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Abstract

Given a right B-module M » 2 module @ ¢ ¢

[M] is said to be
weakly injective in o[M]

if for every finitely generated submodule N
of the M-injective hull §, N is contained in a submodule ¥ of €} such

that ¥ >~ Q. Weakly projective modules in oM ] are defined dually.

Several characterizations of (weakly) semisimple modules are given in
terms of tight and cotight modules in clM]

1. INTRODUCTION

Throughout this paper all rings are associative with identity and all mod-
ules are unitary. Any terminology used but not defined in this paper will be

standard. Sources for standard terminology include [1, 4, 13]. We denote the
category of all right R-modules by Mod-R and for any M € Mod-R, o[M]
stands for the full subcategory of Mod-R whose objects are submodules of

-generated modules (see [13]). Given 2 module X r_the injective hull of X
in Mod-R (resp., in ¢[M]) is denoted by E(X) (resp., X). The purpose of this
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= s to further the study of the concepts of weak injectivity (projectivity)

paper 1 . -

38 d in [3], and [14]. S

in Qﬁwﬁwﬂmwgwmﬂmww Q .ﬁm@ N € o[M], we call Q Swmﬁ% N - HEonSMM M
H.m for every homomorphism ¢ : V l\,@u there exists a Wogod.pﬂwu Hm

.lﬁ&,_\ H () and a monomorphism o : @ —  such that ¢ = o@. Equivalently,

g

Py N ;
there exists a submodule X of ) mcmv ﬁmm.\»w_ ﬂpm‘wﬂ Yo X ME me‘ W@“WMW M
/ is called weakly injective in o[M] if for every !
gc e injecti 1{), N is contained in 2 submodule ¥ o
" f the M-injective hull @, IV is ed in 2 .
.M%MHMMQMMW M\02 @m Equivalently, if @ is weakly N-injective for all finitely
su >~ Q.
. dules N in o[M]. . o
mmuM.,wMMMHM X is N-tight in o[M]if every quotient of N which is mﬂvm@wwﬂm
in the M-injective hull of X is embeddable in X. A module X is tight in
in

(M] if it is tight in o[] relative to all finitely generated submodules of its
o
- M-injective hull.

Given two modules @) and N € o[M], we call Smmiu\ WNM%QWMMM
in o[M] if for every homomorphism ¢ : P(Q) = N Ws.* ere (@) is the

M]-projective cover, there exists a homomorphism @ : Q@ — i :
i. w hism o : P(Q) — @ such that ¢ = Fo. Equivalently, if for ev
O hamo E.mg @ : P(Q) -~ N, there exists a submodule X of W@lm&
o WMMD NHNMVMWV /X >~ Q. A module @ € o{M] is called weakly projective
anwmﬁ‘_wm it is weakly N- projective for all mﬂﬁw% M -mm%o&@%@n“ﬁﬂ%”
N in o[M]. Given two modules ¢ and N € o[M], we ca . i
o[M] wm for every epimorphism ¢ : P(@Q) = MM , where %ﬁem Homwmq&m\a Wm
projective cover, there exists an m@HBoﬂerB E @ :WH ..b.woidm s
(weakly) semisimple if every module X in o[M] is (weakly) in]

2. Weak- Projectivity (Cotightness) in ¢[M].

In this section we study some of the basic results on weak projectivity
(cotightness) in o [M].

jective cover P in o[M]
2.1. Let N,Q € o[M]- IfQhasa projecti .
i Hrmowﬁmﬂvwwa 7:P — Q. Then @ is Zgwuo_moﬁﬁm in o[M]if mbm oMHM
MMONMHQMQ homomorphism ¢ : P — N, there exists ¢ : @ — N such tha
g = ¢. Equivalently, ¢(kerr) = 0.
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Proof.  Ouly if direction. Let ¢ : P — N be a homomorphism. We sha]]

first show that @(Kerr) = 0. Let T = @(Kern) and let 77 : N — N/T be

the natural projection. Then ¢ induces mw (g) = mre(p), where ¢ = 7(p)
) .

It follows that ¥ 7 = nr¢. Since @ is N—projective in o[M)], there exists 5

M

map f: Q) — N such that ¥= mrep. Clearly, (p — 87)P € T. We claim that

Plkerm) = 0.

Let X = {p € Plg(p) = Br(p)}. We shall show that X = P. Let
z € P. Since (p — f7)(z) € T = @(Kerr), there exists & € Kerr such that
(¢ — B7)(z) = w(k). Thus, (e — k) = fr(z — k), since (k) = 0. Therefore
z —k € X. Thus, P(M) = X + ker¢. This interns imply that P(M) = X
since kerg < P(M). Therefore, (¢ — f7)P(M) = 0. In particular, (o —
Br)Kerr = 0, yielding ¢(ker7) = 0. Equivalently, there exists ¢’ : Q ~ N
such that o'n = .

Conversely, let & : Q@ — N/K be a homomorphism. The projectivity
of P implies the existence of & : P — N such that &= = 7x®'. By our
hypothesis there exists ®” : @ — N such that "7 = &’. It follows easily
that 7x®" = &, proving that @ is N—projective in o[M].

The rext theorem is a very useful characterization of weak projectivity.

Theorem 2.2. Let N, Q € o[M]. If Q has a projective cover P in ¢[M]
via an epimorphism m : P — Q. Then @ is weakly N-projective in o[M] if
and only if for every homomorphism ¢ : P — N there exists X C kery such
that P/X =~ (.

Proof. Let ¢ : P — N be a homomorphism. Assume that Q is weakly
N— projective in ¢[M] and let § : Q — N be the homomorphism and
o : P - N the epimorphism as in the definition of weak N—projectivity.
Since ¢ = @o, kero C kery. Thus the implication is proven by taking
X = kero. Conversely, if X € P satisfies the conditions in the state
ment of the theorem, then the isomorphism P/X = @, composed with
the natural projection 7x : P — P/X is an epimorphism o satisfies that
kero = X C kere. It follows that the mapping & : @ — N given by
®(g) = w(p}, whenever o(p) = q is well-defined and satisfies ¢ = @o, proving
that @ is weakly N—projective.
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For cotightness, following similar proof as in Theorem 2.2 one gets the

" following charactenization.

Theorem 2.3. Let N,Q € o[M]. If Q has a projective cover P in o[M]

. via an epimorphism 7 : P — Q. Then @ is N-cotight in ¢{M] if and only

if for every homomorphism ¢ : P — NN there exists X C kerp and K C Q)
such that P/ X ~ Q/K.

The class of weak projectivity in ¢[M] is closed under submodules and
quotient modules.

Proposition 2.4. For modules N, L € o[M], the following conditions
are equivalent:

(a) L is weakly N-projective in o{M];

(b) L is weakly K-projective in o[M] for every submodule K of IV;

(¢) L is weakly N/K-projective in o[M] for every submodule K of N;

() for every submodule K of N, and for every epimorphism ¢ : P(L) —

" K, where P(L) is the o[M]-projective cover, there exists an epimorphism
- $: K — L and an epimorphism o : P(L) -+ L such that ¢ = @o.

" Proof. (a) = (). Let K be a submodule of NV and let ¢ : P(L) — K be

a homomorphism. Since L is weak N-projective, f = ig factors through L

~ by an epimorphism ¢ : P(L} — L and a homomorphism f:L— N. Since o
_is onto, the range of f equals the range of f and so is contained in K. Define

3:Q— Kbygq) = Flg). Then it follows that ¢ = @a.

(B) = (c). Let K be a submodule of N and let ¢ : P(L) — N/K be a
homomorphism. By the projectivity of P(L},there exists 2 homomorphism
@ : P(L) — N such that v = rx@. Since L is weakly N—projective, there
exists an epimorphism ¢ : P(L) — L and a homomorphism & : L — N
such that @ = Fo. It follows that ¢ = mxde, proving that L is weakly
N/ K — projective.

(¢) = (d) and (d) = (a) are straightforward.

Finite direct sums of weakly projectives {cotights) in ¢[M] and superfu-
ous covers of weakly projective modules are also weakly projective in o[M].
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Proposition 2.5.  For modules N, L and K € o[M], we have the
following: s

(2) if L and K are weakly N-projective (cotight) in o[M]
weakly N-projective (cotight) in ¢[M],

(b) if L is weakly N-projective in ¢[M] and K is a superfluous co
L then K is weakly N-projective in o[M],

(¢) if 2 module X in o[M)]
tive cover in ¢{M], then X is projective in o[M]. Consequently, a finitely
generated weakly projective module in o[M] is indeed projective in oM.

Proof.  Straightforward from the definition.

. Proposition 2.6. Let {X;}; be a class of weakly N-projectives (cotight
in g[M] and @ X; has a projective cover in o[M].
N-projective (cotight) in o[M].

)

Proof.

The proof follows directly from the fact that in this case PP,
B P(X:).

X:)

The next theorem shows the difference between weak-projectivity and
cotightness in o{M].

Theorem 2.7. Given modules N,Q € o[M], and assume Q is supple- ,
mented and has a projective cover 7 1 P —  in ¢[M]. Then Q is weakly

N -pro jectivein o[M] if and only if for every submodule X of N and for every
epimorphism ¢ : P ~ K, there exists an epimorphism @ : Q — K such that

for every supplement L’ of ker@ in Q, there exists a submodule L of P such

that P/L ~Q/L and L+ kerg = P.

Proof.

be an epimorphism onto a submodule X ¢ N. Then there exists an epi-
morphism ¢ : P — @ and a homomorphism @ : Q — X such that ¢ po.

Let L’ be a supplement of ker 3 in ¢ and let [ = o (). For an arbitrary -

p € P, o(p) may be writter as o(p) =V + &, with ' € L' and ¥ € kerip. It
follows that o(p) = Go(p) = G(I') + @(k") = (). Choose p; € oI C L.
Then o(p1) = I'. On the other hand, ¢(p1) = go(p) = G(I) = w(p). So

sthen Lg g is

Ver of

is weakly projective relative to its Projec.

Then @7 X; is weakly

=

Assume () is weakly N-projective in o[M] and let ¢ : P — K
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p—p1 € kere and so L + kere = P. The fact that P/L = Q/L follows
since L is the kernel of the epimorphism 7o : P — Q/L'. Conversely, let
us assume that for every submodule K C N and for every epimorphism
i P — K there exists an epimorphism ¢ : {4 — K such that ¢ = @o
snd for every supplement L' of ker in ), there exists a submodule L C
such that P/L =~ Q/L' and L + kerp = P. Let v : P — K be an epi-
orphism and & : @ — K the corresponding epimorphism. Al we need
s to produce another epimorphism o : P — @ such that ¢ = $o. Let L'
e a supplement for ker@ and let I be the corresponding submodule of P.
et 9 1 P/L — M/L' be an isomorphism. The Chinese remainder theorem
‘yields that the map m + kerg N L — (M + ker@,m -+ L") is an isomor-
phism between M/(Kerg N L and Mjkerg x M/L'. Also, Mjkerg 22 K
via m -+ ker@ — @(m) . So, one gets an isomorphism ¥ : M/Kerg N L' —
K x MJL' such that ¥(m + Kergg N\ L') = (${m), 7r,(m)). The isomorphism
¥ induces an onto map ® = Uny : P — M/L'. Sicce L + keryp = P, the
map & : P — K x M/L given by a{p) = (p(p), ®(p)) is onto. The induced
epimorphism o = U~'a : P — M/(Kerg N L'} may then be lifted to a
‘map o : P — Q. Since Kerg N L' <« @, ¢ is indeed an epimorphism. It
nly remains to show that ¢ = $o. Let us refer for the rest of the proof to
M rcernre SOPly as 7. We do know that 7o = ¢’ = ¥}, hence Uro = a.
Let p € P be arbitrary. Then ¥(c(p) + Kerg N L) = a(p) = (¢(p), ®(p))-
On the other hand, ¥(o(p) + Kerd N L') = (Go(p),¢(p) + L’). Comparing
the first component in both expressions yields the desired equality, proving
that € is weakly N-projective in o{M].

Corollary 2.8. Given modules N,Q € ¢[M]. If Q is hollow then @ is
N-cotight in o[M] iff Q is weakly N-projective in o[M].

Proposition 2.9. Given modules N, Q € ¢[M]. If Q is self-projective
and N-cotight in o[M], then Q is indeed N-projective in o[M].

Proof. Let ¢ : P - N . Since ) is N—cotight in ¢[M] there exists an
epimorphism & : ¢ — Im(p) and by the projectivity of P, there exists a
homomorphism f : P — Q such that ¢ = @f. By self-projectivity of () and
Theorem 3.1, there exists a homomorphism m.,“ @ -+ @ such that f = fr. It
follows that ¢ = @fr, proving that Q is N—projective.
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A finitely generated direct summand § of the projective cover of g, cotj

; : - (a) L is weakly N-injective in o[M);
module X in o[M] yields a direct summand {isomorphic to S) of X

. {b) L is weakly K-injective in o{M] for every submodule K of N;

(c) L is weakly N/K-injective in o{M] for every submodule K of N;

- (d) for every submodule K of N, and for every monomorphism
/K — L, there exists a monomorphism @ : N/K -+ L and a monomor-
phism @ : N/K — L such that ¢ = ¢.

ght

WH..OHVOmmSos 2.10. Let Q be a cotight module in o[M] whose projectiv,
coverin o[M] has a finitely generated direct summand 5. Then Q has a dige ;
summand isomorphic to S. °

. Proposition 3.3.  For modules N,L and K € o[M], we have the

following:
{a) if L and K are weakly N-injective (tight) in o[M] then L & K is

weakly N-injective (tight) in [M),
(b) if L is weakly N-injective in o[M] and L is an essential submodule of
K then K is weakly N-injective in o[M].

Proof.  Since § is finitely generated, Q is S —~cotight. Thus the Projection
map 75 : P(Q) — § yields an epimorphism 7% : Q — 5. Since S is Projective
we get ) = § @ kerrk, proving our claim.

.m:.ovo&ﬂoﬁ .m.HH. Let Mg be locally noetherian, and let @, N be
finitely generated in o[M]. If Q is N-cotight in o[M] and NV is (-cotight i
o[M] and Q/J(Q) ~ N/J(N) ther Q ~ N.

Proposition 3.4. Givenmodules N, Q € o[M], Q is weakly N-injective
in o[M] if and only if for every submodule K of NV and for every monomor-
phism ¢: N/K — @, there exists a monomorphism & : N/K — @, and
for every complement L of H(N/K) in @, there exists L' C @ such that
INe(N/K)=0and ' >~ L.

wuw.oom. Let o : P(Q) — N be the epimorphism induced by the isomor.-
phism between Q/J(Q) and N/J(N). Since Q is N-cotight in o[M], Nisa
homomorphic image of Q. Similarly, Q is a homomorphic image of N. Since
@ and N are finitely generated over a locally noetherian module, Q =~ N.

3. Weak- Injectivity (tightness) in of M]. Corollary 3.5. Given modules N, @ € ¢{M]. If Q is uniform then Q is
N-tight in o[M] iff Q is weakly N-injective in o[M].
In this section we dualize most of the basic results on weak projectivity |

in o[M] given in the previous section and the proof is dualizable in most of
these cases.

Proposition 3.6. (Given modules N,Q € o[M]. If Q is self-injective
and N-tight in o[}M], then @Q is indeed N-igjective in o[M].

Proposition 3.7. Let M be a locally artinian module, and let IV, Q) be
! finitely generated modules in o[M]. If Q is N-tight in o[M] and N is Q-tight
. in ¢[M] and Soc(Q) =~ Soc(N) then @ ~ N.

. .wuwoﬁ.Ommﬂom ww Let Q,N € o[M]. Then Q is weakly N-injective
in o[M] if and only if for every homomorphism @ : N — §, there exists a
submodule X of () such that p(N)CX~Q

- Proof. Let o : N — E(Q) be the monomorphism induced by the iso-
morphism between Soc(@) and Soc{N). Since Q is N-tight in o[M], N is
embeddable in ¢. Similarly, @ is embeddable in N. Since @ and N are
finitely generated over a locally artinian module, @ ~ N.

H_pw class of weak injectivity in o[M] is closed under submodules and
quotient modules as it is shown in the next proposition.

Proposition 3.2. For modules N, [ o[M], the following conditions
are equivalent:
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4. A Characterization of Semisimple Modules.

Given a module M, it is easy to show that every module K € o[M] i
&a@mﬁ summand of a tight module Q = K @ Qmwm& in o[M], where « ; )
infinite cardinal number. Similarly, if M is projective and mv,m&.mnﬂ in v
then for every module K € ¢[M], K @ P(K)“), where w is an infinite M.E‘
u&.wcn&mm is cotight in o[M]. The proof of the next two theorems mom.&
easily from the above disscution. First recall that a module M is (we H%é
semisimple if every K € o[M] is {weakly) injective in o[M)] o

1]
Theorem 4.1. For a module Mp. The following are equivalent:
(a) M is semisimple; .
(b} M is projective and perfect and every cotight module in of
(quasi-) discrete; ul

: ?mhu M is projective and perfect and every discrete module is cotight m.
oM

mm.u M is projective and perfect and every cotight module in o[M)]
(quasi-} continuous;
(e) every ﬁ.mmrn module in o[M] is (quasi-) discrete;
(f) every tight module in o[M] is (quasi-) continuous;
(g) every continuous module is cotight in o[MT;
. ?v every {direct summand of a) tight module in o{M] is (injective)
jective in o[ M];
. 3 M is projective and perfect and every cotight module in o[M] is in
jective (projective) in ¢{M];
Cu M is projective and perfect in o[M] and every direct summand of 4.
cotight module in o[M] is cotight in o[M];
Q& M is projective and perfect in ¢[M] and every (divect summand of a
ooﬂmmwpﬁ module in o[M] is quasi-projective in ¢[M]
1
olM};
Tbv M is projective and perfect in o{M] and every direct summand of a
cotight module in ¢[M] is injective in o[M]. |

2
@

o

Pro-

: | [7]

every direct summand of a tight module in oM ] is quasi-injectjve i

HWmow.mg 4.2. For a module M r. The following are equivalent:
(a) M is weakly semisimple;

(b)
odule in o[M] is weakly injective in o[M];
(c) every direct summand of weakly injective module in e[M] is weakly

octive in o[ M].
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M is projective and perfect and every direct summand of a cotight
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Soé

Abstract
Iz this paper we introduce a new generalizations of §—closed and
§—open sets. Using these sets, we obtain a new characterization of
H —closed spaces. Among other results, it is shown that an N-compact
space over which every one point set is #—closed is a completely regular
normal space.

1. Introduction. The concepts of §—closure and 0—closure operators

vere first introduced by Velicko [16]. Although §—interior and §—closure
operators are not idempotents, the collection of all §—open sets in 2 topo-
“logical space (X, T') forms a topology I'; on X, called the semiregularization
- topology of ' weaker than I and the class of 21l regular open sets in I forms
_an open basis for [, and the collection of all f—open sets in a topological
space (X, T") forms a topology I's on X weaker than T';. So far, numerous
~ applications of such operators have been found in studying different types of
- continuous like maps, axioms of separation, and above all, to many impor-
tant types of compact like properties. For a set A in a space X, let us denote
- by Int(A) or A® and cls(A) or A for the interior and the closure of A in X,
respectively.

Following Velicko, a point z of a space X is called a §—adherent point of
a subset A of X iff Int{clsU) M A s §, for every open set U containing z.



