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a  b  s  t  r  a  c  t

‘Skin  burning’  of  ‘Cameo’  apples  resulting  in  poorly  colored  fruit  can  occur  in storage  under high  CO2

condition.  To  elucidate  possible  reasons  for  this  physiological  disorder,  we assessed  the  differential
expression  of  polyphenol-related  genes.  Poorly  colored  and  well-colored  mature  ‘Cameo’  apples  were
stored  under  either  high  (3%)  or low  (0.7%)  CO2 levels,  both  in  combination  with  1% O2,  and  moni-
tored  for  seven  months  for ‘skin  burning’.  Samples  were  obtained  by  the  end  of storage  period,  and
qPCR  analyses  were  conducted  using  gene  specific  primers.  We  found  expression  levels of chalcone
synthase  (MdCHS),  chalcone  isomerase  (MdCHI),  anthocyanidin  synthase  (MdANS),  flavonol  synthase
(MdFLS),  dihydroflavonolreductase  (MdDFR),  and  leucoanthocyanidinreductase  (MdLAR1)  genes  to  be
substantially  higher  in  well-colored  compared  to  poorly  colored  apples.  The  delay  in  establishing  the
stressful  controlled  atmosphere  (CA)  storage  condition  (3%  CO2 level)  led to significantly  higher  expres-
sion  levels  of  MdLAR1,  MdCHI,  anthocyanidinreductase  (MdANR)  and  flavanone  3-hydroxylase  (MdF3H),
which  may  explain  the  lower  incidence  of  ‘skin  burning’  by delayed  CA fruit.  On  the  other  hand,  after
seven  months  in  storage,  the  expression  levels  of  phenylalanine  ammonia-lyase  (MdPAL),  MdCHS,  MdCHI,
MdDFR,  MdFLS,  and  MdF3H,  were  significantly  higher  in poorly  colored  injured  apples,  which  reflect  a
feedback  mechanism  to  synthesize  more  polyphenols  to counteract  the stressful  storage  condition.

© 2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

The market acceptance of red apples is largely determined by
their peel color; better colored apples receive better acceptance
(Saure, 1990). Moreover, the polyphenol concentration in peel is
much higher than in flesh tissues, with colorless procyanidin as
the predominant group, followed by quercetin glycosides (Tsao
et al., 2003). However, the main anthocyanin of peels is cyani-
din 3-galactoside (Ben-Yehuda et al., 2005). The biosynthesis of
flavonoids starts with the phenylpropanoid metabolic pathway
to produce 4-coumaroyl-CoA that combines with malonyl-CoA to
give the backbone of all flavonoids. Further reactions encoded
by a series of enzymes leads to the synthesis of flavanones,
dihydroflavonols, anthocyanins, flavonols, flavan-3-ols and proan-
thocyanidins (Ververidis et al., 2007). At the molecular level, sets of
genes are known to be involved in the biosynthesis of polyphenols,

∗ Corresponding author.
E-mail addresses: jharb@birzeit.edu, jharb11@yahoo.com (J. Harb).

including genes encoding transcription factors or enzymes required
for pigment biosynthesis (Goodrich et al., 1992; Honda et al., 2002;
Kondo et al., 2002; Takos et al., 2006b). Some of the enzymes are
phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chal-
cone isomerase (CHI), flavanone-3 b-hydroxylase (F3H), flavonol
synthase (FLS), dihydroflavonol-4-reductase (DFR), leucoantho-
cyanidin reductase (LAR), leucoanthocyanidin dioxygenase (LDOX),
anthocyanidin reductase (ANR), and UDP-glycose:flavonoid-3-O-
glycosyltransferase (UFGT) (Takos et al., 2006b). However, the key
enzymes controlling anthocyanin biosynthesis are believed to be
those controlling the formation of cyanidin from dihydroquercetin
(Ju et al., 1995). Considering that apple peel has much higher lev-
els of cyanidin 3-galactoside relative to cyanidin 3-glucoside, it is
possible to predict that the functional enzyme is UDPGal:flavonoid-
3-o-glycosyltransferase (UFGalT) that transfers galactose to the 3-o
position of flavonoids (Honda et al., 2002).

With respect to the effect of light on the polyphenol composi-
tion of fruit, Kim et al. (2003) reported that transcripts of MdF3H,
MdDFR, MdANS, and MdUFGT were detected abundantly in the skins
of cultivars with red skin, but rarely in non-red fruit, and that these

0925-5214/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.postharvbio.2012.10.008
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genes were coordinately induced by light. Furthermore, shading
of apples during cold conditions for two days led to a reduction of
anthocyanins and an increase in photosensitivity of peel, leading to
the hypothesis that anthocyanins may  be adaptable light screens
deployed to modulate light absorption in peels (Steyn et al., 2009).
Telias et al. (2011) further found that striped areas of ‘Honeycrisp’
and ‘Royal Gala’ apples had high levels of both anthocyanins and
transcripts of the major biosynthetic genes and the transcription
factor MYB10. Rabinovich (2009) found also that the transcript lev-
els of the biosynthetic genes and MdMYB10 correlated well with the
increase in the anthocyanin concentration in these stripes of ‘Hon-
eycrisp’ and ‘Royal Gala’ apples. In the regulation of anthocyanin
biosynthesis, ethylene interacts with light (Craker and Wetherbee,
1973). Moreover, it was found that exposure of dark-grown fruit
to sunlight led to significant increase in MdMYB1 transcript levels
(Takos et al., 2006a). In this respect, Ban et al. (2007b) stated that
the regulation of gene expression responsible for red coloration of
apple peel is under the control of MYB  transcription factors, which
activate anthocyanin biosynthetic genes. In addition to that, Takos
et al. (2006b) assessed the effect of sunlight on flavonoid accumu-
lation and gene transcription of ‘Cripps’ Red’ apples, and concluded
that the transcription of most apple flavonoid genes is light respon-
sive. Furthermore, Bakhshi and Arakawa (2007) found that light
irradiation resulted in increased levels of phenolic acids, antho-
cyanin and flavonols, with no changes in the levels of flavanols,
procyanidins and dihydrochalcones.

Consequently,  the aim of this study was to explore the molecular
basis of changes that may  lead to the development of the physi-
ological disorder ‘skin-burning’ in ‘Cameo’ apples, which appears
usually upon storage under high CO2 levels. In this regard, quan-
titative changes in the expression of genes that are involved
in the biosynthesis of polyphenols from freshly harvested and
stored ‘Cameo’ apples, either well-colored or poorly colored, were
assessed.

2. Materials and methods

2.1.  Plant material and storage condition

‘Cameo’ apples were picked with different blush color inten-
sities (low intensity: <25% of surface with red coloration; high
intensity: >50% of surface with red coloration). Fruit were picked
from the orchard of the Competence Centre for Fruit Growing
(KOB), Ravensburg, Germany. Thereafter, apples were stored at
3.0 ◦C under two CA conditions (1 kPa O2 and <0.7 kPa CO2, or 1 kPa
O2 and 3 kPa CO2) using either a rapid or delayed establishment of
CA conditions (delay of 21 days at 1.0 ◦C in regular air). After a seven
months storage period, plus seven days shelf-life at 20.0 ◦C in air,
samples were analyzed for CO2 injury, which was assessed against a
reference chart. Tissues from injured parts were shock-frozen using
liquid nitrogen and kept at −80.0 ◦C for further analyses. For each
treatment there were three replications, with eight apples for each
replicate.

2.2. Colorimetric assay of polyphenolic antioxidants

Frozen samples were lyophilized. Subsequently, 50 mg
lyophilized tissue from each replicate were dissolved in 3 mL
of 80% methanol and further extracted for 30 min. Samples were
centrifuged at 15,800 × g for 15 min  at 4.0 ◦C, and the clear super-
natants were kept protected from light at −20.0 ◦C. Upon analysis,
50 �L of the supernatant were diluted with deionized water
(1:10), and 100 �L of Folin–Ciocalteu reagent (FCR) were added.
The mixtures were mixed well with a vortex and kept for 3 min.
Finally, 800 �L of sodium carbonate solution (7.5%) were added to

each,  and after vortexing, the mixtures were incubated for 60 min
at room temperature. The absorption was measured at 720 nm
using UV/VIS Spectrometer (PU8700, Philips). Pure ascorbic acid
was used for calibration. Results are presented as mg ascorbic
acid equivalent per g dry matter. Determinations were done on
two pooled biological replicates per treatment, with two technical
replicates for each biological replicate.

2.3. RNA-extraction and purification

Peels from 10 apples per replicate and sampling time were col-
lected and directly frozen in liquid nitrogen. For analysis, peel
tissues were ground to powder and RNA was  extracted accord-
ing to Chang et al. (1993) with some modifications. Eight grams of
powdered tissue were added to 20 mL  pre-warmed (65.0 ◦C) extrac-
tion buffer (100 mM Tris–HCl, pH 8.0; 25 mM EDTA; 2 M NaCl, 2%
CTAB; 2% PVP 40; 2% �-mercaptoethanol) and incubated for 10 min
at 65.0 ◦C. Thereafter, samples were centrifuged at 7740 × g for
10 min at room temperature. To 15 mL  from the clear supernatant
an equal volume of chloroform:isoamylalcohol (24:1) was added,
vortexed, and centrifuged at 7740 × g for 20 min at room temper-
ature. RNA was precipitated overnight at 4.0 ◦C by the addition
of LiCl at a final concentration of 2.5 M.  Following centrifugation
(7740 × g) at 4.0 ◦C for 60 min, the pellet was  washed twice with
one volume of 70% ethanol, centrifuged for 10 min, and air-dried
at room temperature. Finally, the pellet was suspended in RNase-
free H2O by heating at 65.0 ◦C for 5 min  followed by vortexing. The
insoluble particles were pelleted by centrifugation at 15,800 × g
for 10 min  at 4.0 ◦C. The quality and quantity of the extracted
RNA were assessed by gel-electrophoresis and spectrophotome-
ter, respectively. In addition to that, the RNA was  purified further
using the RNeasy® MinElute® Cleanup Kit following the manufac-
turer’s instructions (Qiagen, Valencia, CA, USA) and subsequently
subjected to DNase treatment (RNase-Free DNase Set, Qiagen).

2.4.  qPCR analysis

Taqman  RT-PCR reagents (Applied Biosystems; Foster City,
CA, USA) were used for the generation of cDNA for all sam-
ples. cDNA for each biological replicate was synthesized from
2 �g DNA-digested RNA using random hexamer primers. To
assess the quantitative changes in the expression of the selected
genes, gene-specific primers were designed (Table 1) based on
sequences obtained from the NCBI database using Primer3 software
(http://frodo.wi.mit.edu/primer3/), and those used in previous
studies (Takos et al., 2006b; Espley et al., 2007). For each treatment
there were two  biological replicates, each with three techni-
cal replicates. Subsequent qRT-PCRs were carried out using the
SensiMix kit from Bioline GmbH (Luckenwalde, Germany) on
a LightCycler 480II from Roche Diagnostics Deutschland GmbH
(Mannheim, Germany). The expression levels of the tested genes
were calculated relative to transcript abundance of the reference
gene (UBQ; U74358) employing relative quantification with effi-
ciency correction (Livak and Schmittgen, 2001).

2.5. Statistical analysis

Statistical  analysis data are presented as means ± S.E.

3. Results and discussion

‘Skin  burning’ of the apple fruit is a known physiological dis-
order with commercial relevance. Our results reveal that poorly
colored fruit exhibited severe ‘skin burning’ injury, in particular
after storage under high CO2 levels (Fig. 1a). The assessment of total
polyphenol capacity (Fig. 1b) did not differentiate clearly between
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Fig. 1. Influence of fruit color and storage condition on (a) percentage of ‘skin burning’ and (b) total polyphenols capacity of ‘Cameo’ apples after seven months storage period.
WC:  Well colored (>50% blush); PC = poorly colored (<25% blush); HT = harvest time; 0.7 = storage at 0.7% CO2; 3 = storage at 3% CO2; D = direct establishment of CA-storage
conditions; De = Delayed establishment of CA-storage conditions.

treatments, despite the clear reduction in total polyphenols in
poorly colored fruit that were stored under the stressful conditions
(3% CO2). However, results of one of our concurrent studies (Harb
et al., data not shown) clearly show that well-colored and healthy
apples had significantly higher levels of cyanidin-3-galactoside,
cyanidin-3-arabinoside, rutin, kaempferol glucuronide, hyperin,
avicularin, and quercitrin, whereas poorly colored and/or injured
peels had significantly higher amounts of p-hydroxybenzoic acid-
glucose ester, caffeic acid glucose ester, phloridzin, chlorogenic
acid, p-coumaryl-glucoside, (epi)catchin (epi)catechin isomers,
phloretin-2′-xyloglucoside, and epicatechin. Taking into account
that quercetin and cyanidin derivatives account for more than 80%
of all antioxidants in apple peel, it is obvious that accumulation of
these polyphenols in the peels of well-colored fruit may  contribute
highly to the prevention of ‘skin burning’. Accordingly, investigat-
ing the connection between expressions of genes related to the
biosynthesis of polyphenols and the incidence of this disorder is
needed. In this sense, Fischer et al. (2006) reported that changes in
polyphenol levels are usually accompanied by a distinct induction
of gene expression by feedback regulation.

The expression profiles of the genes under investigation in this
study are presented in Figs. 2–4. Since the low CO2 (0.7%) treat-
ments caused minimal damage, their expression profiles were

Table 1
Gene  specific primers used to assess the expression of polyphenols-related genes of
‘Cameo’ apples.

MdPAL DY255768.1 F: TGCACTGTGCCAAGCTATTGA
R: TCAACAACCCTGAGGAGGTCT

MdCHS X68977 F: GCAAGTGTTGTCAGATTACGG
R: TGATACTGGTGTCTTCAAGCAG

MdCHI X68978 F: GCTACAAATGCGGTGATAGAA
R: TACCTTGGTTTCCAATTTTTCATT

MdANS AF117269 F: GAAGATCATCCTTAAGCCACTG
R: ATAATTTAGCACAACCCGCTTC

MdFLS AF119095 F: CTTCTTACAGGGAAGCTAATGAA
R: GAGGACATGGTGGGTAGTAGT

MdLAR1 AY830131 F: TAGAGCTACTGCAAGAGGAGG
R: CCTCGAAGAAACCCTAGAAAC

MdANR AY830130 F: GGCATCGAAGAAATATATGACCA
R: AATTTACGGTAAGCCAGACAATA

MdDFR AF117268 F: CAAGTACAGCTTGGAGGACAT
R: TCCAAGCTGGTAAATGTAAAACA

MdF3H AF117270 F: GAAGATGAGCAAGGATCTTGAG
R: TTCCACAAAGAGCTTTCAAGTG

MdUDPG4E GO521640 F: CCGTACCAAGCTTTTCCTTGA
R: TAAGCTCAGGCAATCTTCCAA

MdACS1 DQ137849.1 F: TACTGAAACCGCTCTGGAAGAA
R: CGTTTCTGGTCATTGTGGTGC

MdMYB10 DQ886416.1 F:
TGCCTGGACTCGAGAGGAAGACA
R: CCTGTTTCCCAAAAGCCTGTGAA

MdUBQ (reference gene) U74358 F: CTCCGTGGTGGTTTTTAAGTG
R: AGGAGGCAGAAACAGTACCAT

omitted here. The first group of genes (Fig. 2) and MdMYB10 (Fig. 4c)
are highly expressed in well-colored fruit at harvest time com-
pared to poorly colored fruit. This differential gene expression
reveals that light is a major environmental factor controlling their
expression. In this respect, Ban et al. (2007a) isolated 11 cDNAs
from UV-B-irradiated apple skin, and three of these cDNAs were
MdCHS, MdF3H, and MdFLS, which are putative flavonoid biosyn-
thetic genes. The second group (Fig. 3) includes genes that showed
high expression levels at harvest time, but differ in their expres-
sion profiles during the storage period. From this group, the MdCHI,
MdDFR, and MdF3H genes were expressed highly in poorly colored
and injured fruit after seven months storage. In the third group
of genes (Fig. 4) the expression levels of MdPAL, MdUDPG4E, and
MdACS1 did not differ significantly between freshly harvested well-
colored and poorly colored apples.

It is important to notice that MdCHS encodes the CHS enzyme,
which in turn catalyzes the first committed step of flavonoid
biosynthesis, namely the condensation of p-coumaroyl-CoA with
malonyl-CoA molecules to produce chalcone. And that chalcone is
considered as the precursor for a diverse set of flavonoids (Koduri
et al., 2010). The expression profile of MdCHS is shown in Fig. 2a,
which clearly indicates that freshly harvested and well-colored
apples accumulated higher levels of MdCHS transcripts compared to
freshly harvested poorly colored fruit. This is another indication for
the crucial role of light in the biosynthesis of polyphenols. Ubi et al.
(2006) reported that expression of CHS in bagged fruit was sub-
stantially depressed in skins, and that UV-B irradiation enhanced
its expression. During the storage period the expression of MdCHS
decreased dramatically in all treatments, despite significant differ-
ences between treatments. The highest expression level was  found
in poorly colored and injured apples. This can be seen as a defense
mechanism to synthesize more precursors for the highly needed
polyphenols to deal with the ‘skin burning’ injury. The significant
difference between well-colored and poorly colored fruit at harvest
time may  be related to ethylene. El-Kereamy et al. (2003) reported
elevated CHS transcript levels upon treatment of mature grape
berries with ethylene. Also Ardi et al. (1998) found with avocado
fruit that ethylene increased the activity of CHS.

The expression profile of MdANS (Fig. 2b) is relatively similar to
MdCHS. Also here the well-colored fruit had more transcripts than
poorly colored fruit. The significance of this gene is based on the
action of the encoded enzyme ANS, which catalyzes the synthesis
of anthocyanidins. Anthocyanidins are converted either by flavonol
glycosyltransferase to the corresponding red 3-glycosylated antho-
cyanin product, or reduced through the action of ANR enzyme to
the colorless epicatechin (Routaboul et al., 2012). In addition ANS
may  function as cyaniding-, pelargonidin-, or delphinidin-synthase
(Shi and Xie, 2010). The significance of ANS is further enforced
by the findings of Szankowski et al. (2009). In their study with
apples, an almost complete blocking of anthocyanin biosynthesis
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Fig. 2. The relative expression level of (a) chalcone synthase (MdCHS), (b) anthocyanidin synthase (MdANS), (c) leucoanthocyanidinreductase (MdLAR1), and (d) flavonol
synthase (MdFLS) genes in well-colored (WC; >50% blush) and poorly colored (PC; <25% blush) ‘Cameo’ apples at harvest time (HT), and after storage for seven months
under high (3%) CO2 level. HeP = Healthy peels; InP = injured peels; 3 = 3.0% CO2; D = direct establishment of CA-storage conditions; De = Delayed establishment of CA-storage
conditions.

was achieved through the silencing of the ANS gene, which was
accompanied by severe necrotic leaf lesions. It is likely that for-
mation of leaf lesions, which is accompanied by very low levels of
cyanidin 3-galactoside, is equivalent to the development of ‘skin
burning’ by poorly colored apples reported in our study.

The  expression profile of MdLAR1 (Fig. 2c) shows the same trend
as the other genes. Park et al. (2006) reported that LAR is up-
regulated early in the ripening stage, which indicates that ethylene
may induce its expression. After long-term storage, our results
show clearly that healthy peel, irrespective of the coloration at har-
vest time, had significantly higher levels of MdLAR1 transcripts than
injured peel.

Another important enzyme is flavonol synthase (FLS), which
catalyzes the biosynthesis of quercetin from dihydroquercetin;

quercetin in turn can be glycosylated by glycosyl transferases
(Newcomb et al., 2006). As shown in Fig. 2d, the transcript level
of MdFLS in well-colored apples was  much higher than in poorly
colored ones. Literature about the influence of light and/or eth-
ylene on the action of MdFLS is not available, but it is logical to
assume that light influences its expression as well. Our results do
not provide evidence for the influence of ethylene here, but Pelletier
et al. (1997) found that FLS is an ‘early’ flavonoid gene in seedlings
of Arabidopsis. In this sense, the expression of MdFLS may  be inde-
pendent of ethylene.

Fig.  3a shows the expression profile of MdCHI  that is similar
to previous genes at harvest time. However, poorly colored fruit,
which suffered from ‘skin burning’ after storage under 3% CO2
for seven months, accumulated much higher transcript levels of
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Fig. 3. The relative expression level of (a) chalcone isomerase (MdCHI), (b) anthocyanidinreductase (MdANR), (c) dihydroflavonolreductase (MdDFR), and (d) flavanone 3-
hydroxylase (MdF3H) genes in well-colored (WC; >50% blush) and poorly colored (PC; <25% blush) ‘Cameo’ apples at harvest time (HT), and after storage for seven months
under high (3%;) CO2 level. HeP = Healthy peels; InP = injured peels; 3 = 3.0% CO2; D = direct establishment of CA-storage conditions; De = Delayed establishment of CA-storage
conditions.
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MdCHI than apples from all other treatments. The influence of
light on the expression of CHI was assessed by van Tunen et al.
(1988), who reported that CHI and CHS genes of Petunia hybrida are
expressed in a light-regulated manner. With apples, Takos et al.
(2006b) reported that fruit covered with bags failed to accumu-
late anthocyanins, whereas the expression of MdCHI increased by
240 fold in uncovered fruit. With regard to other genes in this
group, it is obvious that the expression of MdANR (Fig. 3b), MdDFR
(Fig. 3c), and MdF3H (Fig. 3d) shows similar patterns to MdCHI.
In this respect, Vimolmangkang (2011) reported that overexpress-
ion of ANR resulted in the down-regulation of other genes that are
involved in the flavonoid biosynthesis (e.g. LAR genes).

The  last trend is related to the expression profiles of both
MdUDPG4E (Fig. 4b) and MdACS1 (Fig. 4d). Transcript levels of
both genes were almost equal in both freshly harvested well-
colored and poorly colored apples, which may  indicate that these
genes are not light-regulated. However, long-term storage led to
differential responses, in particular with MdUDPG4E. Direct estab-
lishment of CA storage led to higher expression levels of this gene
compared to the delayed CA conditions. Taking into account that
UDP-galactose is the sugar component of cyanidin 3-galactoside,
which accounts for around 80% of the total cyanidin glycosides
in red apple peel (Lancaster, 1992), it might be possible to pre-
dict that a delayed expression of MdUDPG4E is preprogrammed
to coincide with anthocyanin accumulation. Such synchronization
was reported by Ban et al. (2009), and this synchronization may  be
due to ethylene action. In this respect, Ban et al. (2007b) reported
that MdUGE1 is highly expressed in mature fruit.

The expression of MdMYB10 (Fig. 4c) correlated well with
MdCHS, MdANS, MdLAR1, and MdFLS. Telias et al. (2011) reported
that the transcript levels of the major biosynthetic genes for
anthocyanins and MYB10 also correlated well with anthocyanin
concentration in stripes of ‘Honeycrisp’ and ‘Royal Gala’ apples.
Further, Takos et al. (2006a) concluded that MdMYB1 coordinately
regulates genes in the anthocyanin pathway in apple skin.

The  results clearly indicate that genes involved in the biosyn-
thesis of various polyphenols respond differentially to light and/or
high CO2. The influence of high CO2 on the quality of stored
fruit is well studied. Argenta et al. (2000) found that storage of
‘Fuji’ apples under high CO2 (3 kPa) and low O2 (1.5 kPa) induced

CO2 injury, known as brown-heart. The down-regulation of some
polyphenol related genes under high CO2 level is reported in var-
ious studies. Shin et al. (2008) found that air-stored strawberries
accumulated higher anthocyanins and flavonoids levels than fruit
stored under high CO2 levels. Furthermore, Fernández-Trujillo et al.
(2001) reported that CO2 treatment led to an increase in the suc-
cinate concentration, a compound that is usually associated with
CO2 injury. Moreover, Bodelón et al. (2010) reported that expo-
sure of strawberry fruit to high CO2 prevented the increase in total
phenolics.

Another important aspect is related to the ripening hormone
ethylene and its influence on the biosynthesis and accumulation
of polyphenols. In this study, the levels of MdACS1 (Fig. 4d) did
not differ significantly between well-colored and poorly colored
fruit. Since ‘Cameo’ apples already get their red color before the cli-
macteric rise of ethylene, it is obvious that ethylene plays a minor
role in polyphenol biosynthesis. Despite that, Schaffer et al. (2007)
reported that genes involved in the early steps of phenylpropanoid
pathway are ethylene-responsive. More interesting are the find-
ings of El-Kereamy et al. (2003) with grape, a non-climacteric fruit,
who found that ethylene triggers expression of genes involved in
anthocyanin and phenolics syntheses.

The delay in establishing CA storage that resulted in lower
incidence of ‘skin burning’ (Fig. 1a) can be correlated directly to
the significant increases, upon delay, in the expression of MdPAL,
MdCHI, MdLAR1, MdANR, and MdF3H in well-colored apples. In this
respect, Argenta et al. (2000) and Colgan et al. (1999) reported that
the delay in establishing CA storage led to a substantial reduction
in CO2 injury; they noted further that the susceptibility of apples
to CO2 injury is the highest during the first weeks of storage. How-
ever, the exact mechanism by which such delay reduces CO2 injury
of stored apples is unclear. Saquet et al. (2003) attributed the bet-
ter tolerance of CA delayed fruit under stressful storage conditions
to better membrane integrity and the balanced energy status of
fruit. With pears, the browning disorder was  attributed to the accu-
mulation of reactive oxygen species (Franck et al., 2007), which
reflects the significance of the antioxidants in preventing various
types of storage disorders. In this sense, Watkins et al. (1997) found
that postharvest treatment of ‘Empire’ apples with diphenylamine
(DPA) prevented the development of external CO2 injury in peel.
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Accordingly, investigations to elucidate the mechanism by which
the delay led to such a positive impact are needed, in particular
at the molecular and cellular levels. Moreover, the interaction of
ethylene with the delayed establishment of CA and external CO2
injury also needs further investigation. In this respect, MacLean
et al. (2006) suggested that 1-MCP, an inhibitor of ethylene action,
may inhibit the biosynthesis of flavonoid compounds.

Literature about gene expression and ‘skin burning’ incidence
with stored apples is absent. However, studies and findings in
respect to another physiological disorder, superficial scald, may
help in explaining the ‘skin burning’ disorder. In this respect,
Whitaker (2004) reported that oxidative stress is the accepted
cause of superficial scald. Since antioxidants may  counteract
oxidative stress in fruit, Huelin and Coggiola (1970) found that
pre-storage treatment of apples with the antioxidant DPA largely
controlled superficial scald development. With ‘Cameo’ apples,
oxidative stress might be the cause for ‘skin burning’. The reduction
in the levels of several key polyphenols may  deplete the fruits from
their ability to counteract such stress. In this respect, Zubini et al.
(2007) reported, with ‘Granny Smith’ apples, a positive correlation
between H2O2 and levels of mRNAs for the antioxidant enzymes.

The  molecular mechanisms of ‘skin burning’ by ‘Cameo’ apples
still need further investigation. However, it is clear from our results
that up-regulation in the expression of polyphenol-related genes in
well-colored fruit was associated with the development of this dis-
order. Moreover, it is obvious that poorly colored and injured apples
had lower transcript levels of MdACS1 that reflects impairment in
the biosynthesis of ethylene by these injured apples, which may
further reduce the capacity of fruit to synthesize polyphenols. In
this respect, De Wild et al. (2003) reported that ethylene production
is inhibited by high CO2 levels.

In conclusion, we have shown that ‘skin burning’ by ‘Cameo’
apples is related to the down-regulation of some polyphenol-
related genes, in particular MdCHS, MdCHI, and MdANS. Moreover,
proper lighting of fruit, through proper spacing and pruning of
trees, proves to be crucial to get well-colored apples that can tol-
erate high CO2 levels in storage. However, the exact mechanism of
ethylene in respect to the expression of the genes assessed needs
further investigation.
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