
LOW TEMPERATURE PHYSICS VOLUME 32, NUMBER 12 DECEMBER 2006
Thermomagnetic phenomena in layered conductors
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A theoretical study is made of thermomagnetic phenomena in layered conductors in the presence
of several groups of charge carriers. The thermopower at high external magnetic field is found as
a function of the strength and orientation of the field; experimental study of this field dependence
permits investigation of the structure of the energy spectrum of the charge carriers.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2400694�
Electronic phenomena in degenerate conductors at high
magnetic fields B, when the frequency of gyration �c of the
conduction electrons is much higher than their collision fre-
quency 1/�, are extremely sensitive to the form of the elec-
tron energy spectrum. Galvanomagnetic phenomena have
been used successfully to recover the topology of the Fermi
surface of metals from experimental study of the anisotropy
of their magnetoresistance.1,2 Thermomagnetic phenomena
also contain rich information on the topological structure of
the energy spectrum of the charge carriers.3 In a quantizing
magnetic field, when the width ��c of the Landau levels is
greater than the temperature smearing of the Fermi distribu-
tion function of the charge carriers, the thermoelectric field
in low-dimensional conductors experiences giant oscillations
as a function of the reciprocal of the magnetic field strength.4

The condition of high magnetic field ��c��1�, necessary for
solution of the inverse problem of recovering the electron
energy spectrum from experimental data, is completely at-
tainable in charge-transfer complexes having a layered struc-
ture.

Let us consider the thermomagnetic phenomena in lay-
ered conductors with an arbitrary sign of the dispersion of
charge carriers at high magnetic field. Layered conductors
are characterized by sharp anisotropy of their electrical con-
duction. The conductivity transverse to the layers is less than
the conductivity along the layers by three orders of magni-
tude in organic conductors, by four orders of magnitude in
manganites, and even by five orders of magnitude in graph-
ite. This is apparently due to the sharp anisotropy of the
charge-carrier velocities v=���p� /�p, i.e., their energy ��p�
depends weakly on the momentum projection pz=n ·p on the
normal to the layers, n, and can be written in the form of a
rapidly convergent series:

��p� = �
n=0

�

�n�px,py�cos�anpz

�
� , �1�

so that the projection of the electron velocity on the normal
to the layers,

vz =
��

�pz
= − �

n=1

�

�n�px,py�
an

�
sin�anpz

�
� �2�

is substantially lower than the maximum value of the veloc-
ity in the plane of the layers, v �� is Planck’s constant, and
F
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a is the distance between layers�. The maximum values of
the functions �n on the Fermi surface fall off rapidly with
increasing index n, and �1

max=��F��F.
The Fermi surface ��p�=�F of a layered conductor is

open and slightly corrugated along the pz axis; it can be
constructed with the aid of topologically simple elements in
the form of slightly corrugated cylinders and corrugated
planes, either isolated or connected pairwise by necks.

In many layered conductors the de Haas–van Alphen and
Shubnikov–de Haas quantum oscillations have already been
observed in different orientations of the magnetic field rela-
tive to the layers �see, e.g., the references cited in the review
articles�.5,6 This attests to the fact that at least one sheet of
the Fermi surface of these charge-transfer complexes is a
slightly corrugated cylinder, since the closed electron orbitals
on the corrugated planar sheets are utterly small, and almost
the entire cross section pB=p ·B /B=const of the planar
sheets of the Fermi surface are open for any orientation of
the magnetic field. Undoubtedly the Fermi surfaces of some
layered conductors can consist of only a single slightly cor-
rugated cylinder. In particular, it is customarily assumed that
organic charge-transfer complexes based on tetrafulvalene,
�BEDT–TTF�2X with X=IBr2, I3, have such a Fermi
surface.5 However, as a rule, the Fermi surface of layered
conductors is single-sheet. There is reason to suppose that
in the organic conductors �BEDT–TTF�2Cu�SCN�2 and
�BEDT–TTF�2MHg�SCN�4, where M is one of the metals of
the group K, Rb, Tl, or NH4, there are two groups of charge
carriers responsible for the charge transfer, which have a
quasi-two-dimensional and a quasi-one-dimensional energy
spectrum.7 For interpretation of the phase relations between
quantum oscillations of the magnetic susceptibility and mag-
netoresistance of graphite, Kopelevich and Luk’yanchuk8

had to invoke three groups of carriers with topologically dif-
ferent character of the energy spectrum.

The linear response of the electron system to an external
perturbation in the form of an electric field E and tempera-
ture gradient �T,

ji = 	ijEj − 
ij
�T

�xj
, �3�

qi = �ijEj − �ij
�T

�x
, �4�
j
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can be found with the aid of a solution of the kinetic equa-
tion for the electron distribution function:

f�r,p� = f0��� − 1�r,p�
�f0

��
− 2�r,p�

� − �

T

�f0

��
, �5�

where f0��� and � are the equilibrium Fermi function and
chemical potential of the electrons, T is the temperature in
energy units, and the functions 1 and 2 are solutions of the
equations

�1

�t
+ v

�1

�r
+ Ŵp1 = eE · v , �6�

�2

�t
+ v

�2

�r
+ Ŵ�2 = v

� − �

T
� T . �7�

Here e is the electron charge, the operators Ŵp and Ŵ� de-
scribe the relaxation of electrons with respect to the mo-
menta �1/�p� and energies �1/���, and t is the time of motion
of the charge in a magnetic field B= �B cos � sin � ,
B sin � sin � ,B cos �� according to the equations

�px

�t
=

eB cos �

c
�vy−vz sin � tan �� , �8�

�py

�t
=

eB cos �

c
�vz cos � tan � − vx� , �9�

�pz

�t
=

eB sin �

c
�vx sin � − vy cos �� . �10�

The electric field and temperature gradient will be consid-
ered constant and uniform.

The eigenvalues of the scattering operators Ŵp and Ŵ�

for conduction electrons, 1 /�p and 1/��, respectively, are
substantially different, when the charge carriers are scattered
on vibrations of the crystal lattice.9,10 However, at low tem-
peratures, once the condition �c��1 is satisfied, the main
mechanism of dissipation of the electrons at actually attain-
able magnetic fields is their scattering on impurity atoms and
other crystal defects. The doping of a layered conductor by
impurity atoms can substantially alter the electron energy
spectrum.11 We shall assume that the impurity centers are
still too few in number to have a substantial influence on the
energy spectrum of the charge carriers but entirely sufficient
that we can neglect the electron-phonon scattering at low
temperatures. In the scattering of charge carriers by impurity
centers the momentum of the electron changes appreciably at
the time of a collision event, and the relaxation times of the
electron system with respect to momentum ��p� and energy
���� are of the same order of magnitude. In the case of a short
range of interaction of the impurity center one can use the
Born approximation for calculating the scattering amplitude.
Here the collision integral, to a sufficient degree of accuracy,
has the form of an operator of multiplication of the nonequi-
librium correction to the distribution function by the colli-
sion frequency, and the solutions of equations �6� and �7�
take the rather simple form

1 = �
−�

t

dt� exp��t − t��/�p�eE · v�t�� , �11�
2 = �
−�

t

dt� exp��t − t��/���
� − �

T
v�t�� � T . �12�

After substituting the electron distribution function �5� into
the expressions for the current density

j =
2

�2���3 � evf�r,p�d3p �13�

and heat flux density

q =
2

�2���3 � v�� − ��f�r,p�d3p �14�

one can easily determine the kinetic coefficients linking j and
q with the electric field E and temperature gradient �T.
From now on, we shall drop the distinction between �� and
�p and just set ��=�p=�.

In the � approximation for the collision integrals it is
sufficient to calculate the components of the conductivity
tensor 	ij, while the remaining kinetic coefficients describing
the heat transfer and thermoelectric effects are related to 	ij

by the simple relations


ij = T−1�ij =
�2T

3e

�	ij���
��

, �15�

�ij =
�2T

3e2 	ij . �16�

We shall assume that the Fermi surface consists of a
corrugated cylinder and corrugated planes with an arbitrary
corrugation along the py axis. The coordinate axes in the
plane of the layers are directed so that the plane tangent to a
corrugated planar sheet of the Fermi surface is parallel to the
pypz coordinate plane. In relations �13� and �14� it is neces-
sary to integrate over all states of the conduction electrons,
and in the presence of several groups of charge carriers, each
of them brings its own contribution to the kinetic
coefficients—in particular, to the components of the conduc-
tivity tensor, so that

	ij = 	ij
�1� + 	ij

�2�, �17�

where 	ij
�1� is the contribution to the conductivity from charge

carriers whose states are found on a planar sheet of the Fermi
surface, and 	ij

�2� takes into account the contribution to 	ij

from the remaining electrons with the Fermi energy.
It follows from the equations of motion of a charge in a

magnetic field that the charge carriers whose states belong to
a corrugated planar sheet of the Fermi surface drift mainly
along the x axis. After averaging Eq. �8� over a sufficiently
long time segment, we find that the electron drift velocity
along the y axis, v̄y = v̄z sin � tan � is of the same order as v̄z

if the magnetic field deviates substantially from the plane of
the layers, i.e., if the angle � is substantially different from
� /2.

At the same time, a conduction electron can can move
rather far along the py axis along its trajectory in p space,
and, as follows from Eq. �9�, the mean drift velocity v̄x is of
the order of vF.

The presence of this group of charge carriers in addition
to the conduction electrons on the corrugated cylinder of the
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Fermi surface has a substantial influence on the dependence
of the kinetic coefficients on the magnetic field strength at a
high field. This is due to the fact that, however high the
magnetic field, the high-field asymptote of the component
	xx

�1��B� for �=TB /��1 is of the same order of magnitude as

	xx
�1� in the absence of magnetic field:

	xx
�1� =

2e2

�2���3 � d�dpydpz
vx

2�

	vx	
����p� − �F�

=
2e2

�2���3 � dpydpz	vx	� =
2e2v1�

��ab
. �18�

Here b is the period of the crystal lattice along the y axis, v1

is the modulus of the mean drift velocity of the electrons
along the x axis. The mean-free time for the two groups of
electrons will be set equal, and the time TB is of the same
order of magnitude as the period of gyration of an electron
along a closed orbit, while for electrons on an open trajectory
in momentum space, it is of the same order of magnitude as
the time of their displacement by a period of the reciprocal
lattice.

In quasi-two-dimensional conductors the conductivity
tensor components 	xx, 	yy, 	xy, and 	yx will be greater in
order of magnitude than all the other components 	ij even
though they may decay with increasing magnetic field, since
at actually attainable fields the small parameter � is still
much larger than the quasi-two-dimensionality parameter of
the electron energy spectrum, i.e., ����1. These compo-
nents are easily estimated by studying the Hall effect and
magnetoresistance. In the leading approximation, the ratio of
the electric fields Ey and Ex upon the flow of a current j
= �j cos � , j sin � ,0� in the plane of the layers has the form

Ey

Ex
=

− 	xy cos � + 	xx sin �

	yy cos � − 	yx sin �
. �19�

Having determined this ratio at four positions of current
flow, e.g., at �=0, � /6, � /4, and � /2, one can find the
components of the conductivity tensor appearing in it for any
form of the quasi-two-dimensional electron energy spectrum.

Further analysis of thermoelectric phenomena in conduc-
tors with a multi-sheet Fermi surface does not present diffi-
culty. Upon a nonuniform heating of the conductor along the
normal to the layers in the absence of current-conducting
contacts �j=0�, the thermoelectric field is directed mainly
along the temperature gradient �T /�z:

Ez =
�2T

3e

��ln 	zz�
��

�T

�z
. �20�

The electric field in the plane of the layers, which is
proportional to the square of the quasi-two-dimensionality
parameter of the electron energy spectrum, though increasing
with increasing magnetic field, is nevertheless, for ���
�1, much less than Ez:

Ex � Ey 
 �2 T

�e
tan ���−2 sin � + �−1 cos ��

�T

�z
. �21�
If the temperature gradient is oriented in the plane of the
layers and directed along the y axis, then the thermoelectric
field Ey is substantially larger than Ex and is given by the
expression

Ey =
�2T

3e
��yy

�	yy

��
+ �yx

�	xy

��
� �T

�y

=
�2T

3e

�0

	yy
�2��− 	xx

�1��	yy
�2�

��
− 	yx

�2��	xy
�2�

��
� �T

�y
, �22�

where

�0 =
	yy

�2�

	yy
�2�	xx

�1� − 	xy
�2�	yx

�2� .

The thermoelectric field

Ez =
�2T

3e

�0

	yy
�2� tan ���	yx

�2� sin � − 	yy
�2� cos ��

�	xy
�2�

��

− �	xx
�1� sin � − 	xy

�2� cos ��
�	yy

�2�

��
� �T

�y
�23�

is of the same order of magnitude as Ey only when the mag-
netic field deviates substantially from the normal to the lay-
ers, i.e., for tan ��1.

The relation between the thermoelectric field and a tem-
perature gradient directed along the x axis is given in the
leading approximation in the parameter � as

Ex =
�2T

3e
��xx

�	0
�1�

��
+ �xy

�	yx
�2�

��
� �T

�x

=
�2T

3e
�0� �	xx

�1�

��
−

	xy
�2�

	yy
�2�

�	yx
�2�

��
� �T

�x
, �24�

Ey =
�2T

3e
��yx

3	0
�1�

��
+ �yy

�	yx
�2�

��
� �T

�x

=
�2T

3e

�0

	yy
�2��− 	yx

�2��	xx
�1�

��
+ 	xx

�1��	yx
�2�

��
� �T

�x
, �25�

Ez =
�2T

3e
�cos �

�

��
�ln 	zz� +

�0

	yy
�2��	yx

�2��	xx
�1�

��

− 	xx
�1��	yx

�2�

��
�sin � + 	xy

�2� cos �
�	yx

�2�

��
�� . �26�

The thermoelectric field turns out to be almost orthogo-
nal to the temperature gradient. In the case of a Fermi surface
consisting only of a single corrugated cylinder, the E vector
lies mainly in the yz plane, and for ��1 the component Ez is
much less than Ex.

The contribution to the Hall component 	xy from the
charge carriers whose state belong to the calculated cylinder,
viz.,

	xy
�2� =

2ecS

a�2���2B
=

N2ec

B cos �
, �27�

is easily determined if one knows the period of the
Shubnikov-de Haas oscillations, ��1/B�=2��e /cSextr, since
only this group of conduction electrons participates in the
formation of the oscillations. In formula �27� S is the mean



¯
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area of section of the Fermi surface by a plane pB=const,
which differs from the extremal cross sections of the Fermi
surface, Sextr, by a negligible correction proportional to �.

Having determined 	xy from experiment, we find

	xy
�1� = 	xy − 	xy

�2� =
c

eB
� dpB� dpy

2

�2���3 �p̄x − px�py�� ,

�28�

px, as usual, is the value of the momentum component aver-
aged over the time of motion of the charge. In the case of a
slight corrugation of this sheet of the Fermi surface and
along the py axis the Hall component 	xy

�1� will be negligible.
Thus, knowing 	xy

�1�, one can estimate the amount of corru-
gation of a planar sheet of the Fermi surface.

Apparently, 	xy
�1� is much less than 	xy

�2� even in the case
when the corrugation of a planar sheet along the py axis is
not small, and so

�	xy

��



�	xy
�2�

��
=

4�ecm*

a�2���2B
. �29�

Thus, by studying the thermopower at high magnetic field,
one can determine the carrier’s cyclotron effective mass av-
eraged over the Fermi surface, and from the value of 	xx

�1�

determine the contribution to the conductivity of the sample
from charge carriers whose states are found on a planar sheet
of the Fermi surface.

For tan ��1 a substantial rearrangement of the electron
trajectories in p space occurs. The sections through the cor-
rugated cylinder by the plane pB=const are so strongly elon-
gated that an electron cannot complete a full orbit during the
mean free time. In the case of a predominant direction of
corrugation of a planar sheet of the Fermi surface, the depen-
dence of the resistance on the strength of a magnetic field
nearly orthogonal to the plane of a sheet is extremely
peculiar.2 If the corrugation of a planar sheet of the Fermi
surface along the py axis is at least as large as the corrugation
along the pz axis, then its open cross sections are highly
elongated along the pz axis, when the magnetic field is al-
most orthogonal to the planar sheet of the Fermi surface. At
�=� /2 the open electron trajectories in p space change di-
rection, and the closed, highly elongated trajectories break
up into pairs of trajectories open along the pz axis, and the
contributions to the conductivity from the two groups of
charge carriers are of the same order of magnitude. Then the
asymptotes of the tensor components 	ij

�1� at high magnetic
field are of the same as the asymptotes of 	ij

�2�, and the resis-
tance to current transverse to the layers at magnetic fields
that are not too high increases linearly with field for �1/2

���1, and with further increase of field for ���1/2 the
linear growth gives way to quadratic growth.12 For the op-
posite relationship between the amount of corrugation of a
planar sheet of the Fermi surface along the pz and py axes, a
substantial change of the magnetoresistance occurs as the
magnetic field is rotated in the plane of the layers, when the
B vector approaches the x axis. For �=0 and �=� /2 the
electrons whose states belong to a slightly corrugated cylin-
der drift in the plane of the layers, and along the z axis their
motion is finite. Electrons whose states belong to a planar
sheet of the Fermi surface, on the contrary, drift along the z
axis. Thus, all the diagonal components of the total conduc-
tivity tensor for ��1 are nonzero, and the resistivity of the
conductor for any orientation of the current density vector j
is practically independent of the magnetic field strength and
is of the same order of magnitude as in the absence of field.

The asymptotic expression for the tensor component 	ij
�2�

at high magnetic field is not very sensitive to rotation of the
magnetic field by a small angle in the plane of the layers,
while at small � the cross section of a planar sheet of the
Fermi surface is highly elongated along the py axis, and for
��� the electrons cannot travel a distance 2�� /a along the
pz axis within the mean free time. The displacement of these
electrons along the y axis is restricted in the same way as for
�=0. For ���, however, the elongation of the electron tra-
jectories along the py axis is no longer large, and the motion
of the electrons turns out to be finite along the z axis. The
asymptotes of the tensor components 	ij

�1� at high magnetic
field in this region of angles ����� turns out to be the same
as the asymptote of 	ij

�2�, and the resistivity along the normal
to the layer increases without bound with magnetic field.
Thus the angle dependence of the magnetoresistance has a
deep minimum at �=0, the width of which, ����, falls off
with increasing magnetic field.

A study of the magnetoresistance of the organic
conductors 
-�BEDT–TTF�2MHg�SCN�4 and �-�BEDT–
TTF�2Cu�SCN�2 upon rotation of the magnetic field in the
plane of the layers will permit an unambiguous determina-
tion of the extent to which one is justified in assuming that a
group of charge carriers with a quasi-one-dimensional energy
spectrum exists in them and to which the energy-band calcu-
lations done in Ref. 7 describe the real energy spectrum of
the conduction electrons in these compounds.
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