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ABSTRACT

A module M is said to be weakly projective If and only If it has a projective
cover m : P(M) — M and every map from P(M) Into a finitely generated
(free) module can be factored through M via an epimorphlsm (not necessarlly
equal to 7). In this paper we investigate the basic properties of weakly projec-
tive modules. These properties are dual to those known for weakly Injective
modules. In particular, we show that over a right perfect ring R there exists a
right module K such that for any other module M, the direct sum M @ K Is
weakly projective.

1. Introduction

The purpose of this paper is to study a concept dual to that of weak injectivity
as in {1, 5, 6, 9, etc.]. Given a module M with projective cover = : PM) - M
and another module N, we say that M is weakly N-projective if and only if all
maps from P(M) into N factor through M via an epimorphism o : PM) - M
(not necessarily equal to 7). We dualize most of the basic results in (6], provide
several examples of weakly projective modules which are not projective, and indeed
show that, over a perfect ring R there exists a module K such that, for any other
R-module M, the direct sum K @& M is weakly projective.

We assume all modules are right and unital unless otherwise indicated. Any
terminology used but not defined in this paper will be standard unless a specific ref-
erence is given. Sources for standard terminology include |2, 3 and 8]. A submodule
N C M is said to be a small submodule (denoted N <« M) if the only submodule
K C M such that K + N = M is K = M. Given a module M and a submodule
N C M, asupplement of N in M is a submodule K ¢ M minimal with respect to
the property that N + K = M. Equivalently, K is a supplement of N in M if and
only if K satisfies both that K + N = M and KN N « M. A module M is said
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to be hollow if every proper submodule of M is small in M or, equivalently, if
every proper submodule of M has supplement in M equal to M. Unlike the dual
concept of the complement of a submodule, not all submodules of a given module
need have supplements. A module all of whose submodules have a supplement is
said to be a supplemented module. Over a right perfect ring, all right modules are
supplemented. A superfluous cover of 2 module M is a module N together with
an epimorphism p: N — M such that Ker p is small in N. Equivalently, one may
think of a superfluous cover for M as being a module N such that N/K = M for
some small submodule K C N. A projective superfluous cover will be referred to,
as is customary, a projective cover.

For any submodule K of a module N the natural inclusion map will be denoted
by ix : K — N and the natural projection by ngx : N = N/K.

2. Basic Definitions and Results

Given modules M and N we say that M is N-projective if and only if every
homomorphism f : M — N/K into a homomorphic image of N may be lifted
to f : M — N through the natural projection » : N — N/K. When M has a
projective cover one gets the following characterization of relative projectivity.

2.0 Theorem. Let M and N be modules and assume M has a projective cover P
via an onto-homomorphism n : P — M. Then M is N-projective if and only if for
every homomorphism p : P — N there exists a homomorphism ¢ : M — N such
that ¥r = p. Equivalently, p(ker x) = 0.

Proof. The proof is basically that of Proposition 2.2 in [10], once you realize that
there is neither a need for M = N nor for N to have a projective cover. However,
for the sake of completeness (as suggested by the referee) we prove it as below.

Only if direction. Let ¢ : P — N be a homomorphism. We shall first show that
p(ker ) = 0. Let T = p(ker x) and let 7y : N — N/T be the natural projection.
Then ¢ induces $ : M — N/T defined by $(m) = nrp(p), where m = =(p).
Clearly, pm = mrp. Since M is N-projective, there exists a map f: M — N such
that @ = m 3. Clearly, (v — Bm)P C T. We claim that ¢ = f7.

Let X = {p € P | p(p) = Br(p)}. We shall show that X = P. Let z € P.
Since (¢ — Bn)(z) € T = p(ker ), there exists k € ker 7 such that (p — Br)(z) =
(k). Therefore, p(z — k) — Bx(z — k) = O, since fn(k) = 0. Thusz -k € X.
Therefore, ker # + X = P, which implies X = P, since ker 7 is small in P.
Therefore, (p — 7)P = 0. In particular, (¢ — fn)ker # = 0, yielding p(ker 7) = 0.
Equivalently, there exists ¢’ : M — N such that ¢’ 7 = .

Conversely, let y : M — N/K be a homomorphism. Then by the projectivity
of P there exist a homomorphlsm Y : P — N such that y7 = mx¢'. By our
hypothesis there exists ¥ : M — N such that gr = ¢'. It follows easily that
Tk w 3 as desired.

The above result is dual to a well-known characterization of relative-injectivity
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and motivates the following definitions which are analogous to those of weak relative-
injectivity and weak injectivity [5].

2.1 Definitions. Let M and N be modules and assume M has a projective cover
x:+ P — M. We say that M is weakly N-projective if for every map ¢ : P — N
there exists an epimorphism ¢ : P — M and a homomorphism ¢ : M — N such
that o = $o. If a module M is weakly R"™-projective for all n € Z*, we say that
M is a weakly projective module.

The following characterization proves to be quite useful.

2.2 Theorem. Let M and N be modules and assume M has a projective cover
7. P — M. Then M is weakly N-projective if and only if for every mapyp : P — N
there exists a submodule X C Ker o such that P/X = M.

Proof. Let ¢ : P — N be a homomorphism. Assume first that M is weakly
N-projective and let the homomorphism ¢ : M — N and the epimorphism
o : P — M be as in the definition of weak relative-projectivity. Since p = po,
Ker o C Ker . Also, P/Ker 0 = M. Thus, the implication is proven by choosing
X = Ker 0. Conversely, if X C P satisfies the condition in the statement of the
theorem, then the isomorphism P/X = M, composed with the natural projection
mx : P — P/X is an epimorphismo : P - M satisfying that Ker 0 = X C Ker .
It follows that the map @ : M — N given by @é(m) = p(p), whenever o(p) = m is
well defined and satisfies o = $o, proving our claim.
a

Domains of weak projectivity are closed under quotients and submodules, as

shown in the next proposition.

2.3 Proposition. Let M and N be modules and assume M has a projective cover
x: P — M. Then the following statements are equivalent:

(1) M is weakly N-projective,

(2) for every submodule K C N, M is weakly K-projective, and

(3) for every submodule K C N, M is weakly N/K-projective.

Proof. Since either condition (2) or (3) trivially implies (1), we need only show that
(1) implies both (2) and (3). Assume M is weakly N-projective and let K be a
submodule of N and ¢ : P — K be a homomorphism. Then ¥ = ixp : P — N
may be expressed as a composition ¥ = \ila, for some homomorphism V:M— N
and epimorphism ¢ : P — M. Since ¢ is onto, the range of ¥ equals the range of
¥ and so it is contained in K. Thus, we may define ¢ : M — K via p(m) = ¥ (m)
and then ¢ = $o, proving that M is weakly K-projective, as claimed. Assume once
again that M is weakly N-projective and let f: P — N/K be a homomorphism.
Since P is projective, there exists a map ¢ : P — N such that f = mxg. The
weak N-projectivity of M yields an epimorphism o : P — M and a homomorphism
§: M — N such that g = go. Let f = 7, §. Then fa = my §o = n.g = f, proving
that M is indeed weakly N/K-projective.
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a
While checking for weak projectivity one can actually restrict one’s attention
to epimorphisms, as follows.

2.4 Remark. Let M and N be modules and assume M has a projective cover
m: P — M. Then M is weakly N-projective if and only if for every submodule
K C N and for every epimorphism ¢ : P — K there exist epimorphismso : P —» M
and ¢ : M — N such that p = po.

Proof. Clear from the above proposition.
[a]

One can obtain a dual for {Lemma 1.3, 6 in terms of supplements of submod-
ules.

2.5 Proposition. Let M and N be modules and assume M is supplemented and
has a projective cover # : P — M. Then M is weakly N-projective if and only if
for every submodule K C N and for every epimorphism ¢ : P — K there exist an
epimorphism $ : M — K such that for every supplement L ' of Ker & in M there
exists a submodule L C P such that P/L = M/L' and L + Ker o = P.

Proof. Assume M is weakly N-projective and let ® : P — K be an epimorphism
onto a submodule KX C N. Then there exists epimorphisms ¢ : P — M and
®: M — K such that ¢ = Bo. Let L' be a supplement of Ker & in M and let L =
o~'(L'). For an arbitrary p € P, o(p) may be written as o(p) =I'+ k', withl' e L
and k' € Kerg. It follows then that p(p) = po(p) = (I') + ©(k') = 4(I'). Choose
pr €07 (I') C L. Then o(p,) = I'. On the other hand, w(p) = @olp,) = (l') =
w(p). Sop—p, € Ker pandso L+ Ker o = P. The fact that P/L = M/L follows
since L is the kernel of the onto map 7,.0: P — M/L'. Conversely, let us assume
that for every submodule K C N and for every epimorphism ¢ : P — K there exist
an epimorphism ¢ : M — K such that for every supplement L' of Ker S in M
there exists 2 submodule L C P such that P/L = M/L' and L + Ker = P. Let
@ : P — K be an epimorphism and 4 : M — K be the corresponding epimorphism.
All we need is to produce another epimorphism ¢ : P — M such that Y = go.
Let L' be a supplement for Ker  and let L be the corresponding submodule of P.
Let 8 : P/L — M/L' be an isomorphism. The Chinese remainder theorem yields
that the map m + Ker N L'~ (M + Kerp, m + L') is an isomorphism between
M/(Ker N L') and M/Ker ¢ x M/L'. Also, M/Ker $ = K via m + Ker D —
$(m). So, one gets an isomorphism 8 : M/Ker N L' — K x M/L’ such that
B(m + Ker N L') = (4(m), x..(m)). The isomorphism § induces an onto map
V=0r :P - M|L. Since Ker p+ L = P, the map a : P — Kx M/L
given by a(p) = (o(p), ¥(p)) is onto. The induced epimorphism o' = f~'a: P —
M/(Ker$ N L') may then be lifted to a map o : P — M. Since Ker NL <« M
o is indeed an epimorphism. It only remains to show that o = . Let us refer fo)
the rest of this proof to mx., snr. simply as 7. We do know that 7g = o' = [a
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hence f7o = a. Let p € P be arbitrary. Then 8(o(p) + Ker ©NL') = a(p) = (o(p),
¥(p)). On the other hand, B(o(p) + Kerpn L') = (B(e(p), o(p) + L'). Comparing
the first component in both expressions yields the desired equality. Thus, M is
weakly N-projective.

o

2.6 Corollary. Let M be a hollow module with projective cover P and N be an
arbitrary module. Then M is weakly N-projective if and only if any submodule K
of M, which is a homomorphic image of P, is a homomorphic image of M.

Proof. Straightforward from the above proposition.

a

Modules which are weakly projective relative to a fixed module are closed under
finite direct sums and under superfluous covers but not under direct summands. So,
in particular, finite direct sums of weakly projective modules are weakly projective
and superfluous covers of weakly projective modules are weakly projective.

2.7 Proposition

(1) Let M,,i = 1,2,-- n be a family of weakly N projective modules. Then the
direct sum @7, M, is weakly N-projective.

(2} Let M/N be a weakly K-projective module where N < M. Then M is weakly
K-projective.

{3) It is possible to have a direct sum M @ K being weakly N-projective while M
is not weakly N-projective.

(4) If a module is weakly projective relative to its own projective cover, then the
module is indeed projective.

Proof. (1) and (2) are straightforward. To prove (3), let R = Z/(4). Then Z/(2) x
Z/(4) is weakly R-projective (see Proposition 2.11, below) but Z/(2) is not weakly
R-projective, in light of (4). In order to prove (4), consider a module M with
projective cover m : P — M. If we assume that M is weakly P-projective, then the
identity map on P factors through M and this yields that M = P,

2.8 Remark. Over a right perfect ring, any arbitrary direct sum of weakly
N-projective modules is weakly N-projective.

Proof. This can be proven in the same way as the proof of Proposition 2.7(1) since,
over a right perfect ring, the projective cover of a direct sum of modules is the direct
sum of the projective covers of the individual modules.

(s}

A finitely generated direct summand S of the projective cover of a weakly
projective module M yields a direct summand (isomorphic to S) of M.

2.9 Lemma. Let M be a weakly projective module whose projective cover P(M)

= S® K, where S is finitely generated. Then M has a direct summand isomorphic
to S.

255



256

205

Proof. Since S is finitely generated, M is weakly S-projective (Proposition 2.3).
Thus the projection map p : P{M) — S factors through M, yielding an epimor-
phism p: M — S. Since S is projective we get that M = S x Ker p, proving our
claim.
s}
The next result points out the fact that weakly projective but not projective
modules are 'large’.

2.10 Proposition. Every finitely generated projective module is indeed projective.
Over a semiperfect ring R, a finite Goldie dimensional weakly projective module is
indeed projective.

Proof. If M is finitely generated, then P(M) is also finitely generated and so, by
Proposition 2.7(4), M is projective. Suppose R = B”_, ¢, R is the representation
of the semiperfect ring R as a direct sum of indecomposable projective modules.
Let N be a finite Goldie dimensional weakly projective R-module. Write P(N) =

T_.(e;R)? as a direct sum of indecomposable projective modules. If any of
the a; ‘s were infinite, by Lemma 2.9, ¥ would contain sums of arbitrarily many
submodules, contradicting that N has finite Goldie dimension. Therefore, P(N) is

finitely generated and hence N is projective.
c

2.11 Proposition. Let R be a right self-injective local ring, but not a division
ring, with nonzero right socle. Then for every integer n > 0, R/S x R is weakly
R"-projective but not weakly R™*!-projective.

Proof. Since R is local and right self-injective, R is uniform, and so the right socle
S is a simple right ideal. However, it is easy to see that S is also a simple left
ideal. For, if s € S then r-ann(s) 2 J, since SJ = 0. But J, being maximal.
r-ann(s) = J. Then for any 0 # z € S, the mapping sR — =R given by sr — zr
is well defined and so by right self-injectivity of R there exists ' € R such that
z's = z. This implies z € Rs and, thercfore, $ = Rs, because S is two-sided. This
yields S is also a simple left ideal. Thus JS = 0.

Since R is not a division ring, the simple right ideal S is a proper right idea
of R and so is contained in J. This implies that the natural epimorphism
R -+ R/S gives a projective cover. Furthermore, for every n the canonical epimor
phism R"*' — R/S x R" defines a projective cover. We shall prove the result b:
induction on n. Consider first the case where n = 1. Let p : R x R — R be :
homomorphism. We put a = ©(1,0) and b = (0,1), and we define u = (1,0
or (~a~'b,1) according as a € J or a ¢ J. Then () = ¢ if a € J an
e(u) = p(—{1,0)a"'b+ (0,1)) = —aa 'b+b=10if a ¢ J. Now clearly th
submodule uR of R x R is isomorphic to R and the submodule u5 of uR is isc
morphic to S. Moreover, we know that uS C Ker v, because if a € J the
p(uS) = p(u)S = aS C JS = 0, while if a ¢ J then p(uS) = p(u)S = 0§ =«
Since uR = R is injective, RXx R = uR® K for some K C Rx R, which is necessaril
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= R. It follows that (R x R)/uS = (uUR®K)/uS = uR/uS x K = R/S x R. Thus
R/S x R is weakly R-projective by Theorem 2.2.

. Let us assume next that n > 1 and our proposition holds for n — 1. Consider a
homomorphism o : R**! — R". Let 7. : R — R be the projection onto the ¢ — th
component. We need to consider two cases depending on whether there is a value
of i(1 <+ < n) for which 7, is onto. In the affirmative case, assume without loss
of generality that =, is onto. Let us refer to the projection onto the complement
simply as 7 : Rx R*™* — R""' Let a: R* — Ker 7,0 be an isomorphism.
Using our inductive hypothesis on wa:R" - R""! weobtainaY ¢ Ker r pa
such that R*/Y = R/S x R"~', Let X = a(Y). Then clearly X C Ker 7 © and
also X C a(R") = Ker m,p. But Ker « wN Ker mp = Ker o, and thus we
have X C Ker ¢. Since R® whence Ker T p is injective, R**! = Ker m,0 @ L
for some submodule L ¢ R"*! and necessarily L = R. Then we have RrV /X =
Kermp /[XxL=R"/Y xR = R/SxR"~'xR=R/SxR", proving our claim
again by Theorem 2.2. To conclude, consider when none of the natural projections
7. ¢ R" — R satisfies that =, is onto, or what is the same, 7 (p(R"*')) C J for
t=1,2,---,n. Denote by S**! the external product SxSx---xSof n+1 copies
of 5. Then we have m,(p(S"*!)) = m(p(R"*'S)) = m(p(R"*'))S C JS =0
for every ¢, which means that p(S"*!') = 0. Let X = Sx0x---x 0. Then
X CS8'*' C Kerpand RP*'/X = R/S x R™. This shows that R/S x R**! is
weakly R"-projective, as claimed.

Suppose that R/S x R" is weakly R"*!-projective. Then R/S x R" and hence
R/S is projective by Proposition 2.7(4). But this implies that S = 0, which is a
contradiction. This completes the proof.

o

An important fact in the theory of weakly injective modules is that a quasi-
injective weakly injective module is indeed injective (6]. The dual result is

2.12 Proposition. Let N be a module. Then any quasi-projective weakly
N-projective module is indeed N-projective.

Proof. Let M be a quasi-projective module M with projective cover 7 : P — M
and assume that M is weakly N-projective. Consider a map o : M — N/K, for
some submodule K ¢ N. The projectivity of P guarantees the existence of a map
$ 1 P — N such that pr = 4 . Now, since M is weakly N-projective there exist
an epimorphism ¢ : P — M and a map % : M — N such that ¢o = @. Since M is
quasi-projective there exists o' : M — M such that o'r = o, (Theorem 2.0). One
easily checks that the map Yo' M — N lifts ©, proving our claim.
o
3. Every Module is a Direct Summand of a Weakly Projective Module
It is shown in [9] that over arbitrary rings every semisimple module is a direct
summand of a weakly injective module and every module (without restriction) is
a direct summand of a tight module. This implies that if the ring is right q.f.d.
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(i.e., if all cyclic right modules have finite uniform dimension} then every module

_is a summand of a weakly injective one. For right q.f.d. rings, one can actually
get a stronger result 'with the quantifiers commuted'. Namely, one can show that
not only is it true that for every right module M there exists a right module K
such that M @ K is weakly injective, but actually that a fixed module K may be
chosen such that, for every right module M, the sum M @ K is weakly injective [7].
However, the construction of an ad hoc X for agiven M, as in [9], has an interest of
its own right and can be used in applications where the second construction would
not apply. In the dual case, we will show that for right perfect rings, it is also true
that every right module is a summand of a weakly projective module.

3.1 Theorem. Over a right perfect ring R, there exists a module K such that the
direct sum of K plus any other module yields a weakly projective module.

Proof. Since R is right perfect, we may write R = @‘k: (e.R)™, where {e.R, -
. ex R} is a complete set of representatives of indecomposable projective right R-
modules. Let L = @ I,where] € R" for all n € Z* be the external sum of all
submodules of finitely generated free right R-modules. Let X be an infinite cardinal
such that R >| R |. Define K = L @ [P(L)]™), where P(L) is the projective cover
of L. Consider an arbitrary right R-module M and an integer n € Z*. QOur aim
is to show that the direct sum N = M ® K is weakly R"-projective. Consider an
epimorphism ¢ : P(N) — I where I C R*. Let : P(I) — I be the projective
cover map. The projectivity of P(N) yields a map & : P(N) — P(I) such that
7Y = p. Furthermore, since Ker r <« P(I), one gets that ¥ is an epimorphism.
Since P(I) is projective, & splits and, therefore, we may write P(N)=P@® Ker 3,
for some submodule P c P(N) isomorphic to P(I). Over a semiperfect ring all
projective modules are decomposable as direct sums of indecomposable projective
ones. So let us write P(I) = @*_ (e,R)!*") = P, and Ker © =@ (e.R)P,
Suppose further that P(L) = @D!_ (e.R)'°). Then P(K) = B (e.R)IC™ =
@:_,(e:R)®), where D, > R. Let P(M) =@ (e R)F.

Since there exists an epimorphism ¥ : R(71) _, I, P(I} is isomorphic to a
summand of RN = @F (e R)i~ 11D Therefore, ox < n, | I |< n, | R |=
nin | R |< R for each i. The decompositions P(N) = P(M) ® P(K) and P(N) =
P @ Ker ¢ imply that EB:;;(C:'R)(“'U”" = @le(e,»R)‘D'“F-’. Since each ¢; < R,
while | D; U F, [> R, we must conclude that | D;UF, |=B. So, Ker p = P(N)
and one can think of & as the projection p : P(N) x P(I) = P(I). It then follows
that Ker o = P(N) x Ker . Now, N is a homomorphic image of P(N) and, by
definition of K, there exists a submodule N C Nsuchthat I@ N' = N. So, there
exists a submodule K’ C P(N) such that P(N}/K'= N".
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Let X = K' x Ker n C Ker p. Then P(N)/X = [P(N) x P(I)]/|K' x Ker n} =
N' x I = N, as desired.

o
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