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On the difference equation ynþ1 ¼ Aþ yn
yn�k

with A < 0
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Abstract

We find conditions for the global asymptotic stability of the unique negative equilibrium �y ¼ 1þ A of the equation
0096-3
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ynþ1 ¼ Aþ yn
yn�k

; ð0:1Þ
where y�k,y�k+1, . . . ,y0 2 (0,1), A < 0 and k 2 {1,2,3,4, . . .}.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In [1] the periodicity of the difference equation
ynþ1 ¼ Aþ yn
yn�k

; n ¼ 0; 1; . . . ; ð1:1Þ
where y�k, . . . ,y�1,y0, A 2 (0,1) and k 2 {2,3,4, . . .} was studied. Our aim in this paper is to establish global
asymptotic stability results for this difference equation with A < 0.

It was shown in [3] that for the case k = 1 the positive equilibrium �y ¼ 1þ A of Eq. (1.1) is globally asymp-
totically stable for A > 1. In [1], the periodicity of Eq. (1.1) was investigated. In this note, other related results
of asymptotic, periodicity, and semi-cycles are investigated. We list below some definitions and basic results
that will be needed in this paper (see [5,7,10]).

Definition 1.1. We say that a solution fyng
1
n¼�k of a difference equation yn+1 = f(yn,yn�1, . . . ,yn�k) is periodic

if there exists a positive integer p such that yn+p = yn. The smallest such positive integer p is called the prime
period of the solution of the difference equation.

Definition 1.2. The equilibrium point �y of the equation:
ynþ1 ¼ f ðyn; yn�1; . . . ; yn�kÞ; n ¼ 0; 1; . . .
003/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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is the point that satisfies the condition
�y ¼ f ð�y; �y; . . . ; �yÞ.
Definition 1.3. Let �y be an equilibrium point of Eq. (1.1). Then the equilibrium point �y is called

(1) locally stable if for every � > 0 there exists d > 0 such that for all y�k,y�k+1, . . . ,y0 2 I with
jy�k � �yj þ jy�kþ1 � �yj þ � � � þ jy0 � �yj < d, we have jyn � �yj < � for all n P �1,

(2) locally asymptotically stable if it is locally stable and if there exists c > 0 such that for all
y�k,y�k+1, . . . ,y0 2 I with jy�k � �yj þ jy�kþ1 � �yj þ � � � þ jy0 � �yj < c, we have limn!1yn ¼ �y,

(3) a global attractor if for all y�k,y�k+1, . . . ,y0 2 I, we have limn!1yn ¼ �y,
(4) globally asymptotically stable if �y is locally stable and �y is a global attractor.

The linearized equation of Eq. (1.1) about the negative equilibrium �y ¼ 1þ A is
znþ1 �
1

1þ A
zn þ

1

1þ A
zn�k ¼ 0; n ¼ 0; 1; . . . ð1:2Þ
The following result is a consequence of the conditions given in [6, page 12], see also [8,9].

Lemma 1.4. Assume that a; b 2 R and k 2 {1,2, . . .}. Then
jaj þ jbj < 1 ð1:3Þ
is a sufficient condition for the asymptotic stability of the difference equation
ynþ1 þ ayn þ byn�k ¼ 0; n ¼ 0; 1; . . . ð1:4Þ
Suppose in addition that one of the following two cases holds.

(a) k odd and b < 0.

(b) k even and ab < 0.

Then (1.3) is also a necessary condition for the asymptotic stability of Eq. (1.4).

Lemma 1.5. Assume that a; b 2 R. Then
jaj < bþ 1 < 2
is a necessary and sufficient condition for the asymptotic stability of the difference equation
ynþ1 þ ayn þ byn�k ¼ 0; n ¼ 0; 1; . . . ð1:5Þ
Lemma 1.6. The difference equation
ynþ1 � byn þ byn�k ¼ 0; n ¼ 0; 1; . . . ð1:6Þ

is asymptotically stable iff 0 < jbj < 1=2 cos kp

kþ2

� �
.

Lemma 1.7. Consider Eq. (1.1). If A < �2 cos p
kþ2

� �
� 1 then the unique negative equilibrium �y ¼ 1þ A of

Eq. (1.1) is locally asymptotically stable, while if A > �2 cos p
kþ2

� �
� 1 then the positive equilibrium is unstable.

Proof. The proof is a direct consequence of the conditions in Lemma 1.6. h

The above lemmas lead to parts (a), (b) of the next theorem and the proof of part (c) is straightforward.
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Theorem 1.8. The following statements are true:

(a) The equilibrium point A + 1 of Eq. (1.1) is locally asymptotically stable iff A < �3.

(b) The equilibrium point A + 1 of Eq. (1.1) is unstable if 0 P A P �3.
(c) If a solution of Eq. (1.1) is eventually constant then yn = A + 1, n = �k,�k + 1, . . .
2. Analysis of the global stability, boundedness and the semi-cycles of solutions of Eq. (1.1)

In this section, we show that every negative solution of Eq. (1.1) is globally asymptotically stable and thus
get as a corollary the boundedness and persistence of solutions.

We say that a solution {yn} of a difference equation yn+1 = f(yn,yn�1, . . . ,yn�k) is bounded and persists if
there exist positive constants P and Q such that
P 6 xn 6 Q; for n ¼ �1; 0; . . .
A positive semi-cycle of a solution {yn} of Eq. (1.1) consists of a ‘‘string’’ of terms {yl,yl+1, . . . ,ym}, all
greater than or equal to the equilibrium �y, with l P �k and m 6 1 and such that
either l ¼ �k or l > �k and yl�1 < �y;
and
either m ¼ 1 or m < 1 and ymþ1 < �y.
A negative semi-cycle of a solution {yn} of Eq. (1.1) consists of a ‘‘string’’ of terms {yl,yl+1, . . . ,ym}, all less
than the equilibrium �y, with l P �k and m 61 and such that
either l ¼ �k or l > �k and yl�1 P �y;
and
either m ¼ 1 or m < 1 and ymþ1 P �y.
The first semi-cycle of a solution starts with the term y�k and is positive if y�k P �y and negative if y�k < �y.
A solution {yn} of Eq. (1.1) is called nonoscillatory if there exists N P �k such that yn > �y for all n P N or

yn < �y for all n 6 N.
And a solution {yn} is called oscillatory if it is not nonoscillatory.

Theorem 2.1. Eq. (1.1) has no solution of prime period 2 if A 5 �1 or k is even.

Proof. If k is even then U = W = A + 1 in which case p 5 2.
If n is odd, then U ¼ Aþ U

W and W ¼ Aþ W
U. It follows that

U
W ¼ U � A and W

U ¼ W � A. Multiplying the last
two equations, we get (W �A)(U �A) = 1. Thus, U 5 A and W 5 A.

Moreover, we conclude that W ¼ 1
U�A þ A. But on the other hand, we have 1

W � 1
U ¼ 1

W2 � 1
U2. Therefore, we

get 1
W þ 1

U ¼ �1. Solving for W, we get W ¼ �U
1þU.

The last two equations lead to A = �1. We conclude that the period 2 solution takes the form
. . . ;U; �U

1þU ;U; �U
1þU ; . . . This completes the proof. h

Notice that the solution oscillates about the steady state y = 0 when A = �1. Every semi-cycle is of length
one.

Now we find a global asymptotic stability result for the general case k 2 {2,3,4, . . .}.

Theorem 2.2. [4] Consider the difference equation
ynþ1 ¼ f ðyn; yn�kÞ; n ¼ 0; 1; . . . ; ð2:1Þ

where k 2 {1,2, . . .}. Let I = [a,b] be some interval of real numbers and assume that
f : ½a; b� � ½a; b� ! ½a; b�

is a continuous function satisfying the following properties:
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(a) f(u, v) is nonincreasing in u and nondecreasing in v.

(b) If (m, M) 2 [a,b] · [a,b] is a solution of the system
m ¼ f ðM ;mÞ and M ¼ f ðm;MÞ;

then m = M. Then Eq. (2.1) has a unique equilibrium �y and every solution of Eq. (2.1) converges to �y.

Theorem 2.3. Let A < �3. Then the unique negative equilibrium �y ¼ 1þ A of Eq. (1.1) is globally asymptotically

stable.

Proof. Define f(u,v) = A + u/v. Then the result follows directly from Theorem 2.2. h

The global stability of the difference equation implies the boundedness of the difference equation.

Corollary 2.4. Let A < �3. Then every solution of Eq. (1.1) is bounded and persists.

We consider the following lemma about the behavior of the semi-cycles of Eq. (1.1).

Lemma 2.5. Let {yn} be a nontrivial solution of Eq. (1.1), A = �1, k P 2. Then every semi-cycle has at most 2

terms.

Theorem 2.6. Let k be odd and let
y�k; y�kþ0; . . . ; y�1 6 Aþ 1; 0 > y�kþ1; y�kþ3; . . . ; y0 > Aþ 1.
Then, the solution fyng
1
n¼�k is oscillatory and every semi-cycle has length one. Moreover, every term of fyng

1
n¼�k is

strictly greater than A with the possible exception of the first k + 1 semi-cycles, no term of fyng
1
n¼1 is ever equal to

A + 7.

Proof. Just notice that, for any n P 1,
y2nþ1 ¼ Aþ y2n�k

y2n
> Aþ 1;
and
y2n ¼ Aþ
y2n�ðkþ1Þ

y2n�1

< Aþ 1.
The result then follows. h
3. Case �3 < A < 0

As it is noticed in Theorem 1.8, in this case the equilibrium point A + 1 is not even asymptotically stable.
Also, it is shown in [2] that for the case k = 1 not every solution is bounded and thus is not even asymptotically
stable. For the case A < 1, one might study necessary and sufficient condition on the initial conditions so that
every solution is asymptotically or globally stable or even is bounded.
4. The case k = 1

DeVault et al. [3] studied the difference equation
ynþ1 ¼ Aþ yn
yn�1

; ð4:1Þ
with A > 0 and strictly positive initial conditions. Now, we study the stability properties and semi-cycle behav-
ior of this equation without positivity restrictions. Consider the equation
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ynþ1 ¼ A� yn
yn�1

; ð4:2Þ
where A < 0. Then, using the change of variables
yn ¼ �xn.
Eq. (4.2) becomes
xnþ1 ¼ �Aþ xn
xn�1

¼ a þ xn
xn�1

;

where a = �A > 0. It follows that all the results in DeVault et al. hold for Eq. (4.2) in the following cases:

• A < 0, y�1,y0 < 0.
• A < 0, y�1,y0 > 0.
• A > 0, y�1 > 0, y0 < 0 (without the above change of variables).
Theorem 4.1. Let A = �1, y�1; y1 2 R�, and let fyng
1
n¼1 be a solution of Eq. (4.1). Then, every positive semi-

cycle is of length one.

Proof. When k = 1. Let yn < 0 and yn+1 > 0. Then
ynþ2 ¼ Aþ ynþ1

yn
< 0.
This completes the proof. h
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