
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/295241766

Using	Adaptive	Model	Predictive	Technique	to
Control	Underactuated	Robot	and	Minimize
Energy	Consumption

Article	·	December	2016

DOI:	10.1016/j.procir.2016.01.080

CITATIONS

0

READS

54

3	authors,	including:

Ahmad	Albalasie

Birzeit	University

5	PUBLICATIONS			0	CITATIONS			

SEE	PROFILE

Ahmed	Mohammed	Abu	Hanieh

Birzeit	University

30	PUBLICATIONS			229	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Ahmad	Albalasie	on	20	February	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document
and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/295241766_Using_Adaptive_Model_Predictive_Technique_to_Control_Underactuated_Robot_and_Minimize_Energy_Consumption?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/295241766_Using_Adaptive_Model_Predictive_Technique_to_Control_Underactuated_Robot_and_Minimize_Energy_Consumption?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Albalasie?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Albalasie?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Albalasie?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed_Abu_hanieh?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed_Abu_hanieh?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed_Abu_hanieh?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad_Albalasie?enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


 Procedia CIRP   40  ( 2016 )  407 – 412 

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the International Scientific Committee of the 13th Global Conference on Sustainable Manufacturing
doi: 10.1016/j.procir.2016.01.080 

ScienceDirect

13th Global Conference on Sustainable Manufacturing - Decoupling Growth from Resource Use 

Using Adaptive Model Predictive Technique to Control Underactuated 
Robot and Minimize Energy Consumption 

 Ahmad Albalasiea,*, Guenther Seligera, Ahmed Abu Haniehb  
aTechnical University of Berlin, Pascalstr. 8-9, Berlin 10587, Germany 

bBirzeit University, Birzeit, Palestine 
 

* Corresponding author. Tel.: +49 (0)30 / 314-21255; fax: +49 (0)30 / 314-22759. E-mail address: albalasie@mf.tu-berlin.de 

Abstract 

This paper presents an adaptive model predictive control scheme to control the underactuated and redundant robot, the robot has highly nonlinear 
coupling because of the existence of a passive axis. Adaptive model predictive control provides a framework to solve optimal discrete control 
problem for a nonlinear system under input saturation and state constraints. The optimal reference trajectory is computed by using Quasi-
linearization (QL) approach to minimize the energy consumption for underactuated motion between two points. The challenge is to meet the 
performance requirements e.g. position accuracy, repeatability, and precision, combined with high speed capability. Numerical simulations are 
conducted to validate the control scheme. Simulation results show very good comparison and prove the adequateness of this control technique 
for underactuated industrial robots. 
 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the International Scientific Committee of the 13th Global Conference on Sustainable Manufacturing. 
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1. Introduction 

    Industrial robots are key factors in implementing the 
production on the desired scale, speed, quality, and cost. The 
President of the International Federation of Robotics (IFR) 
announced in September - 2014 “more than 200,000 industrial 
robots will be installed in 2014 worldwide, 15% more than in 
2013” [1].  Furthermore, he stated “the accelerating demand for 
industrial robots will continue between 2015 and 2017, growth 
will likely continue at about 12% on average per year” [1]. This 
statement emphasizes the need for continuous and intensive 
research and development in the various fields associated with 
industrial robots. 
    Energy efficiency is a field of research in manufacturing and 
robotics engineering. Since the prices of resources in general 
and crude oil or gas in specific are increasing, the research 
focus on saving energy within your production processes 
became increasingly interesting for companies manufacturing 
or assembling goods. This emphasizes the great potential to 
reduce the energy consumption of industrial robots. 

Consequently minimizing the energy consumption (EC) for the 
robot is an important issue because also it is minimizing the 

 emission in the production stage of a product’s life cycle, 
decreases the cost of the products and it increases the 
contribution value of the production.  
    Several methods have been developed and tested for 
implementing energy efficient processes in the last decade. 
Some of these methods are managerial and the others are 
technical. The managerial methods include: overall production 
optimization strategies, and strategic and intelligent use of the 
robot application. The technical methods consist of intelligent 
braking management systems, the temporal storage of energy 
in a capacitive buffers, and the optimizing of robot trajectories 
[2–6]. 
    SAMARA is a prototype of industrial robot for material 
handling process. It has five degrees of freedom as shown in 
Fig.1. Furthermore, it uses redundant, underactuated 
configurations and constrained optimization algorithm to 
minimize the energy consumption during executing the 
handling operations [2,7,8,3,3].  
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    Through the previous phase of the work, the second 
generation of SAMARA prototype has been designed and built 
at TU Berlin. This new type of robot was designed and path 
planned minimize the energy consumption with high speed 
capability and high payload ratio. SAMARA prototype was 
programmed using optimal path planning algorithm based on 
the evolutionary algorithm [7,8,3] or the quasi-linearization 
algorithm in order to minimize the energy consumption during 
a specific cycle time [2].  
    In particular, SAMARA has two phases of motion to execute 
the required tasks. The first phase is the null space phase where 
the end effector executes the pick and place tasks. 
Consequently, all the motors are active in this phase. The 
angular position, angular velocity, and the angular acceleration 
have been computed for the null space motion by using the 
analytical solution for each axis. The second phase is the 
underactuated motion where the end effector moves from point 
A in the station to point B in the conveyor belt or the vice versa 
as shown in Fig.2. In this case, the third axis is a passive i.e. 
un-motorized axis. Also, the boundary values for the 
underactuated motion are known. This problem is known in 
mathematics, and it is called two-point boundary value problem 
(TPBVP).  
    The handling robots have the property of a relative long 
movement distances between the processing points of the 
handling operation. Although these robots consumes high 
energy consumption in movements among the other robot 
types, the energy saving in such robots is still larger than the 
other ones [5].  
    This paper uses new kinematics for underactuated motion 
(UAM) [7] and new type of control to execute the pick and 
place tasks uses a novel method for solving a tracking problem 
by using the adaptive model predictive controller based on 
trajectory tracking (AMPCTT) to control underactuated 
industrial robot taking into account increasing the energy 
saving by using the (QL) as approach for trajectory  planning. 
This paper is an extension work for a previous work which was 
developed by TU Berlin and Birzeit university researchers for 
trajectory planning of UAM [3]. 
    Robots commonly have fast and nonlinear dynamics, the 
implementation of MPC remains fundamentally limited due to 
high demand in computational resource associated with 
optimization. Though most physical systems are inherently 
nonlinear in nature, the majority of MPC applications are based 
on the linear dynamic model, mainly to take the computational 
advantages of MPC.  
    There are two main types of MPCs. The first type is the 
linear MPC. It uses the linear model for describing the 
nonlinear dynamical model for the system at the specific 
operating point. On the contrary, the second class is the 
nonlinear MPC (NMPC) which uses a nonlinear model. The 
computational time for the linear MPC is less than NMPC 
because of its linearity. But if the nonlinearity of the system is 
too high, the linear MPC cannot work accurately. Otherwise, 

NMPC calculates more accurate results, but it consumed longer 
time in calculations which is not suitable in some applications 
in the mode of real time environment. Researchers studied the 
control by using MPC or NMPC based on tracking reference 
paths for different applications [9–13]. The problem of 
nonlinearity in the dynamic equations of the underactuated 
robots causes a problem in the performance, stability, and the 
other requirements such as: the accuracy, repeatability, and the 
precision. According to [14], “MPC predicts future behavior 
using a linear-time-invariant (LTI) dynamic model. In practice, 
such predictions are never exact, and a key tuning objective is 
to make MPC insensitive to prediction errors. In many 
applications, this is sufficient for robust controller 
performance. If the plant is strongly nonlinear or its 
characteristics vary dramatically with time, LTI prediction 
accuracy might degrade so much that MPC performance 
becomes unacceptable”. 
    This paper suggests another solution for the previous 
problem by using the adaptive MPC (AMPC). AMPC has the 
ability to update the linearized model at each control interval, 
therefore a set of LTI approximation at each current operating 
condition is used to approximate the nonlinear model and this 
will improve the response of the robot [14].  

 
Fig. 1 second generation of SAMARA robot 

 
There are two concepts applied in this research to minimize the 
energy consumption: 
 
 The robot uses new type of kinematics is the underactuated 

and redundant configurations. The benefit of this type of 
configuration is that the number of joints are more than the 
number of actuators, and it uses the principle of 
momentum conservation [7].   

 Minimize the energy consumption by using any 
optimization algorithm for trajectory planning. To 
implement this idea the researchers at TU Berlin 
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developed two approaches of trajectory planning for 
SAMARA prototype, one of them is the evolutionary 
algorithm (EA) to solve the TPBVP in the phase of UAM 
[8,3] and the second approach by uses QL algorithm to 
solve the TPBVP [2]. However there are some advantages 
and disadvantages for each one of them for example 
minimizing the EC by using EA is better than minimizing 
EC by using QL, on the other hand, the convergence rate 
for QL is faster than EA so it reduces the computation time 
dramatically.  

 

 

Fig. 2 SAMARA configuration with Point A and Point B in the phase of 
UAM. 

    The organization of this paper is as follows. State space 
representation for the dynamical equations of the robot in phase 
of UAM is shown in section 2. Control scheme for UAM by 
using AMPC is shown in section 3. Section 4 contains two 
numerical examples to control SAMARA prototype to validate 
the work. Finally, conclusions and future works are shown in 
section 5. 

 
2. State Space Representation for UAM 

    The dynamic equations for the horizontal planer 
underactuated manipulator are shown in (1). 

                                               (1) 
 

where:  
 
 v: is the number of axes in the robot.  
  : the inertia matrix. 
  : Coriolis and centrifugal forces. 
  : the damping and friction moments. 
  : the motor torques. 
  : the generalized coordinates for all axes. 

 
    As a consequence (2) can be expressed in more details about 
the active and passive axes for SAMARA prototype as shown 
below: 

 

       (2) 

 

where: 
 a:  number of active axes. 
 p:  number of passive axes.    
 : the generalized coordinates for the 

active and passive axes respectively. 
  : Coriolis and centrifugal 

forces for active and passive axes respectively. 
  : damping and friction moments 

for the active and passive axes respectively. 
  : vector containing motor torques. 

 
    The state space representation for the system in phase of 
UAM is shown in (3). 

              ,          ,                              

        (3) 

 

where:    

 
    In conclusion the model is highly nonlinear model, which is 
difficult to be controlled but reference [15] proves that it is 
controllable. 
 
3. Control Scheme 
 
    The control scheme for SAMARA prototypes contains three 
main components: AMPC, optimizer and successive 
linearization block, as shown in Fig.3. The following 
subsections describe the design and the task for each 
component.  
 
3.1 The Optimizer for the Path Planning 
 
    There are two algorithms for trajectory planning developed 
at TU Berlin, EA and QL as mentioned in the previous section. 
In this research, QL is used as a trajectory planning because it 
is faster than EA. Trajectory planning for minimizing the EC 
for UAM will be called optimizer, and these simulations are 
usually done in offline mode. Minimizing the EC during the 
UAM has been executed by minimizing the input torques for 
each joint as shown in (4). 

 

                                                         (4) 

       sub to   
 

    Minimizing the cost function with respect to state space 
constraints can be calculated by minimizing the Hamiltonian 
equation as shown in (5) [16]. 

 
                         (5) 

 
where:- 
 n is the number of states. 
 m is the number of the inputs.  
  is a positive definite matrix 
  is the Lagrange multipliers functions, also called 

the co-state variables. 
 

    By following the steps which are mentioned in a previous 
work for the authors in [2] the optimal trajectories is computed 

https://www.researchgate.net/publication/3631817_Controllability_of_a_3-DOF_manipulator_with_a_passive_joint_under_a_nonholonomic_constraint?el=1_x_8&enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng==
https://www.researchgate.net/publication/44352605_Optimal_control_theory_an_introduction_Donald_E_Kirk?el=1_x_8&enrichId=rgreq-6109d55a48ae93f22825ea856af891ea-XXX&enrichSource=Y292ZXJQYWdlOzI5NTI0MTc2NjtBUzozMzEzMTk0MzY0MzEzNjRAMTQ1NjAwNDExNzM0Ng==


410   Ahmad Albalasie et al.  /  Procedia CIRP   40  ( 2016 )  407 – 412 

easily. These trajectories are the desired references r(t) for the 
joints of the robot see Fig.4 and Fig.6. This algorithm calculates 
the angular position, the angular velocity, the angular 
acceleration, and the expected torque for each axis to minimize 
the EC. 

 
Fig.3 Control flowchart 

 
3.2 Successive Linearization Process 

 
    The state space representation of the robot is a nonlinear 
model as shown in (3) which is unsuitable for AMPC because 
it uses the LTI models, in order to solve this successive 
linearization is used. Consequently, the main task of successive 
linearization is to provide an LTI approximation at the current 
operating point at each control interval for AMPC to 
approximate the nonlinearity. 
    Nominal optimal references for the angular position, angular 
velocity, angular acceleration, and torque for each joint have 
been computed by using the optimizer as shown in the previous 
section. However, AMPC uses LTI models for the system to 
track the nominal optimal references, therefore the system 
linearized around initial operating point then it is linearized 
around nominal trajectories , . To sum up, this algorithm 
starts by applying the nominal control sequence . The 
response is a nominal trajectory  as an open loop response. 
Even so, to improve the response the trajectories are linearized 
around ,  and the modified problem is solved. The plant 
model can be written in terms of the error as shown in (6) and 
(7). Additionally, the state space models discretized because 
AMPC needs discrete models. 

 

                                                             (6) 
                                                             (7) 

where: 

                          (8) 

                         (9) 

  is identity matrix and  is a zero matrix. 
  represents the error with respect to the reference points 
  is associated to control input. 

 
3.3 Adaptive Model Predictive Control 

 
    AMPC, MPC, and NMPC have the abilities to predict the 
future response of the plant in a specified horizon not like PID 
controller or LQR controller. Nevertheless, they use only the 
current values for the input. The most exciting properties from 
control point of view such as robustness properties in inputs 
and on the states are satisfied in this type of controllers [17]. In 
addition, MPC family can deal naturally with constraints on the 
input, and on the states [14,12].  
    MPC solves the quadratic optimization (QP) optimization 
problem to compute the input control values, usually the 
models for the dynamic equations are nonlinear models but the 
model linearized at specific operating point. In some cases, the 
influence of nonlinear dynamics effects is so important that the 
use of nonlinear model predictive control (NMPC) is 
unavoidable [18]. However, AMPC has the solution for the 
previous problem because it has an interesting feature which is 
updating the model at each control interval. As a result of that, 
LTI model used at each current operating point to approximate 
the nonlinear model accurately. AMPC calculates the optimal 
control sequence by solving QP problem to find the minimal 
value for a specific cost function (  shown in (10), and the 
constraints are shown in (11-13). 

 

                                               (10) 

                                                           (11) 
                                                 (12) 

                                                        (13) 
 

    The notation  indicates the value of  at the instant 
 predicted at instant k. 

where: 
 
 P is the prediction horizon. 
 C is the control horizon. 
 Q, R, S are weighting matrices, with Q  0 and R, S  0. 

 
    AMPC uses the direct approach by finding the optimal 
control in such a way that constraints are not violated. 
Additionally, the control scheme designed by using Model 
Predictive Control Toolbox and Simulink Toolbox provided by 
MATLAB software. 
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Fig. (4) reference trajectory (red), AMPC response (green), and state 
estimation (blue) 

 
4. Simulation and Numerical Results 
 
    The proposed AMPC scheme has been tested on tracking 
reference trajectories to validate the control scheme. The 
reference trajectory contains many phases such as start motion, 
the null space motion which is computed by the analytical 
solution to execute the pick and place tasks, the UAM which is 
computed by QL to move from point A to point B or the vice 
versa, and the end motion. Two numerical examples clarify the 
response of AMPC with comparison to the reference 
trajectories and the state estimator. 

 
Case 1: 

 
    Reference trajectories with five cycles for pick and place has 
been computed by using QL for UAM and the analytical 
solution for the null space motion. These trajectories are the 
desired response for the robot. As a result of that, the response 
of the robot should be track these trajectories.  
    The simulation response of the robot by using the AMPC has 
been calculated to test the ability of the controller can handle 

the nonlinear kinematics as well as the multivariable coupling 
in the system dynamics by tracking the reference trajectories. 
The prediction horizon for AMPC is P=10 and the control 
horizon C=1 whereas the sampling time .  
    As shown in Fig. (4) AMPC tracks the reference trajectories 
accurately. In addition, the total power consumed for the 
reference trajectories and the total power consumed for AMPC 
is shown in Fig. (5). 

 

 
Fig. (5) total power consumption for the reference trajectories (red), and total 

power consumption for AMPC (blow) 
Case 2: 

 
    Reference trajectories with one cycle for pick and place has 
been computed. The reference trajectories, the simulation 
response of AMPC, and the state estimator are shown in Fig. 
(6). The prediction horizon for the AMPC is P=10 and the 
control horizon is C=5 whereas the sampling time : 

 
Fig. (6) reference trajectory (red), AMPC response (green), and state 

estimation (blue) 
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5. Conclusion and future work 
 

    This paper presented control scheme by using AMPC based 
on QL trajectory tracking to minimize the EC. This type of 
control can deal with nonlinearities in the model because the 
controller updates the model at each control interval. 
Moreover, it has the ability to predict the future response such 
that it solves the expected problems. The future works will 
focus on testing the robustness of the controller and the effect 
of the uncertainty in some model parameters on the presented 
control scheme. Finally, QL approach developed to minimize 
the energy consumption and the cycle time to improve the 
productivity and the energy efficiency. 
    As shown in Fig. (4) and in Fig. (6) AMPC tracks the 
reference trajectories accurately. 
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