Tilings and Bussola for Making Decisions

A. S. Mousa, M. S. Mousa, R. M. Samarah and A. A. Pinto

Abstract We introduce the yes-no decision model, where individuals can make the
decision yes or no. We characterize the coherent and uncoherent strategies that are
Nash equilibria. Each decision tiling indicates the way coherent and uncoherent
Nash equilibria co-exist and change with the relative decision preferences of the in-
dividuals for the yes or no decision. There are 289 combinatorial classes of decision
tilings, described by the decision bussola, which demonstrates the high complexity
of making decision.

1 Introduction

The main goal in Planned Behavior or Reasoned Action theories, as developed in
the works of Ajzen (see [2]) and Baker (see [3]), is to understand and forecast the
way individuals turn intentions into behaviors. Almeida-Cruz-Ferreira-Pinto (see
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[1]) created a game theoretical model for reasoned action, inspired by the works of
J. Cownley and M. Wooders (see [6]). They studied the way saturation, boredom
and frustration can lead to uncoherent (or split or impasse) strategies, and no sat-
uration situations can lead to coherent (or heard or no-split) strategies. Here, we
study the yes-no decision model that is a simplified version of the Almeida-Cruz-
Ferreira-Pinto decision model. In this model, there are just two possible decisions
d that individuals can make. For instance, they have to choose between yes or no,
i.e.d € {Yes,No}. Each set of economical, educational, political, psychological and
social variables gives rise to a decision tiling that indicates all the the coherent and
no-coherent pure Nash equlibria and also the mixed Nash equilibria in terms of the
relative decision preference (taste type) of the individuals for the yes or no decision
(see [4, 9]). The yes-no decision model incorporates, in the preference neighbours
matrix (crowding type), the preference that an individual has for having other indi-
viduals making the same decision as his. The crowding type information gives rise
to 289 different combinatorial classes of decision tilings, reflecting the complexity
of the yes-no decision model (see [8, 12]). The decision bussola encodes all the in-
formation of each combinatorial class of decision tilings and indicates the way small
changes in economical educational, political, psychological or social variables can
transform one decision tiling, into another, thus creating and annihilating individu-
als and collective behavior. In this chapter, we survey, in part, the work presented in
[11, 10].

2 Yes-No Decision Model

The yes-no decision model has two types T = {#1,#,} of individuals i € I that have
to make one decision d € D = {Y,N}. Let n, > 1 be the number of individuals with
type t,,l. Let .Z be the preference decision matrix whose coordinates wl‘f indicate
how much an individual, with type 1,, likes, or dislikes, to make decision d
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The preference decision matrix indicates, for each type, the decision that the indi-
viduals prefer, i.e. the individuals taste type (see [1, 5, 6, 11]).

Let A4, be the preference neighbors matrix whose coordinates agq indicate how
much an individual, with type #,, likes, or dislikes, that an individual, with type z,,

makes decision d
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! Similarly, we can consider that there is a single individual with type t, that has to make n,
decisions, or we can, also, consider a mixed model using these two possibilities.
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The preference neighbors matrix indicates, for each type of individuals, whom they
prefer, or not, to be with in each decision, i.e. the individuals crowding type (see
[1,5,6, 11]).

We describe the individuals® decision by a strategy map S : I — D that associates
to each individual i € I its decision S(i) € D. Let S be the space of all strategies
S. Given a strategy S, let O be the strategic occupation matrix, whose coordinates
l;f = ll‘f(S) indicate the number of individuals, with type 7, that make decision d

A
ﬁ<1 1).
Y

The strategic occupation vector ¥s, associated to a strategy S, is the vector (I1,1) =
(I[(S),5(S)). Hence, Iy (resp. ny — 1) is the number of individuals, with type 7,
that make the decision Y (resp. N). Similarly, I, (resp. ny — ) is the number of
individuals, with type ,, that make the decision Y (resp. N). The set O of all possible
occupation vectors is

0= {(ll,lz) :0<;<np and 0<L < nz}.
Let U; : D x O — R the utility function, of an individual with type #{, be given by

U(Y;h,h) = of +aof(l — 1)+ oyl
Ul(N;ll,lz) = C(){V—i-a{vl(l’ll - — 1)—|—O¢%(ﬂ2—l2).

Let U, : D x O — R the utility function, of an individuals with type ,, be given by

U (Y;h,h) = @) + oy (b — 1) + )y
Uz(N;ll,lz) = a)év—i-aévz(nz—lz— 1)—|—O(QN1(711 —ll).

Given a strategy S € S, the utility U;(S), of an individual i with type Ip(i)> 18 given by
Up(iy (S(0):(S), 5(S))-

Definition 1. A strategy S* : I — D is a Nash equilibrium if, for every individual
i € Iand for every strategy S, with the property that $*(j) = S(j) for every individual
j €1\ {i}, we have

Ui(S*) = Ui(S).

Let x = a)f' — a){v be the horizontal relative decision preference of the individuals
with type | and let y = a){ — a)év be the vertical relative decision preference of the
individuals with type 2. The Nash equilibrium domain E(S) of a strategy S is the
set of all pairs (x,y) for which S is a Nash Equilibrium.

Definition 2. Let A;; = a}; +aV

;j» for i, j € {1,2}, be the coordinates of the partial
threshold order matrix.

As we will show, the partial thresholds encode all the relevant information for the
existence of Nash equilibria that are no-coherent strategies.
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3 Evolutionary Dynamics and Yes-No Decision Models

We implement the evolutionary deterministic yes-no decision models as follows (see
[11]): Fix an infinite sequence (i;,d;), with ¢t € N, of pairs (i;,d;) € I x D with the
property that every pair, contained in I x D, occurs in the sequence infinitely often.
Given a strategy S; : I — D, at moment ¢, the strategy S;;1 : I — D is defined as
follows: (1) Sry1 = ST\ {ér1}; (i) Seq1(ir1) = dry1, if ip41 increases its utility
by making decision d; instead of S; (ir+1) (knowing that S, | = S;|I\ {i;+1}), and
Sr+1(i) = S; (i), otherwise. Hence, the Nash equilibria are the fixed points, and vice-
versa, of the evolutionary decision deterministic models.

We implement the evolutionary stochastic yes-no decision models as follows: Let
P be a probability distribution that assigns a positive probability to each pair
(i,d) € I x D. Given a strategy S, : I — D, at moment #, we choose randomly a
pair (i,D) according to the probability distribution P. The strategy S;+1 : I — D is
defined as follows: (i) S;+1 = S;|I\ {i}; (i) S;+1(i) = d, if i increases its utility by
deciding d instead of S; (i) (knowing that S;1 = S;|I\ {i}), and S;+1 (i) = S; (i), oth-
erwise. Hence, the Nash equilibria are the absorbing states, and vice-versa, of the
evolutionary decision stochastic model.

4 (Coherent, Coherent) Strategies

A (coherent, coherent) strategy® is a strategy in which all individuals, with the same
type, prefer to make the same decision (see [11]). A (coherent, coherent) strategy is
described by a map C : T — D that, for every individual i, with type 7,;), indicates
its decision C(p(i)). Hence, a (coherent, coherent) strategy C : T — D determines
an unique strategy S : I — D given by S(i) = C(p(i)).

We observe that there are four (coherent, coherent) strategies:

e (Y,Y) strategy: all individuals make the decision Y;

e (Y,N) strategy: all individuals, with type #;, make the decision Y, and all individ-
uals, with type #,, make the decision N;

e (N,Y) strategy: all individuals, with type #|, make the decision N and all individ-
uals, with type ,, make the decision Y

e (N,N) strategy: all individuals make the decision N.

The horizontal H(Y,Y) and vertical V(Y,Y) strategic thresholds of the (Y,Y) strat-
egy are given by

H(Y,Y)= focfl (m—1)— Olflznz and V(YY) = focgz(nz —-1)— a{lnl.

2 or equivalently, (no-split, no-split) strategy or (heard, heard) strategy
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Fig. 1 (YY) Nash equilibria domain Q(Y,Y).

The (Y,Y) Nash equilibria domain Q(Y,Y) is the right-upper quadrant (see Figure
1y
O, Y)={(x,y):x>H(Y,Y) and y>V(Y,Y)}.

The horizontal H(Y,N) and vertical V (Y, N) strategic thresholds of the (Y,N) strat-
egy are given by

H(Y,N)=—af (n — 1)+ apn and V(Y,N)=adh(ny—1)—ad\n;.
The (Y,N) Nash equilibria domain Q(Y,N) is the right-lower quadrant (see Figure

2)
Q(YvN) = {(x,y) ZXZH(Y,N) and y< V(YvN)}'

V(Y, N)

H(Y, N) x

Fig. 2 (Y,N) Nash equilibria domain Q(Y,N)

The horizontal H(N,Y) and vertical V (N,Y) strategic thresholds of the (N,Y) strat-
egy are given by

HN,Y)=al(nj—1)—alny and V(N,Y)=—ody(ny — 1)+ o3in.
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The (N,Y) Nash equilibria domain Q(N,Y) is the left-upper quadrant (see Figure 3)

ON.Y)={(x,y) :x<H(N,Y) and y>V(N,Y)}.

QIN.Y)

V(N,Y)

HN,Y) x

Fig. 3 (N,Y) Nash equilibria domain Q(N,Y).
The horizontal H(N,N) and vertical V (N, N) strategic thresholds of the (N, N) strat-
egy are given by
H(N,N)=al(n —1)+abny and V(N,N) = adh(m— 1)+ odin;.
The (N,N) Nash equilibria domain Q(N,N) is the left-lower quadrant (see figure 4)

Q(N.N) = {(x.y) :x <H(N,N) and y<V(N,N)}.

V(N,N)

Q(N.N)

H(N,N) *

Fig. 4 (N,N) Nash equilibria domain Q(N,N).

The representations of the domains Q(¥,Y), Q(Y,N), Q(N,Y), and Q(N,N) in the
plan (x,y) determine the decision tilings. Let U (Y,Y) C Q(Y,Y),U(Y,N) C Q(Y,N),
U(N,Y) C Q(N,Y),and U(N,N) C Q(N,N) be the regions with unique Nash equi-
librium. In Figure 5, we represent three decision tilings, 1) with the coherent unique-
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ness Nash equlibria domains U(Y,Y), U(Y,N), U(N,Y), and U(N,N) colored red,
orange, blue and green, respectively, 2) regions without coherent Nash equilibrium
colored purple and 3) regions with two, three and four Nash equilibria colored yel-
low, brown and pink, respectively. In the left tiling, there is an unbounded region
without coherent Nash equilibrium. In the central tiling, for every relative decision
preferences, there is a unique coherent Nash equilibrium, except along the axis,
where there are two coherent Nash equilibria, and at the origin, where there are four
coherent Nash equilibria. In the right tiling, there are regions with one, two, three
and four coherent Nash equilibria.

uNY) ] yi y! y! (¥
QINY) . u(vY) uiNY) (V(YN) (NY) uvY)
iVINY) U(NY) 5 u(yy) Q(vY{T) YY)
@ i lew | () vy 0 ()
: (N (YN)
! QNY)

V(YY) ; QNN

5 X o) L) x

HY) HIN) | YY) HOW) QO X SRR g ) H
] o 3 o) (o) O
; UNN) U(YN) NN [ Q)

UNN) iv(m) o UNN) (W VNY) U(YN)

Fig. 5 Three examples of strategic thresholds and decision tilings; left: A1} <0, A2 >0, B2 <0,
Ax <0,Ar >0, By <O0; center: Ay =A1p =Ay1 =Ax»n =0; right; Ay >0,A12<0,B;p >0,
Ay >0,A71 <0,By >0.

5 (Uncoherent, Coherent) Strategies

An (uncoherent, coherent) strategy® is a strategy in which all individuals, with type
1, prefer to make the same decision, but individuals, with type #;, split between the
two decision Y and N (see [10]). Hence, the (uncoherent, coherent) strategies can be
of two types:

e (1,Y) strategy: all the individuals, with type 7, and [ individuals, with type 7},
make decision Y, and n; — [ individuals, with type #;, make decision N.

e (I,N) strategy: I individuals, with type 71, choose decision Y, but all the individ-
uals, with type f», and ny — [ individuals, with type #{, choose decision N.

We define the left horizontal threshold Hy(1,Y) and the right horizontal threshold
Hg(1,Y) of the (1,Y) strategy by

Hi(1,Y)=—ol (- 1) = alny + ol (n —1)

Hg(1,Y) = —al|l — alyno+ o (ny —1—1).

3 or equivalently, (split, no-split) or (no-heard, heard) strategy
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We define the vertical threshold V(1,Y) of the (1,Y) strategy by
V(L,Y)= -5l + a5y (n1 — 1) — a5y (ny — 1)

The (1,Y) Nash equilibria domain E(1,Y) strategy is a Nash Equilibrium if, and
only if, (x,y) € E(1,Y), where

E(LY)={(xy) :HL(,Y) <x<Hg(l,Y) and y>V(L,Y)}.

Hence, E(1,Y) is the Nash Equilibrium domain of the (1,Y) strategy (see Figure 6).

.Y
HN,Y) Hp(LY) Hy(,Y) He(LY) B -11) H(Y,Y)

4
.._____
‘_____
®-

Fig. 6 (Uncoherent, coherent) Nash equilibria, Aj; < 0and A > 0.

We define the left horizontal threshold Hy(I,N) and the right horizontal threshold
Hg(l,N) of the (I,N) strategy by

Hi(I,N) = —ol (I— 1)+ adbny + ol (n — 1)

Hg(I,N) = —aj}l+ ohny + o (ny — 1 — 1).
We define the vertical threshold V (I,N) of the (I,N) strategy by

V(I,LN)= -3l + oy (n — 1)+ ady(na— 1) .
The (/,N) strategy is a Nash Equilibrium if, and only if, (x,y) € E(I,N), where

E(LN) = {(x,y) : HL(LN) < x < He(L,N) and y <V(I,N)}.
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Hence, E(I,N) is the Nash Equilibrium domain of the (I,N) strategy (see Figure 7).

y
H(N,N) Hy(1,N) H,(LN) Hg(LN) Hn-1N) H(Y,N) X
T '
. ...... T ______ ------ VLN
: S V({LN)
: :--——Jrl/’(n]—l,f\‘)
ECLN)| --- |[EGN)| --- [e0-10

Fig. 7 (Uncoherent, coherent) Nash equilibria, Aj; < 0and Ap; > 0.

Since Hg(1,Y) =H(1,Y)— Ay and Hg(I,N) = H.(I,N) — A1, we have

e ifAj; >0, there are no (/,Y) and (/, N) Nash equilibria, for every / € {1,...,n; —
1};

e ifAj; <O, thereare (/,Y) and (/,N) Nash equilibria, forevery / € {1,...,n; —1}.

Hence, the following equalities determine the domains of the (/,Y) Nash equilibria
(see Figure 6):

Hg(L,Y)=Hp(I+1,Y) , H(1,Y)=H(N,Y) , Hg(ni—1,Y)=H(Y,Y);

V(ILN)=V(I+1,N)4+Ay ,V(1,Y)=V(N,Y)—Az ,V(ni—1,Y)=V(Y,Y)+Ax.

Similarly, the following equalities determine the domains of the (I, N) strategies (see
Figure 7):

HR(l,N)ZHL(l—‘rl,N) s HL(I,N):H(N,N) s HR(nl—l,N)ZH(Y,N);

V(LN)=V(+1,N)4+Ay ,V(I,N)=V(N,N)—Ay ,V(ni—1,N)=V(Y,N)+A,.
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6 (Coherent, Uncoherent) Strategies

A (coherent, uncoherent) strategy” is a strategy in which all individuals, with type
t1, prefer to make the same decision, but individuals, with type t,, split between the
two decisions Y and N (see [10]). Hence, the (coherent, uncoherent) strategies can
be of two types:

o (Y,I) strategy: all the individuals, with type ¢, and [ individuals, with type 1,
make decision Y, and ny —/ individuals, with type #,, make decision N.

e (N,l) strategy: | individuals, with type t,, choose decision Y, but all the individ-
uals, with type t;, and n, — [ individuals, with type t>, choose decision N.

H(Y,ny=1) H(Y,D) H(Y,1) X
L4 ® ¢

Fig. 8 (Coherent, uncoherent) Nash equilibria, A, <0 and A5 > 0.
We define the lower vertical threshold Vi (Y,l) and the upper vertical threshold
Vu(Y,1) of the (Y,1) strategy by

VL(Y,1) = =05, (1 = 1) — a5y + 033 (2 — 1)

Vu (Y1) = =0l — agyny + oy (ny — 1 — 1).
We define the horizontal threshold H(Y,1) of the (Y,1) strategy by

H(Y,D) = -l + ol (no—1)—aly(ng —1).

4 or equivalently, (no-split, split) or (heard, no-heard) strategy
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The (Y,1) Nash equilibria domain E(Y,1) strategy is a Nash Equilibrium if, and only
if, (x,y) € E(Y,1), where

E(Y,1)={(xy):VL(Y,l) <y<Vy(¥,l) and x>H(Y,})}.
Hence, E(Y,1) is the Nash Equilibrium domain of the (Y,[) strategy (see Figure 8).

We define the lower vertical threshold Vi (N,l) and the upper vertical threshold
Vu(N,1) of the (N,I) strategy by

VL(N,I) = —ody (I — 1) 4 adyny + ody (np — 1)

Vy(N,I) = —adyl + odny + o (ny —1—1).

We define the horizontal threshold H(N,1) of the (N,) strategy by
H(N,I) = —all+afh(np — 1) + oy (n1 — 1) .

The (N,l) Nash equilibria domain E(N,l) strategy is a Nash Equilibrium if, and
only if, (x,y) € E(N,I), where

E(N,1) = {(x,y) : Vi(N.I) <y < Vy(N,I) and x <H(N,I)}.

Hence, E(Y,1) is the Nash Equilibrium domain of the (Y,1) strategy (see Figure 9).

y
=, VN, Y)
E(N,ny— 1)
¢ Shteeeeeet LI V,(N,ny =1)
_ : A Vy (N, 1)
E(V,D)
4 _ R 4V,(N, ]
. ' B A
E(N,1)
: : e J’ V(N,N)
——d X
HNn,-1) H(N,[) H(N,1)

Fig. 9 (Coherent, uncoherent) Nash equilibria, A, < 0 and A2 > 0.
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Since Vy (Y, 1) =V, (Y, 1) — Ay and Vx(N, 1) = VL (N, 1) — Apy, we have

e if Ay >0, there are no (Y,/) and (N,!) Nash equilibria, for every / € {1,...,ny —
1};

e if Ay <0, there are (Y,/) and (N,!) Nash equilibria, forevery / € {1,...,np —1}.

Hence, the following equalities determine the domains of the (¥,/) Nash equilibria
(see Figure 8):

Vu(¥,)) =Vo(Y,i+1) , (Y, 1)=V(Y,N) , Vy(¥,ny—1)=V(Y,Y);

H(Y,Z)ZH(YJ—I—I)—I—AQ s H(Y,l)ZH(KN)—Alz,H(Yﬂlg—l):H(Y,Y)-i-Alz.

Similarly, the following equalities determine the domains of the (N, /) strategies (see
Figure 9):

Vu(N, D) =Vi(N,I+1) , VL(N,1)=V(N,N) , Vy(N,ny—1)=V(N,Y);

H(N,[)=H(N,I+1)+Ay, HN,1) =H(N,N)—A1,, H(N,ny— 1) =H(N,Y) +Ap.

7 (Uncoherent, Uncoherent) Strategies

An (uncoherent, uncoherent) strategy’ is a strategy in which individuals, with type
t; and type 1, split between the two decisions Y and N (see [10]).
There are (n; — 1)(n, — 1) (uncoherent, uncoherent) strategies:

o (I1,1p) strategy: I individuals, with type 1, and /, individuals, with type #,, make
decision Y, and n; — /1 individuals, with type #;, and np — I, individuals, with type
t», make decision N, for [} € {1,...,ny —1}and b € {1,...,np— 1} .

We define the left horizontal threshold Hy(1y,1) and the right horizontal threshold
Hg(l1,1) of the (I1,1,) strategy by

Hi (I, b) = oy + ahny + o) — (ay + afy) o — (e + o))y

Hg(11,1) = afjn + ofymy — o) — (o, + o) — (o) + oy )1y

We define the down vertical threshold Vp(11,l;) and the the up vertical threshold
Vu(l1,b) of the (1;,12) strategy by

Vp(l1,b) = aghny + oymy + 03y — (053 + 0y )11 — (0, + a3))

Vo (hi; 1) = agyma + agimi — 0y — (04 + gl — (035 + 03 ) -
The (1,1) strategy is a Nash Equilibrium if, and only if, (x,y) € E(l1,l), where

E(l1,) ={(x,y) : HL(l1,) <x < HR(l,12) and Vp(l1,h) <y <Vy(l1,h)}.

5 or equivalently, (split, split) or (no-heard, no-heard) strategy
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Hence, E(I;,1,) is the Nash Equilibrium domain of the (I1,1,) strategy (see Figure
10).

: T Uy — :

UNY) | 03 | 13 @3 ey e L(’éNS)Y) (L3) 1 23) 1 (33) | (43) | ggm
03 fon| o Hep 102 | HHey | e
1) G s | Nl (R e
02 | LTty | (@ @ 1T ay) G
e e T e Bl o]
) L®5—H Toww! vy ey || W
00 | @0 | @0 {6y |0 | 00 [N @0) | @0) § @0 | (40
Y ] E B T ’
U j, é j, U(YN) U(N,N) j, i i U(Y.N)

Fig. 10 (Uncoherent, uncoherent) Nash equilibria.

Since HR(ll,lz) = HL(ll,lg) —Ajq and VU(ll,lz) = VD(ll,lz) — A, we have that

e if Aj; >0 or Ay > 0, there are no (/1,l;) Nash Equilibria, for every [; €
{1,...,my—1}and L € {1,...,np — 1};

e ifAj; <0and Ay <O0,there are (/1,1;) Nash Equilibria, forevery [, € {1,...,n; —
1}and b €{1,...,np—1}.

Hence, the following equalities determine the domains of the (/;,1,) Nash Equilibria
(see Figure 10):

HR(ll,lz) =Hy (I + l,lz) and VU(ll,lz) =Vp(l1,lh+ 1).

In the left tiling of Figure 10, we have

1 1
-3 -1 =3

Ny = and Ay =
.| 1 -1

The yellow rectangles are regions with two pure Nash equilibria and one mixed
Nash equilibrium. In the right tiling of Figure 10, we have

Ny = and Ny =

The yellow rectangles are regions with no pure Nash equilibrium and one mixed
Nash equilibrium.
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8 Bifurcations and Combinatorial Equivalent Tilings

LetA;; = af. L+ al 7. fori, j € {1,2}, be the coordinates of the partial threshold order
matrix. We observe that

H(N,Y)<H(Y,Y) < A;; <0< H(N,N) <H(Y,N);
H(

H(Y,N)<H(Y,Y) & A <0< H(N,N) <H(N,Y);
V(N,Y) <V(Y,Y) < Ay <0& V(N,N) <V(Y,N);
V(Y,N)<V(Y,Y) < Apn <0 V(N,N) <V(N,Y).

Let Byi(n1,np) =Aq1(n1 —1) —Appna, Bia(n1,n2) =Ar1(n1 — 1) +Ana, By (ny,n2) =
A (np—1)+Aziny and By (ny,ny) = Az (np — 1) — Apny be the coordinates of the
balanced threshold weight matrix. We observe that

H(N,Y) <H(Y,N) < Byi(ng,nz) <05

( )
H(N,N) <H(Y,Y) < Bia(ni,n2) <
V(N,N) <V(Y,Y)

V(Y,N) <V(N,Y) < By(ni,ny) <0.

We say that a decision tiling is structurally stable, if all the horizontal and vertical
thresholds are pairwise distinct. We say that a decision tiling is a bifurcation, if there
are, at least, two horizontal thresholds that coincide or there are, at least, two vertical
thresholds that coincide (see Figures 11 and 12).

We say that a decision tiling is structurally horizontal (resp. vertical) stable, if all the
horizontal (resp. vertical) thresholds are pairwise distinct. A bifurcation is horizon-
tally (resp. vertically) single if, and only if, two horizontal (resp. vertical) thresholds
coincide. A bifurcation is horizontally (resp. vertically) double if, and only if, two
pairs of horizontal (resp. vertical) thresholds coincide. A bifurcation is horizontally
(resp. vertically) degenerated if all horizontal (resp. vertical) thresholds coincide.

Two decision tilings are combinatorial equivalent, if the lexicographic orders of the
horizontal and vertical thresholds along the axis are the same in both tilings. The
parameter space PS is the set

PS = {Q: (aflva{27a;l’a§2’aﬁvaﬁ7%]\iaoé\é) € Rg}'
The bifurcation parameter space BPS
BPS={a€PS:A;j=0VB;;=0, with i jec{l1,2}}

is the set of all parameters corresponding to bifurcation decision tilings. All param-
eters, in a same connected component of PS\ BPS, determine decision tilings that
are combinatorial equivalent.
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(vy) QNN
(NN)

Fig. 11 A single horizontal and vertical bifurcations. Aj; > 0 and Ay, > 0; By; and Bj; changing
signs.

Next we characterize the different orders for the horizontal and vertical thresholds.
Case H(N,Y) < H(Y,N).‘ IfA;; <0Oand A > 0, then
H(N,Y)<H(Y,Y)<H(Y,N) and H(N,Y) <H(N,N) < H(Y,N).

Hence, the horizontal threshold H(N,Y) is the smallest one and the horizontal
threshold H (Y, N) is the largest. Therefore, the only indeterminacy to solve this case
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Fig. 12 A single horizontal and vertical bifurcations. Aj; < 0 and Ay, < 0; By; and By, changing
signs.

is the order between the thresholds H(N,N) and H(Y,Y). If By,(ny,nz) < 0, then
H(N,N) < H(Y,Y). IfBlz(nl,nz) =0, then H(N,N) = H(Y,Y). IfBlz(nl,nz) >0,
then H(Y,Y) < H(N,N). If A;; =0 and Aj, > 0, then H(N,Y) = H(Y,Y) and
H(N,N)=H(Y,N) (see Figure 13).

Case H(Y,Y) < H(N,N): If A;; > 0and A}, > 0, then
H(Y,Y)<H(N,Y)<H(N,N) and H(Y,Y) <H(Y,N) <H(N,N).

Hence, the horizontal threshold H(Y,Y) is the smallest one and the horizontal
threshold H(N, N) is the largest. Therefore, the only indeterminacy to solve this case
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ooselie | Selit____
(N,Y) Y.Y) (N,Y) Y,Y)
_______________ HINN [ HOeN) PN G S @ C) NN
w-ex  H(N,Y) H(Y,Y) x -0 w—-ex H(N,Y) H(N,N) F H(Y,Y) x - oo
(NN Y.N
Split
-Split,
(NY) ~Y) (N TV
H(N,N) H(Y,N) l H(N,N) = H(Y,N)
@Er AN HYY) 1T ¥Ee e ANV EANYY T T T TR S
NN [QA\)) (N.N) I (Y.N)
Split

Fig. 13 A;; <0and A, >0

is the order between the thresholds H(N,Y) and H(Y,N). If By;(nj,n2) < 0, then
H(N,Y) < H(Y,N).If By, (n1,n2) =0, then H(N,Y) = H(Y,N). If By1(ny,n3) > O,
then H(Y,N) < H(N,Y). If A; = 0 and A, > 0, then H(Y,Y) = H(Y,N) and
H(N,Y)=H(N,N) (see Figure 14).

. Y) YY)
S 0.2 BETC AN W2 1.0 N D S N HONN)
w—x H(Y,Y) H(N,Y) YN x =0 o—tx  H(Y,Y) HN.Y) H(NY),N) x o0
(N,N) (N,N)
YY) YY)
,,,,,,,,,,,,,, o 0 maeny | e Eaoey Y]
Bt HOY) v ALY 3% e vy AN FHERNG ¥ %
(N,N) (N,N)

Fig. 14 A;; >0and A, >0

Case H(Y,N) < H(N,Y).‘ IfA;; >0and A <0, then

H(Y,N)<H(Y,Y) <H(N,Y) and H(Y,N) <H(N,N) < H(N,Y).
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Hence, the horizontal threshold H(Y,N) is the smallest one and the horizontal
threshold H(N,Y) is the largest. Therefore, the only indeterminacy to solve this case
is the order between the thresholds H(Y,Y) and H(N,N). If Biz(n1,n2) > 0, then
H(Y,Y) < H(N,N) IfB]z(nl,nz) =0, then H(Y,Y) = H(N,N) IfBlz(nhng) <0,
then H(N,N) < H(Y,Y). If Aj; =0 and A} < 0, then H(Y,N) = H(N,N) and
H(N,Y)=H(Y,Y) (see Figure 15).

____S_plit
~Y) N,Y) B FOA%)
b e OV poeNy L L
Py T(Y o HOYY) HINYY Y5 % |ecex AN THENHEY) =
(NN NN (Y.N)
Split
¥.Y) (N,Y) | (V.Y)
wbog ey [Vl How =HooNy L
Pty PYN) HOYY) AN Y 25 % Pt HINY) S HMY) x5 o
(N,N) (N,N) [ (Y.N)

Fig.15 A;; >0and A, <0

Case HIN,N) < H(Y,Y): IfA;; <0and A} < 0, then
H(N,N)<H(Y,N) < H(Y,Y) and H(N,N) <H(N,Y) < H(Y,Y).

Hence, the horizontal threshold H(N,N) is the smallest one and the horizontal
threshold H (Y,Y) is the largest. Therefore, the only indeterminacy to solve this case
is the order between the thresholds H(Y,N) and H(N,Y). If Byi(n1,n2) > 0, then
H(Y,N) < H(N,Y). IfB]l(nhnz) =0, then H(Y,N) = H(N,Y). IfB]l(nhng) <0,
then H(N,Y) < H(Y,N). If Aj =0 and A;; < 0, then H(N,N) = H(N,Y) and
H(Y,Y)=H(Y,N) (see Figure 16).

Case H[(N_’N):(Ny):(yyl\/):(y’y)] If Aj =0 and A;; = 0, we obtain H(N,N) =
H(N,Y)=H(Y,N) = H(Y,Y). Hence, in this case, we have determined all the
no-split strategies that are Nash equilibria in terms of the horizontal relative pref-
erences decision x (see figure 17).

In Figure 18, the thresholds H(Y,Y) (resp. V(Y,Y)) are marked by the red dots, the
thresholds H(Y,N) (resp. V(N,Y)) are marked by the orange dots, the thresholds
H(N,Y) (resp. V(Y,N)) are marked by the blue dots, and the thresholds H(N,N)
(resp. V(N,N)) are marked by the green dots. We have four horizontal (resp. verti-
cal) thresholds whose order is determined in each direction of the bussola. The way
the colored thresholds spiral in the bussola correspond to the way they change with
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_Split ___Split
(N.Y) BSA%) (N.Y) I ITA%)
,,,,,,, HNN) HGeN)_ L L . ANy L.
o—x H(N,Y) H(Y,Y) x=w o1 I’ H(NLY) F HY,N) H(Y,Y) x= oo
(NN [ (Y,N) NN oy
Split Split
______ selit ____
N,Y) ,Y)
P 4ot HXN) 3 HOCN)
co—cx  H(NN)FHNY) x = %
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Split
Fig.16 A;; <0and A <0
(NY) [ (YY)
,,,,, HINY) = HINN) T HEYGY) = HOGN)
- x = o
(NN | (NN)

Fig. 17 Triple bifurcation
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the coordinates of the partial threshold order matrix and with the coordinates of the
threshold balanced weight matrix. Hence, a pair (d;,d,) of directions in the bussola
determine unique decision tiling, up to combinatorial equivalence, and vice-versa.

The bussula has the following properties:

e d; and d; are both in the north side of the bussola if, and only if, there are only
(uncoherent, uncoherent) Nash equilibria in the corresponding tiling;
e d, is in the north side and d is in the south side of the bussola if, and only if,
there are (uncoherent, coherent) Nash equilibria in the corresponding tiling;
e ) is in the south side and d» is in the north side of the bussola if, and only fif,
there are (coherent, uncoherent) Nash equilibria in the corresponding tiling;
e d; and d; are both in the south side of the bussola if, and only if, there are (co-
herent, coherent) Nash equilibria in the corresponding tiling;

There are 64 combinatorial classes of structurally stable decision tilings and 225
combinatorial classes of bifurcation decision tilings.
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N

Fig. 18 Horizontal (or vertical) decision bussola

9 Conclusions

Small changes in the the coordinates of the partial threshold order matrix and of
the threshold balanced weight matrix, when these coordinates are close to zero,
can change their sign and, therefor, alter the order of the horizontal and vertical
thresholds. These changes can create and annihilate coherent and uncoherent Nash
equilibria giving rise to abrupt changes in individuals and collective behavior.

This work, after presented in ICM 2010, was highlighted by G.S. Mudur (see [7])
along with other works of Alberto Adrego Pinto, Stanley Osher, from University of
California, and Philip Kumar Maini, from University of Oxford.
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