then select the design that yields a desirable predicted average distress rating (DRLC) or terminal
distress rating, DR(2n).
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