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Abstract Oxidative stress has been suggested as a potential
contributor to the development of diabetic complications. In
this study, we investigated the protective effect of a strong
antioxidant copper complex against streptozotocin (STZ)-in-
duced diabetes in animals. Out of four copper complexes
used, copper(II) (3,5-diisopropyl salicylate)4 (Cu(II)DIPS)
was found to be the most potent antioxidant–copper complex.
Pretreatment with Cu(II)DIPS (5 mg/kg) twice a week prior to
the injection of streptozotocin (50 mg/kg) has reduced the
level of hyperglycemia by 34 % and the mortality rate by
29 %. Injection of the same dosage of the ligand 3,5-
diisopropyl salicylate has no effect on streptozotocin-
induced hyperglycemia. The same copper complex has neither
hypoglycemic activity when injected in normal rats nor
antidiabetic activity when injected in STZ-induced diabetic
rats. The protective effect of Cu(II)DIPS could be related to its
strong antioxidant activity compared to other copper com-
plexes median effective concentration (MEC)=23.84 μg/ml
and to Trolox MEC=29.30 μg/ml. In addition, it reduced

serum 8-hydroxy-2′-deoxyguanosine, a biomarker of oxida-
tive DNA damage, by 29 %. This effect may explain why it
was not effective against diabetic rats, when β Langerhans
cells were already destroyed. Similar protective activities were
reported by other antioxidants like Trolox.
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Introduction

Diabetes mellitus is a chronic metabolic disorder which has a
strong effect on the quality of almost all aspects of life including
health, social, and psychological well-being. It is characterized
by abnormally high blood glucose levels due to either insulin
deficiency or the inability of cells to respond to insulin. Diabe-
tes leads to serious health complications involving the eyes,
kidneys, nerve cells, and blood vessels. In previous studies
using a comet assay, increased level of DNAdamage in diabetic
patients with poor glycemic control was demonstrated [1, 2].

Oxidative stress refers to the imbalance between the pro-
duction of free radicals and the body's antioxidant defense
system leading to tissue damage [3]. Oxidative stress causes
serious damage in different biomolecules such as proteins [4],
lipids [5], and nucleic acids [6], which leads to the develop-
ment of many diseases including diabetes mellitus [7]. One of
the main free radical scavengers is copper (Cu)–Zn superoxide
dismutase [8]. Hyperglycemia increases the generation of free
radicals by glucose auto-oxidation [9, 10]. Several studies
describe that these oxygen-derived free radicals result in pan-
creatic β cell dysfunction and apoptosis [11, 12]. It has been
proposed that oxidative stress is a major contributor not only
to the development of the late complications in diabetic pa-
tients but also to insulin resistance and impaired insulin secre-
tion in diabetes [13]. There is convincing experimental and
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clinical evidence that hyperglycemia-induced activation of
oxidative stress pathways plays a key role in the development
of types 1 and 2 diabetes [3, 9, 13–15].

Cu is one of the most frequently occurring elements inte-
grating into essential biochemical pathways [16]. It is an essen-
tial element required as a cofactor and/or structural component
of numerous metalloenzymes. Copper ion is involved in the
pathogenesis of type 2 diabetes [17, 18]. It was found that
patients with diabetes had lower zinc and copper concentrations
than nondiabetic controls, and homeostasis of trace elements
can be disrupted by diabetes mellitus [19]. Treatment with
copper-chelating agents could be used as potential therapeutic
agents due to their effect in the treatment of glucose and lipid
metabolism in type 2 diabetes [20]. Because of its importance
for many biochemical pathways, researchers' interest in using
copper to synthesize and produce complex compounds has
increased. A wide variety of biological activities has been
reported for many synthesized copper complexes. They were
proven to have anticonvulsant activity [21, 22], antitumor
activity [23], anti-inflammatory activity [24], antimicrobial ac-
tivity [25], and antiulcer activity [26]. Furthermore, copper
complexes showed a strong antioxidant activity [24, 25],as well
as antidiabetic activity [16, 27–29]. Copper complexes are able
to modulate Cu homeostasis in different tissues, resulting in
protective effects in several models of degenerative diseases
including diabetes. The therapeutic effect could be due to their
ability to increase superoxide dismutase activity as reported by
Duncan and White [30].

The copper(II) complex with 3,5-diisopropyl salicylate
(Cu(II)DIPS) was found to have an anticonvulsant activity by
preventing Metrazol and maximal electroshock-induced sei-
zures [31]. Other copper(II) salicylate derivatives, including
aspirinate complexes, were effective in preventing maximal
electroshock-induced seizures without having any effect on
Metrazol-induced seizures [21, 32]. Copper(II) acetate imidaz-
ole was reported to have a hypoglycemic activity [28] and a
protective action against strychnine- and thiosemicarbazide-
induced seizures [33]. In all cases of antidiabetic, anti-
inflammatory, or anticonvulsant activities, the copper com-
plexes were found to be more active and effective than their
parent ligands or copper(II) inorganic forms [28, 32, 34].

Herein, our goal is to test in vitro the antioxidant activity
of four copper complexes and to investigate the most potent
copper complex in vivo for its possible antidiabetic activity
using streptozotocin (STZ)-induced diabetic animals.

Materials and Methods

Reagents and Materials

Fluorescein sodium salt was purchased from Sigma-Aldrich,
cat. no. F6377 (0.189 g). A stock solution of fluorescein

sodium salt was prepared by dissolving it in 50 ml of phos-
phate buffer solution (PBS) (75 mM, pH 7.0). The working
solution (4 μM) was obtained by subsequent dilution in PBS.
α,α′-Azodiisobutyramidine dihydrochloride (AAPH) was
purchased from Sigma-Aldrich, cat. no. 44,091-4, and was
freshly prepared at a concentration of 40 mM prior to injec-
tion. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid) was purchased from Sigma-Aldrich, cat. no.
23,881-3. It was prepared fresh by serial dilution in PBS from
a 10 mg/ml stock solution. The analysis was performed using
a flat-bottom 96-well plate and microplate, TECAN, GENios
reader (GENios Serial number 12900400892; Firmware V
6.01, 13 May 2004, GENios; XFLUOR4 version V4.50).

Copper(II) chloride, copper(II) acetate, and its methyl de-
rivatives were purchased from Sigma-Aldrich (Milwaukee,
WI). Copper(II) acetate complexes were synthesized and char-
acterized in the Chemistry Department at Birzeit University.
Dextrostix strips were purchased from Ames (Miles, Paris),
and STZ was purchased from Sigma-Aldrich (St. Louis, MO).

The DNA Damage enzyme-linked immunosorbent assay
(ELISA) kit, catalog no. EKS-350, was purchased from Assay
Designs/Stressgen, Inc., 5777 Hines Drive, Ann Arbor, MI
48108, USA. All other chemicals used were of analytical grade
and were purchased from Sigma-Aldrich Chemicals Co. (St.
Louis. MO).

In Vitro Studies

Screening for the antioxidant activity of the copper complexes
was performed as previously described in detail [34, 35]. Reac-
tion mixtures consisted of 25 μl sample or Trolox (as a standard)
mixed with 125 μl of fluorescein (4 μM) and incubated for
10 min at 37 °C in the microplate. AAPH solution (45 μl) was
injected using a multichannel pipette, and the microplate was
shaken. The fluorescence (excitation=485 nm, emission=
535 nm) was recorded every 2 min for 120 cycles. The quanti-
fication of the antioxidant activitywas based on the calculation of
the area under the curve, as proposed by Prior and Cao [36].
Samples from the different copper complexes were screened for
their antioxidant activity, by the dilution of 10mg of each sample
in 1 ml dimethyl sulfoxide (DMSO) and measured in duplicate.

Induction of Diabetes in Rats and Administration of Drugs

Male Sprague–Dawley rats weighing 100–150 g were fasted
for 12 h but were allowed water ad libitum before use in
these experiments. Experimental diabetes was induced by
subcutaneous (SC) injection of 50 mg STZ/kg body mass
dissolved in 100 mM sodium acetate buffer, pH 5.2. Diabe-
tes was assessed by monitoring blood glucose levels in
fasted rats after 1, 2, and 3 weeks following injection of
STZ. Rats were considered diabetic when blood glucose
levels were above 200 mg/dl.
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Groups of 6–12 animals were injected intraperitoneally
(IP) twice a week with 5 mg/kg body mass of Cu(II)DIPS,
or with the ligand (DIPS) or with the same volume of
vehicle solution (DMSO), to test their effect in the following
groups: A, in normal rats for hypoglycemic activity; B, in
diabetic rats for antidiabetic activity; and C, injection to
normal rats twice a week before induction of diabetes to
test their protective activity.

At the end of the experiments male rats from groups A,
B, and C were anesthetized with ether. At the stage of light
anesthesia, characterized by loss of spontaneous movement
and pain sensation but with positive corneal reflex, blood
samples (1 ml) were drawn from the femoral artery into test
tubes. The blood samples were centrifuged at 2,000×g for
10 min; serum was isolated and stored at −80 °C for DNA
damage test. Internal organs were removed for measuring
the relative weight.

Measurement of DNA Damage

Cu(II)DIPS was tested for its possible effect in reducing DNA
damage and oxidative stress. The DNA Damage ELISA kit
from Assay Designs (EKS-350) is a fast and sensitive com-
petitive immunoassay for the detection and quantitation of 8-
hydroxy-2′-deoxyguanosine (8-OH-dG) in serum samples. 8-
OH-dG has become a biomarker of oxidative DNA damage
and oxidative stress, and the method uses an 8-OH-dG mono-
clonal antibody to bind in a competitive manner. The proce-
dure is described in detail as published previously [37–40].
The DNA Damage ELISA kit was used for the detection and
quantitation of 8-hydroxy-2′-deoxyguanosine in serum sam-
ples of control and treated animals.

Statistical Treatment of Data

Values were expressed as mean ± standard error of the mean
(SEM). Number of experiments is indicated in parentheses.
Results were compared, where appropriate, using unpaired
two-tailed Student's t test. Differences were considered
statistically significant if P<0.05. Statistical analysis
was performed using the Microsoft Excel and GraphPad
Prism version 6.

Results

Antioxidant Activity of Copper Complexes

The oxygen radical absorbance capacity (ORAC) assay used
in our in vitro experiments is a common and popular tool
used to determine the antioxidant capacity of any substance,
and it is directly estimated by comparison to the standard
curve of Trolox (the well-known antioxidant), as previously

described [34, 35]. From our results in Fig. 1 and Table 1,
Cu(II)DIPS was found to have the best antioxidant activity,
compared to the other tested copper complexes, with minimal
effective plasma concentration=23.84 μg/ml.

Effect of Cu(II)DIPS on Blood Glucose Levels in Normal
and Diabetic Rats

Glucose concentration was monitored once a week in
overnight-fasted rats before and after injection of STZ
(50 mg/kg). Intraperitoneal injection of Cu(II)DIPS 5 mg/kg
to normal rats has no significant effect on blood glucose
levels after 7, 14, or 21 days. Similar results were obtained
when the same copper complex was injected to STZ-
induced diabetic rats, for the same periods as shown in
Table 2.

Protective Effect Against Induction of Diabetes

SC injection of STZ 50 mg/kg to normal rats significantly
increased blood glucose levels in fasted rats from 73.4±1.7
(24) to 315.9±26.2 (18)mg% after 7 days and to 360.7±
28.5 (9)mg% after 21 days, an increase of 4.3- and 4.9-fold,
respectively (Fig. 2 and Table 3). Pretreatment with the most
potent copper complex Cu(II)DIPS (5 mg/kg) twice a week
had no effect on blood glucose levels before injection of
STZ. However, after injection of STZ (50 mg/kg), blood
glucose levels were increased to 218.3±23.4 (26)mg% after
7 days and to 244.9±31.6 (15)mg% after 21 days, an
increase of 3- and 3.3-fold, respectively. The hyperglycemic
effect of STZ was reduced by 34 % after pretreatment with
Cu(II)DIPS. Pretreatment with the ligand 3,5-diisopropyl
salicylate has no effect in reducing a blood glucose level
in STZ-induced diabetic rats, and no effect on the development
of the diabetic process (Fig. 3).

Mortality rate due to STZ injection was also reduced
significantly following pretreatment with Cu(II)DIPS from
33 to 21 % after 7 days, from 42 to 29 % after 14 days, and
from 54 to 43 % after 21 days (Table 3).

Changes in Relative Weight of Internal Organs

Table 4 shows that pretreatment with Cu(II)DIPS; while it has
significantly reduced the level of STZ-induced hyperglycemia
and the mortality rate, it has no significant effect in relative
weight of any of the following organs: the testis, epididymis,
seminal vesicles, heart, kidneys, spleen, liver, or brain.

STZ-Induced DNA Damage and the Protection
by Cu(II)DIPS

DNA damage was estimated by measuring the concentration
of 8-OH-dG in the blood serum following injection of STZ
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50 mg/kg for 7 days. Figure 4 shows a significant increase
of 29 % in 8-OH-dG concentration in the serum blood of
STZ-induced diabetic rats, which indicates an oxidative
stress produced by a significant increase in DNA damage.
Pretreatment with Cu(II)DIPS has prevented the increase in
DNA damage by reducing the serum concentration of 8-
OH-dG to normal values and reducing the severity of hy-
perglycemia as shown in Fig. 2.

Discussion

In Vitro Studies

From our in vitro studies using the ORAC assay, it was
clear that all copper complexes used have an antioxidant
activity compared to the standard curve of Trolox®. The
antioxidant activity of the copper complexes was rated as fol-
lows, starting with the copper complex having the highest anti-
oxidant activity: Cu(II)DIPS→Cu(II)(OAc)(N-methylimidazole
(meimd))4·6H2O→Cu(II)(ibuprofen (ibup))4(2,2-bipyridine

(bipy))2→Cu(II)(ibuprofen)4. The only limitation of the method
is that samples contain free radical generators like H2O2 which
interfere with the procedure and cannot be analyzed using this
technique [35].

Cu(II)DIPS with a median effective concentration of
23.84 μg/ml was the most potent and was selected for the
in vivo studies. Compounds with salicylate skeleton are
well-known as good scavengers of hydroxyl radicals [41]
and were reported to have a cytoprotective activity like
Trolox, an effective scavenger of both superoxide and hy-
droxyl radicals [42].

In Vivo Studies

When repeated doses of Cu(II)DIPS 5 mg/kg were injected IP
twice a week to normal rats, they had no hypoglycemic
activity since no significant changes on blood glucose levels
were obtained as shown in Table 2. Similar results were
obtained when the same treatment with Cu(II)DIPS was ap-
plied to STZ-induced diabetic rats. This indicates no
antidiabetic activity of Cu(II)DIPS. Previous results have
shown an antidiabetic activity with the same copper complex
[27]. Injection of the copper complex to diabetic rats is not
effective in reducing blood glucose or preventing tissue dam-
age, since most of the β cells are already destroyed. Previous
reports have shown that treatment of diabetic rats with anti-
oxidant therapy may not only be too late but may also miss a
large fraction of the target, non-oxidatively derived carbonyl
compounds, which contribute to tissue damage [14]. There-
fore, antioxidants are more effective when applied before the
induction of diabetes or in the early stages of the process. Two
to four weeks following injection of STZ, no significant
changes were observed in the total body weight or relative
weight of internal organs. Similar results were reported

Fig. 1 Fluorescein (4 μM) was
incubated in the presence of
AAPH (40 mM) and 1 Trolox, 2
Cu(II)(OAc)(N-meimd)4·6H2O,
3 Cu(II)(ibuprofen)4, 4
Cu(II)DIPS, or 5
Cu(II)(ibup)4(2,2bipy)2. The
reaction was followed by the
change in the fluorescence
intensity of fluorescein
(excitation=485 nm, emission=
535 nm) in phosphate buffer
solution (75 mM, pH 7.0).
Cu(II)DIPS showed the highest
fluorescence intensity
compared to all other tested
copper complexes

Table 1 Antioxidant activity of copper complexes

Median effective concentration
(μg/ml)

Trolox 29.73

Cu(II)DIPS 23.84

Cu(II)(OAc)(N-meimd)4·6H2O 115.6

Cu(II)(ibup)4(2,2bipy)2 232.0

Cu(II)(ibuprofen)4 1,054

Median effective concentration of the copper complexes was calculat-
ed as the concentration which produces 50 % of the maximum effect.
Values are expressed in nanogram per milliliter
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previously [43]; they observed significant reductions in body
weight only after 6 weeks of STZ injection.

Pretreatment with Cu(II)DIPS prior to the injection of
STZ has reduced the severity of hyperglycemia by 34 %
(Fig. 2), in addition to reduction in mortality rate. The
protective effect of Cu(II)DIPS was not achieved when we
used the same dosage and treatment of the ligand 3,5-
diisopropyl salicylate. Prior administration of Cu(II)DIPS
at doses of 48 or 120 mg/kg 15 min before injection of
streptozotocin has attenuated the severity of STZ-induced
diabetes. In the same experiments, diisopropyl salicylate has
no superoxide dismutase activity and no effect on the sever-
ity of STZ-induced diabetes [27]. Similar cytoprotective
effects of copper complexes were reported against alloxan-
induced diabetes [41].

Deficiency of some essential trace elements, such as
copper and zinc, may play a role in the development of

diabetes mellitus [19, 44, 45]. Diabetes is associated with
increased oxidative stress [46–48], and the total antioxidant
status in diabetes is lower than that of age-matched controls
[47, 49]. Therefore, antioxidants, by reducing the damage
caused by hyperglycemia, could be useful in the prevention
and management of chronic diabetic complications [47, 50].
In addition to the importance of trace elements such as
copper as cofactors of antioxidant enzymes, their deficiency
may be associated with increased oxidative stress. On the
other hand, copper ions are potentially harmful to cells and
are involved in the development of type 2 diabetes. Copper-
chelating agents exert beneficial effects on the pathogenesis
of diabetes [20], and production of the reactive oxygen
species (ROS) is facilitated in the presence of copper ions
through the Fenton reaction [51, 52].

The advantage of copper complexes is their ability to
modulate copper homeostasis, and their potential therapeutic

Table 2 Effect of Cu(II)DIPS on blood glucose levels in normal and diabetic rats

0 time 7 days 14 days 21 days

Normal rats

Control (DMSO) 77.3±3.2 (12) 89.8±4.2 (12) 93.6±2.6 (12) 74.2±2.5 (6)

Cu(II)DIPS (5 mg/Kg) 79.7±2.2 (13) 74.1±3.7 (13) 95.5±2.2 (13) 73.0±1.7 (7)

Diabetic rats

Control (DMSO) 380.4±30.5 (6) 354.8±42.4 (6) 390.1±28.7 (6) 409.5±18.5 (6)

Cu(II)DIPS (5 mg/Kg) 391.4±25.3 (14) 314.5±52.3 (6) 337.3±45.2 (10) 413.0±23.3 (12)

Normal animals were injected IP with Cu(II)DIPS 5 mg/k, and control animals were injected with the same volume of the vehicle solution (DMSO).
The same treatments were applied to diabetic animals. Blood glucose was measured in the tail tip of fasted animals after 0, 7, 14, and 21 days of the
copper complex injection. Values are mean ± SEM for the number of experiments indicated in parentheses. Glucose levels were expressed in
milligram percent

Fig. 2 The development of the
diabetes process following
pretreatment for 1 week with
Cu(II)DIPS, before the
injection of STZ (50 mg/kg).
Control animals were pretreated
for the same period with the
vehicle solution (DMSO).
Values are mean ± SEM.
*P≤0.05; **P≤0.001
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usage will most likely be due to their ability to increase
superoxide dismutase (SOD) activity leading to relief of oxi-
dative stress. The use of copper complexes is an attempt to
increase their efficacy and reduce nonspecific cytotoxicity.

From our results, injection of Cu(II)DIPS to diabetic rats
with blood glucose levels above 300 mg% had no effect on
blood glucose, since the β Langerhans cells were already
destroyed. Pretreatment with the same concentration of the
copper complex has prevented the destruction of β
Langerhans cells due to their antioxidant activity and re-
moval of the free radicals. Previous reports have shown that
treatment of STZ-induced diabetic mice with copper sulfate
resulted in decreased blood glucose levels, improved pan-
creas morphology, and preserved β cell function [53]. There
was also reduced lipid peroxidation, suggesting that perhaps
Cu sulfate exerts its effect through relief of oxidative stress
[30]. Oxidative stress is increased in diabetes due to
overproduction of ROS and decrease efficiency of

antioxidant defenses as a result of hyperglycemia [54].
Oxidation of DNA occurs during the development of diabe-
tes [55]; therefore, pretreatment with copper complexes
having a strong antioxidant activity before injection of
STZ could protect against the induction of diabetes.

Increased 8-OH-dG has been proposed as a biomarker of
oxidative DNA damage [56], and the measurement of its
concentration is a sensitive method for measuring the extent
of DNA damage in vivo and in vitro [57]. In our results,
pretreatment with Cu(II)DIPS before injection of STZ
protected the rats against STZ-induced DNA damage as
shown in Fig. 4. Other antioxidants like ascorbic acid and
Trolox were reported to prevent STZ-induced elevation of
DNA damage in the liver and kidneys of mice [58, 59].

Table 3 Effect of pretreatment with Cu(II)DIPS on blood glucose and mortality rate after the induction of streptozotocin in diabetic rats

No STZ Treatment with STZ (50 mg/kg)

Pretreatment 1st day 7th day 1st week 2nd week 3rd week

Blood glucose (mg%)

Control (DMSO) 71.7±2.6 (19) 73.4±1.7 (24) 315.9±26.2 (18) 332.9±27.9 (13) 360.7±28.5 (9)

Cu(II)DIPS (5 mg/kg) 79.8±1.9 (23) 73.6±1.2 (28) 218.3±23.4 (26)* 201.3±25.0 (20)** 244.9±31.6 (15)*

Mortality rate

Control (DMSO) 0 % 0 % 33 % (8/24) 42 % (10/24) 54 % (13/24)

Cu(II)DIPS (5 mg/kg) 0 % 0 % 21 % (6/28) 29 % (8/28) 43 % (12/28)

Mortality rate is the number of diabetic rats killed by STZ after 7, 14, or 21 days compared to the total number of rats treated. Values are mean ±
SEM for the number of experiments indicated in parentheses
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Fig. 3 Blood glucose levels were measured in normal and STZ-in-
duced diabetic rats following pretreatment with Cu(II)DIPS or with the
ligand DIPS or with the vehicle solution DMSO. Values are mean ±
SEM. *P≤0.05, compared to diabetic rats pretreated with DMSO

Table 4 Effect of Cu(II)DIPS on relative weight of different body
organs

Control + STZ Cu(II)DIPS + STZ

Total body weight (g) 200.00±7.00 (4) 187.00±6.00 (6)

Glucose (mg%) 382.20±63.50 (4) 210.00±61.00 (6)*

Testis 1.37±0.05 (4) 1.37±0.05 (6)

Epididymis 0.34±0.02 (4) 0.38±0.01 (6)

Seminal vesicles 0.22±0.03 (4) 0.25±0.03 (6)

Heart 0.33±0.01 (4) 0.34±0.01 (6)

Kidneys 0.91±0.07 (4) 0.87±0.05 (6)

Spleen 0.27±0.05 (4) 0.27±0.03 (6)

Liver 3.57±0.18 (4) 3.28±0.15 (6)

Brain 0.82±0.01 (4) 0.84±0.03 (6)

The relative weight is the weight of the different organs compared to
the total body weight in each animal. Cu(II)DIPS 5 mg/kg was injected
IP twice a week before and during treatment with STZ (50 mg/kg).
Control animals were injected at the same time with the same volume
of the vehicle (DMSO). At the end of the experiments, rats were
anesthetized with ether, and the selected organs: the heart, kidneys,
spleen, liver, brain, testis, epididymis, and seminal vesicles were re-
moved and weighed for the measurement of relative weight. Values
shown are mean ± SEM for the number of experiments indicated in
parentheses

*P≤0.05
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Several clinical studies have shown high levels in 8-OH-dG
in diabetic patients compared to normal healthy participants
[60]. The measurement of oxidative DNA damage in leuko-
cytes by means of the comet assay is a suitable marker for
the evaluation of systemic oxidative stress in diabetic pa-
tients [15], and higher levels of 8-OH-dG in mononuclear
leukocyte DNA have been found in types 1 and 2 diabetic
patients [60–62]. Free radical formation in oxidative stress
cases results from an increased oxidation of DNA, proteins,
carbohydrates, or unsaturated fatty acids [12]. In our exper-
iments, we measured DNA damage as reflected by serum 8-
OH-dG levels.

Oxidative stress has been found to be due to an increased
production of oxygen free radicals, and a sharp reduction of
antioxidant defenses has been observed in diabetes [63]. STZ
is a glucosamine–nitrosourea compound that can cause pan-
creatic β cells destruction capable of inducing insulin-
dependent diabetes mellitus. STZ and alloxan which induce
diabetes mellitus are well-known for their effect in inhibiting
superoxide dismutase enzymatic activity [64, 65]. Therefore,
intravenous injection of copper–zinc superoxide dismutase
before STZ prevented diabetes in rats [66, 67], and copper
complexes which have a superoxide dismutase-like activity
could have an antidiabetic effect [27, 68].

One of the roles of copper complexes relies on the delivery
of copper or modulation of copper homeostasis. The thera-
peutic success of copper complexes as therapeutics is perhaps
due to their ability to increase SOD activity leading to relief of
oxidative stress, as reported by Duncan and White [30]. One
of the protective mechanisms could be the ability of antioxi-
dant copper complexes like Cu(II)DIPS to scavenge free
radicals in the human body, thereby decreasing the amount
of free radical damage to molecules like DNA.

Oxidative stress plays an important pathophysiological
role in the onset of diabetes and in the development of the
diabetic complications [3]. From our recent results, it is very
clear that Cu(II)DIPS, which has an antioxidant activity,
could affect the onset of diabetes, and further studies are
needed to evaluate its effect on the development of the
diabetic complications.

Conclusions

Copper(II) (3,5-diisopropyl salicylate)4 (Cu(II)DIPS) has an
antioxidant activity similar to that of Trolox. It has no
hypoglycemic activity when injected into normal rats and
no antidiabetic activity when injected into diabetic rats. On
the other hand, pretreatment with Cu(II)DIPS has a protective
effect against diabetes induced by streptozotocin, by reducing
mortality rate and the severity of diabetes (40 % reduction in
blood glucose levels).

It is suggested that Cu(II)DIPS protective effect is related
to its antioxidant activity and its potency to reduce the
oxidative stress which was measured by total serum DNA
damage. Further studies are necessary to elucidate the
mechanism of action of copper complexes.
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