INSTITUT FUR INFORMATIK

LMU

) v Ludwig——

Lehr- und Forschungseinheit fir Maximilians —
Programmier- und Modellierungssprachen Universitit
Oettingenstrafle 67, D-80538 Miinchen Miinchen

Positive Unit Hyper-Resolution Tableaux
for Minimal Model Generation

Francois Bry and Adnan Yahya

http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht /Research Report PMS-FB-1997-8, August 1997

Positive Unit Hyper-Resolution Tableaux
for Minimal Model Generation

Francois Bry ! Adnan Yahya 2

! Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen,

Oettingenstrafle 67, D — 80538 Miinchen, Germany

2 Electrical Engineering Department, Birzeit University, Birzeit,
Palestine

Contact person: Francois Bry at the above address.
Phone: 49-89-21 78-22 10, Fax : 49-89-21 78-22 11
bry@informatik.uni-muenchen.de

Abstract

Minimal Herbrand models for clausal theories are useful in several
areas of computer science, e.g. automated theorem proving, program
verification, logic programming, databases, and artificial intelligence.
In most cases, the conventional model generation algorithms are in-
appropriate because they generate nonminimal Herbrand models and
can be inefficient. This article describes a novel approach for gener-
ating the minimal Herbrand models of sets of clauses. The approach
builds upon positive unit hyper-resolution (PUHR) tableauz, that are in
general smaller than conventional tableaux. PUHR tableaux formalize
the approach initially introduced with the theorem prover SATCHMO.
Two minimal model generation procedures are described. The first one
expands PUHR tableaux depth-first relying on a complement splitting
expansion rule and on a form of backtracking involving constraints.
A Prolog implementation, named MM-SATCHMO, of this procedure
is described. The second minimal model generation procedure per-
forms a breadth-first, constrained expansion of PUHR (complement)
tableaux. Both procedures are optimal in the sense that each minimal
model 18 constructed only once, and the construction of nonminimal
models i1s interrupted as soon as possible. They are complete in the
following sense: The depth-first minimal model generation procedure
computes all minimal Herbrand models of the considered clauses pro-
vided these models are all finite. The breadth-first minimal model
generation procedure computes all finite minimal Herbrand models of
the set of clauses under consideration.

1 Introduction:

Generating Herbrand models of clausal theories is useful in several areas of
computer science. In automated theorem proving, models can assist in mak-
ing conjectures, that can be later checked for provability with conventional
provers. In automated theorem proving and program verification, model
generation can also be applied to searching for counter-examples to con-
jectures. In both application areas, it is worthwhile and helpful to restrict
model generation to minimal models.

The generation of minimal models is useful in logic programming and de-
ductive databases for specifying their declarative semantics [14, 15], in some
approaches to query answering [7, 12, 35, 34], for updating database facts
and views [6, 9, 30, 3], in artifical intelligence for solving design synthesis
and diagnosis problems [22, 25, 2], and in nonmonotonic reasoning [11] — see
also [24]. Artificial intelligence production systems can be seen as minimal
model generators for propositional or first-order logic Horn clauses.

The conventional tableaux methods [27, 8, 31, 32] are however inappro-
priate as model generation procedures because they often return redundant
or nonminimal models [11, 21, 28, 16]. The a posteriori detection of redun-
dant models is tedious and might be time consuming. Moreover, redundant
models are a source of inefficiency because they blow up the search space.
This article describes two procedures for generating the minimal Herbrand
models of a set of first-order clauses. The proposed procedures are optimal
in the sense that each minimal model is generated only once, and nonmini-
mal models are rejected as soon as possible, in general before their complete
construction. Measurements on an implementation in Prolog of one of the
procedures, which is described in the paper, point to the efficiency of the
approach.

Both prcedures are based on positive unit hyper-resolution tableauz (short
PUHR tableauz), a (novel) formalization of an approach first introduced with
the theorem prover SATCHMO [18, 19]. PUHR tableaux are ground and
positive, more precisely their nodes consist of sets of ground atoms and dis-
junctions of ground atoms. They are expanded by means of only two rules,
the positive unit hyper-resolution and the splitting (a simple version of
expansion [27, 8]) rules, from range-restricted clauses. Range-restriction is a
syntactical property required in deductive database languages which is com-
parable to Skolemization: although requiring an extension of the language,
it preserves models in a certain sense. The branching factor, the size of
PUHR tableaux, and the size of the nodes of PUHR tableaux are in most
cases significantly smaller than those of conventional tableaux. Positive
unit hyper-resolution makes it possible not to blindly instantiate universally
quantified variables. Instead, it combines in one step instantiations (or v
expansions [27, 8]) and splittings (or [expansion [27, 8]), thus reducing
the depth of PUHR tableaux. Thanks to range-restrictedness full unifica-

tion is not needed for computing positive unit hyper-resolvents. “Half-way
unification” (or “merging”) suffices.

The first minimal model generation procedure expands PUHR tableaux
depth-first relying on a complement splitting expansion rule and on a form
of backtracking involving constraints. Complement splitting rule (called “re-
duction” in [23] and “folding-down” in [13]) cuts out some branches leading
to nonminimal models. Because PUHR tableaux are ground, complement
splitting can be nicely and efficiently built into the method and into the
SATCHMO programs. While discarding many nonminimal models, and
preventing the generation of duplicate models, complement splitting is not
always sufficient to reject all nonminimal models. In order to prune redun-
dant models as soon as possible, a special depth first search strategy with
extended backtracking is applied. The resulting depth-first minimal model
generation procedure is sound in the sense that it generates only minimal
Herbrand models, and complete in the sense that it returns all minimal Her-
brand models of the input clauses, provided these minimal models are all
finite. It is shown that this condition implies that there are finitely many
minimal models. A variation, called MM-SATCHMO, of the SATCHMO
program is given, which implements the depth-first minimal model genera-
tion procedure in Prolog.

The second minimal model generation procedure performs a breadth-
first, possibly constrained expansion of PUHR (complement) tableaux. It
is complete in the sense that it computes in finite time every finite minimal
Herbrand model of the set of clauses under consideration.

The plan of the rest of this paper is as follows. Section 2 introduces termi-
nology and notations, defines range-restricted clauses and PUHR tableaux,
and recalls the SATCHMO implementation of PUHR tableaux. Section 3
is devoted to model generation using PUHR tableaux. Section 4 defines the
depth-first and breadth-first minimal model generation procedures as a mod-
ified PUHR tableaux method and gives the Prolog implementation, called
MM-SATCHMO, of the depth-first minimal model generation procedure.

The last chapter compares the proposed procedure with other approaches
discussed in the literature, draws some conclusions, and points to possible
directions for future research.

A preliminary version of this paper (without the proofs and Section 4.6)
has been published in the Proceedings of the Fifth Workshop on Theorem
Proving with Analytic Tableaux and Related Methods [4].

2 Preliminaries

2.1 Terminology and Notation

Throughout the paper usual terminology and notations are used, as in e.g.
[27, 8]. When not explicitly otherwise stated, a first-order language L is

implicitly assumed. It is also assumed that two special atoms T and L are
available, expressing respectively truth and falsity, i.e. T is satisfied in every
interpretation, no interpretations satisfy L .

Every clause C' = Ly V...V L with negative literals {=Ay,...,—A,} and
positive literals {By, ..., B,,} can be represented by a clause in implication
form: C' = Ay AN NA, — B V..VB,. At A....AN A, is called the body
of ', By V...V B,, its head. If C' contains no negative literals, C' = T —
By V...V B,,. If contains no positive literals, C' = A; A A A, — L.

A unifier ¢ of a conjunction of atoms (A; A A 4,) and a sequence
of atoms (B, ..., B,) (possibly with repeated atoms) is defined as a substi-
tution ¢ such that A;c = Byo, for all ¢ = 1,...,n. If (A1 A.... A A4,) and
(B1, ..., By) have a unifier, they are unifiable. Note that, since repeatitions
in the sequence (By, ..., B,,) are allowed, a conjunction (A3 A.... A 4,,) might
be unifiable with a sequence containig less than n (distinct) atoms. A unifier
§of (Ay A.... AN A;) and (B, ..., By,) is called a most general unifier (mgu) of
(A1 A oA Ay) and (By, ..., By), if for each unifier o of (43 A A A,,) and
(B1, ..., By), there exists a substitution v such that ¢ = 6.

An atom A is said to subsume an atom B (a disjunction of atoms By V
...V By, resp.) if there exists a substitution ¢ such that Ac = B (Ao = B;
for some ¢ € {1,...,n}, resp.).

An interpretation of £ will be denoted as a pair (D, m) where the non-
empty set D is the universe (or domain) and m is the mapping interpreting
the symbols and expressions of the language.

The universal closure of a clause C' is Vrq..Vz,C, where x4, ..., 2, are
the variables occurring in C'. A clause (resp. a set of clauses) is said to
be satisfied by an interpretation when the universal closure of the clause
(resp. the set of the universal closures of the clauses) is satisfied by this
interpretation. A clause (resp. a set of clauses) is said to be satisfiable if it
has at least one interpretation in which it is satisfied. A clause (resp. a set of
clauses) is said to be finitely satisfiable if it is satisfied by an interpretation
with a finite domain.

A term or formula in which no variable occurs is said to be ground. If A
is a set of ground atoms, f/(.A) denotes the Herbrand interpretation which
satisfies a ground atom B if and only if B € A. A Herbrand interpretation
H(A) is said to be finitely representable if A is finite. Since confusions can
be avoided from the context, a set of formulas having a finitely representable
Herbrand model will be said to be finitely representable. Note that finite
representability (of sets of formulas) and finite satisfiability are two distinct
properties.

The subset relationship C over sets of ground atoms induces an order
< on Herbrand interpretations: given two sets A4y and A of ground atoms,
H(Ay) < H(Ap) if and only if Ay C A, If S is a set of clauses, < induces
an order on Herbrand models of S. A Herbrand model H(A) of S is said

to be a minimal Herbrand model of & if it is minimal for <, i.e. for every

Herbrand model H(A') of S, if H(A') < H(A), then A" = A.

If £ is a set of formulas, Atoms(E) denotes the set of atoms (i.e. positive
unit clauses) that are elements of £.

Variables are denoted by z and y with or without subscripts, constants
by a, b, ¢ or d, predicate symbols by D, P, (), and R, and function symbols
by f.

In this paper a tableau method and a minimal model generation pro-
cedure for clausal theories are defined, i.e. it is assumed that existential
quantifications have been removed through Skolemization.

2.2 Range Restriction

Definition 1 (Range restricted clause) A clause (resp. a clause in im-
plication form) is said to be range restricted if every variable occurring in a
positive (resp. head) literal also appears in a negative (resp. body) literal.

Clearly, a range restricted clause in implication form is ground if its body
is ground, e.g. if it is T. A transformation is first defined, which associates
a set RR(S) of range restricted clauses in implication form with every set S
of clauses in implication form.

Definition 2 (Range restriction transformation) Let L' be an exten-
sion of the language L with a unary predicate D (not belonging to L).

For every L-clause C' = Ay N ...N A, — B1 V...V By, let RR(C') be the
following L'-clause:

C if C is range restricted;

D(z1) N o AD(zg) N AL AN o N Ay — BV .V By, otherwise,
where x1,...,x are the variables occurring in the B;s and in
none of the A;s.

RR(C):=

Let S be a set of L-clauses. For a term t distinct from a variable occur-
ring in S, let Cy be the L'-clause:

D(z1) A ... A D(zg) — D(t) if the variables x4, ...,z occur in t;
Ct = . . .
T — D(t) if no variables occur in t.

Let 7 be the set of nonvariable terms occurring in S. Let 8’ be the following
set of L'-clauses:

S {Cy | t € T} if T contains a constant;
T {C U A{Cy | t € T} otherwise, for some constant a.

RR(S):={RR(C) | C € S} US’ is the range restriction of S.

Note that by construction the clauses in RR(S) are range restricted and
that RR(S) is finite if S is finite. Strictly speaking, the range restriction
transformation does not preserve models because it extends the language £
with the unary predicate D.

Example 1

1. If § = {T — P(f(z))}, then RR(S) = {D(z) — P(f(z)), T —
D(a), D(z) — D(f(z))} where, in the first clause, D(z) A T is sim-
plified into D(z).

2. I8 = {P(z,y) — P(f(2),9)}, then RR(S) = {P(z,y) — P(f(x),y),
T — D(a), D(z) — D(f(2))}.

The following theorem shows that the range restriction transformation
preserves models in a certain sense, similar to the way Skolemization does.

Theorem 3 Let S be a set of clauses in a language L (with no other func-
tion symbols than those occurring in S except possibly the constant a). Let
RR(S) be the range restriction of 8 (in an extension L' of L with a unary
predicate D).

1. If (D,m) is a model of S and if m' is the mapping over L' defined as
follows:

m/(s) ._{ m(s) ifs#D,
D ifs=2D

then (D, m') is a model of RR(S).
2. If (D,m’) is a model of RR(S), then (D, m/|;) is a model of S, where

m/|z denotes the restriction of m' to L.

Proof: Point 1 follows immediately from Definition 2. For point 2 the non-
emptiness of S’ (cf. Definition 2) is necessary, because the clauses RR(C')
are satisfied over any interpretation mapping the added unary predicate D
to the empty set. n

This result means that range restrictedness can be seen as just a special
syntactic form rather than a real restriction — from a theoretical point of
view. For practical purposes, on the other hand, range restrictedness does
make a difference. In the context of PUHR tableaux, the range restriction
transformation induces an enumeration of the ground terms, making the v
expansion rule of conventional tableaux [27, 8] superfluous. Thus, if the
procedures presented in this paper are applied to a set RR(S) obtained
from § by the transformation above, then the newly introduced atoms with
predicate D have basically the same effect as an instantiation — or v — rule
for the clauses of the original set S.

When applied in a refutation procedure, instantiation is often a source
of inefficiency. Note, however, that this is not the case for model generation.
In contrast to refutation, model generation requires instantiation anyway,
indeed, for Herbrand models are characterized as sets of ground atoms.

Definition 4 (Positive unit hyperresolution) Let C' = Ay A ... A A, —
FE1V...V E,, be a clause in implication form, By, ..., B, be n (not necessarily
distinct) atoms such that (A A ... N Ay) unifies with (B4, ..., By,). If 0 is a
most general unifier of (Ay A...NAy,) and (By, ..., By,), then (E1V ...V E,)o
15 a positive unit hyper-resolvent of C' and By, ..., B,,.

Lemma 5 The positive unit hyper-resolvent of a range restricted clause in
implication form and ground atoms is a ground atom or a disjunction of
ground atoms.

Proof: Immediate. n

Note that no occur-checks need to be performed for computing the pos-
itive unit hyper-resolvent of a range restricted clause in implication form
and ground atoms. Indeed, half-way unification (or matching) suffices in
computing a positive unit hyper-resolvent of a range restricted clause in
implication form and of ground atoms.

In the next section, positive unit hyper-resolution tableaux are defined
for range restricted clauses. This is not a significant restriction, for there is
a transformation of any set of clauses into a set of range-restricted clauses
which preserves models in the sense of Theorem 3. Note also that most data-
base and artificial intelligence applications naturally yield range restricted
specifications.

2.3 Positive Unit Hyper-Resolution Tableaux

Starting from the set {T}, the PUHR tableaux method expands a tree —
or positive unit hyper-resolution (PUHR) tableau — for a set & of range
restricted clauses in implication form by applying the following expansion
rules that are defined with respect to §. The nodes of a PUHR tableau are
sets of ground atoms or disjunctions of ground atoms.

Definition 6 (PUHR tableaux expansion rules) Let & be a set of
clauses in implication form.
o Positive unit hyper-resolution (PUHR) rule:

where o is a most general unifier of the body of a clause

(A4 N NA, — FE)eS and of (By,..., By).
o Splitting rule:

Ey Vv Ey

Ey | By

In the following definition, the splitting rule is applied to ground disjunc-
tions.

Definition 7 (PUHR tableaux) Positive unit hyper-resolution (PUHR)
tableauz for a set S of clauses in implication form are trees whose nodes are
sets of ground atoms and disjunctions of ground atoms. They are inductively

defined as follows:

1. {T} is a positive unit hyper-resolution tableau for S.

2. If T is a positive unit hyper-resolution tableau for S, if L is a leaf of
T such that an application of the PUHR rule (resp. splitting rule) to
formulas in L yields a formula E (resp. two formulas Ey and F3) not
subsumed by an atom in L, then the tree T' obtained from T by adding
the node L U {F} (resp. the two nodes L U{FE1} and L U {FE2}) as
successor(s) to L is a positive unit hyper-resolution tableau for S.

A branch of a positive unit hyper-resolution tableau is said to be closed,
if it includes a node containing the atom L. A positive unit hyper-resolution
tableau is said to be closed if all its branches are closed. A branch (resp.
tableau) which is not closed is said to be open.

A positive unit hyper-resolution tableau T for S is said to be satisfiable
iof the union of § with the nodes of a branch of T is satisfiable.

Note that if P is a path from the root to a node N of a PUHR tableaux,
then by Definition 7, N = UP.

Convention. If Ny and N2 are the nodes of a PUHR tableau T con-
taining respectively F; and Fs and resulting from an application of the
splitting rule to Fy V Fs, it is assumed in the sequel that the PUHR tableau
T is ordered such that Ny is the left sibling of Fs.

Example 2 Figure 1 gives a PUHR tableau for the following set of clauses
in implication form:

T — P(a) VQ(b) P(b) —
P(z) = P(f(z)) v Q(f(z)) (f(w)
Q) — P(z)V R(z) P(w)AQ(f(w)) — L

Pla) v Q(H)
e
P(f(a) v Q(f(a) P@®) v R(D)
T RN
@) Qo) P Rt
1 1 1

Figure 1: A PUHR tableau for the set of clauses of Example 2.

For the sake of readability, the nodes of the tree of Figure 1 are labeled with
the ground atoms or disjunctions of ground atoms added at these nodes. We
recall that by Definition 7 the nodes of a PUHR tableau are sets of ground
atoms and disjunctions of ground atoms.

By Lemma 5 the nodes of a positive unit hyper-resolution tableau for
a set of range restricted clauses are sets of ground atoms and disjunctions
of ground atoms. Note that sets of clauses for which PUHR tableaux are
defined may be infinite. According to Definition 6 clauses whose heads are L
only contribute to close branches. Since negative formulas do not explicitly
occur in PUHR tableaux, closure is simply detected by the presence of L,
which is simpler than checking for atomic closure [8].

Definition 8 lLet S be a set of range-restricted clauses in implication form
and A a set of ground atoms and disjunctions of ground atoms. A is said
to be saturated with respect to S for the positive unit hyper-resolution and
splitting expansion rules when the following properties hold:

1 if (A N NA, — E)eS, Bi€A, ...,and B, € A, and (A1 N...NA,)
and (B1, ..., B,,) are unifiable, then Fo € A for a most general unifier
ogof (A4 N...NA,) and (B, ..., B,).

2. If (E1V Eq) € A, then Ey € A or Ey € A.

Note that if B is an open or a closed branch of a PUHR tableau, then UB
is not necessarily saturated. As well, if UB is saturated, then B is neither
necessarily open, nor necessarily closed.

Lemma 9 The application of an expansion rule to a satisfiable PUHR tableau
results in a satisfiable PUHR tableau.

Proof: If M is a model of a set F of clauses, atoms and disjunctions, and if
F is a positive unit hyper-resolvent of elements of F, then M | E. If M is
a model of 7 and Fy V Ey € F, then M |= Fy or M |= Fs. n

Theorem 10 (Refutation soundness) Let S be a set of range-restricted
clauses in implication form. If there exists a closed PUHR tableau for S,
then S is unsatisfiable.

Proof: Assume § is satisfiable. By Lemma 9 there are no closed PUHR
tableaux for §.]

Definition 11 A PUHR tableau is said to be fair, if the union of the nodes
of each of its open branches is saturated for the expansion rules.

Informally, a PUHR tableaux is fair if along each of its open branches,
each possible application of an expansion rule is performed at least once.

If B is a branch of a tableau, then Atoms(UB) denotes the set of atoms
(i.e. positive unit clauses) that are elements of some nodes in B. In the
sequel, Atoms(&) will always be refered to in cases where all atoms in & are
ground. Recall that if Atoms(&) is a set of ground atoms, it characterizes
the Herbrand interpretation H(Atoms(&)).

Lemma 12 Let § be a set of range-restricted clauses in implication form
and & be a set of ground atoms and disjunctions of ground atoms. If SUE is
saturated for the expansion rules with respect to § and if £ does not contain

L, then H(Atoms(E)) is a model of S.

Proof: Immediate. n

Theorem 13 (Refutation completeness) Let S be a set of range-restricted
clauses in implication form. If § is unsatisfiable, then every fair positive unit
hyper-resolution tableau for S is closed.

Proof: Let T be an open fair PUHR tableau for &, and B an open branch
of T'. Since T is fair, then UB is saturated for the expansion rules. By
Lemma 12 H(Atoms(UB)) is a model of S. Hence § is satisfiable. n

PUHR tableaux are defined for sets of range restricted clauses. Com-
bined with the PUHR expansion rule of Definition 6, the range restriction
transformation induces an enumeration of the ground terms, as observed
in [17].

2.4 Implementation in Prolog

The Prolog program of Figure 2 expands fair PUHR tableaux for sets of
range-restricted clauses in implication form under a depth-first search strat-
egy. The tableaux expanded by this program are strict [8] and subsumption-
free. Strictness means that no application of an expansion rule is performed
more than once to given clauses, atoms, or disjunctions. Subsumption-
freeness means that only ground disjunctions that are not subsumed by
previously generated atoms or disjunctions can be split.

10

satisfiable :-
findall(Clause, violated_instance(Clause), Set),
not (Set = [1), !,
satisfy_all(Set),
satisfiable.
satisfiable.

violated_instance(B -—-> H) :-
(B ---> H), B, not H.

satisfy_all([]).

satisfy_all([_B ---> H | Taill) :-
H, !, satisfy_all(Tail).

satisfy_all([_B ---> H | Taill) :-
satisfy(H), satisfy_all(Tail).

satisfy(E) :-
component (Atom, E), not (Atom = false),
assume (Atom) .

component (Atom, (Atom ; _Rest)).
component (Atom, (_ ; Rest)) :-

!, component (Atom, Rest).
component (Atom, Atom).

assume (Atom) :-
asserta(Atom).

assume (Atom) :-
once(retract(Atom)),
fail.

Figure 2: The SATCHMO program.

11

Backtracking over satisfiable returns Herbrand models H(M). The
ground atoms of M are inserted into the Prolog database by the predicate
assume. On backtracking, they are removed. A clause Ay A ... A A, —
By V ...V By, is represented in the Prolog database as

Al, ..., An ---> Bl ; ... ; Bm,

where ---> is declared as an infix binary predicate. L is represented as
false, T as the built-in predicate true, which is always satisfied.

Fairness is ensured by the call to the all-solutions built-in predicate
findall. The predicate component on backtracking successively returns
the atoms of a disjunction. The predicate satisfy on backtracking suc-
cessively returns the components of a disjunction that are not subsumed
by atoms previoulsy inserted into the Prolog database. For each ground
instance _B ---> H of a clause returned by the the call

findall(Clause, violated_instance(Clause), Set)

the predicate satisfy_all selects an atom in the head H and asserts it in
the Prolog database. On backtracking, the different ways to satisfy the head
H of each ground instance _B ---> H returned by the call to £indall are
considered.

The program of Figure 2, called SATCHMO, as well as variations of
it have been first published in [18, 19]. In these articles, the programs
are explained in more detail and performance on benchmark examples is
reported. The PUHR tableaux introduced in Section 2.3 are a formalization
of the principle of the SATCHMO programs. This is, to the best of our
knowledge, the first formalization of the SATCHMO approach to theorem
proving.

It is worth pointing out that satisfy_all is a simple and straightfor-
ward implementation which, in some cases, has drawbacks. Consider for
example the following Prolog representations Rq and R, of the same set of
clauses:

Rli Rgi
true ---> p(a) true ---> p(b) ; p(a)
true ---> p(b) ; p(a) true ---> p(a)

Applied to Ry, the call to
findall(Clause, violated_instance(Clause), Set),

instantiates Set with the list [(true ---> p(a)), (true ---> p(b);p(a))].
Then the call to satisfy_all first asserts p(a) into the Prolog database
so as to satisfy the head of true ---> p(a). Since now p(b) ; p(a) is
satisfied, no further actions are taken, as specified by the second clause of
satisfy_all. If in contrast Ry is considered, the call to

12

findall(Clause, violated_instance(Clause), Set)
binds Set to the list:
[(true ---> p(b) ; p(a)) (p(a), true ---> p(al))l

The call to satisfy_all now satisfies first p(b) ; p(a), then p(a). That
is p(b) is first asserted, then p(a). On backtracking, p(a) only is asserted.

Such a behaviour depending on the order of the clauses in Prolog can be
avoided with a more sophisticated implementation of satisfy_all which
satisfies the considered set of heads of ground clauses by a minimal set of
atoms. Since such a refined implementation of satisfy_all is not needed
for the purpose of this report, it is not given here.

3 Model Generation with PUHR Tableaux

In the previous section, PUHR tableaux were considered from the angle of
refutation. In this section, their properties with respect to model generation
are investigated.

Theorem 14 (Model soundness) Let S be a satisfiable set of range-
restricted clauses in implication form and T a fair PUHR tableau for S.
If B is an open branch of T', then H(Atoms(UB)) is a model of S.

Proof: Fairness ensures saturation with respect to the expansion rules. The-
orem 14 follows from Lemma 12. m

Theorem 15 Let S be a satisfiable set of range-restricted clauses in impli-
cation form, T be « PUHR tableau for §, and M «a set of ground atoms. If
H (M) is a model of S, then there is a branch B of T' such that Atoms(UB) C
M.

Proof: Let By, ..., B;, ... be an enumeration of the branches of T', whose atoms
are not in M. For each : € N let A; be an atom of the branch B; which is
not in M. Let &' = SU{A; — L :i € N}. By definition of &', since no
A;is in M, H(M) is also a model of §’. Furthermore T' can be extended
into a positive unit hyper-resolution tableau T’ of &’ by adding L to the
successor nodes of those nodes of T that contain some A;. Let B! denote
such an extension of the branch B; in 7’. By Theorem 10, 7’ has an open
branch, say B. Since B is open, it is none of the B.. Since all clauses of S,
whose heads are L, are also in &', B is also an open branch of T'. B is none
of the B; because otherwise, by definition of 7", it would be one of the B..
By definition of the B;s Atoms(UB) C M. n

13

P(a) v P(b)
P(|a) — T P(|b)
P(b)V P(d) P(a) Vv P(c)
e ™S e ~_
P(b) P(d) P(a) P(|c)
P(a) v P(d)
_— o~
P(a) P(d)

Figure 3: A PUHR tableau for Example 3 with nonminimal and duplicate
models.

Corollary 16 (Minimal model completeness) Let S be a satisfiable set
of range-restricted clauses in implication form, T be a fair positive unit
hyper-resolution tableau for S, and M a set of ground atoms. If H(M) is a
minimal model of S, then there is a branch B of T' such that Atoms(UB) =
M.

Proof: By Theorem 15, there is a branch B of T' such that Atoms(UB) C M.
Since 7' is fair, by Theorem 14 H(Atoms(UB))is a model of S. Since H (M)
is a minimal model of S, Atoms(UB) = M. "

The following example demonstrates that a plain PUHR tableau can
generate both, nonminimal and duplicate models.

Example 3 Let S be the following set of clauses:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) Vv P(d)

Figure 3 is a PUHR tableau for §. The minimal model H({P(a), P(b)})
of § is generated twice, at the leftmost branch and at the third branch
from the left of the PUHR tableau. The fourth branch from the left of
the PUHR tableau generates the nonminimal model H({P(a), P(b), P(c)}).
Note that the PUHR tableau returns among others all minimal models of

S, ie. H({P(a), P(b)}), H({P(a), P(d)}), and H({P(b), P(c), P(d)}).
Corollary 16 is established, though in a different context, in [5] and

mentioned without proof in [12]. As the following counter-example shows,
fairness is necessary in Corollary 16, although not in Theorem 15.

14

Example 4 With the theory S = {T — P(a),P(z) — P(f(z))V P(b),
P(a) — P(b)} consistently expanding on the second clause will not allow
the generation of the (only) minimal model H({P(a), P(b)})of S.

4 Minimal Model Generation

By Corollary 16 fair PUHR tableaux generate all minimal models. However,
they often also generate duplicate and/or nonminimal models, as e.g. in Ex-
ample 3 above. A naive approach to minimal model generation consists in
first expanding (fair) PUHR tableaux, and later pruning them from redun-
dant branches. In this section a more efficient approach is described which
consists in a depth-first expansion of PUHR tableaux combined with an ex-
tended backtracking which prunes the search space from redundant branches
as soon as possible. Under certain finiteness conditions, this depth-first min-
imal model generation procedure is complete. However, it is inappropriate if
some minimal models are infinite. The generation of minimal models based
on breadth-first expansion of (fair) PUHR tableaux is finally discussed.

4.1 Finiteness Properties

Theorem 17 Let § be a set of formulas. If S has a finitely representable
Herbrand model it also has a finite model.

Proof: Let (D, m) be a finitely representable Herbrand model of §, and A
be the set of ground atoms that are satisfied in (D, m). A finite model of S
is built by identifying the elements of the universe D over which no terms
occurring in A are mapped. Formally, let ~ be the equivalence relation over
D defined by: dy ~ dy if and only if dy = ds or for all R(ty,...,1,) € A and
forall i = 1,...;n, m(t;) # di and m(t;) # dy. Let f be the mapping of an
element of D to its equivalence class for ~ in D/ ~. Let D' = D/ ~ and
m’ = fom. Since A is finite, D/ ~ is finite. By definition of D’ and m/’,
a ground atom is satisfied in (D', m’) if and only if it is satisfied in (D, m).
Since (D, m) = S, it follows that (D', m') = S. n
The following result relates the finiteness of the set of minimal models to
the finite representability of the minimal models. Let us call finitary a set
of clauses, whose minimal Herbrand models are all finitely representable.

Theorem 18 Let S be a set of clauses. If S is finitary, then S has finitely
many minimal Herbrand models.

Proof: Let § be a set of clauses with an infinite number of finitely repre-
sentable minimal Herbrand models. Let H(Ay),..., H(A,), ... be an enumer-
ation of all finitely representable minimal Herbrand models of S, such that
the A;s are pairwise distinct. If A is a finite set of atoms {Ay, ..., Ag}, let

15

Neg(A) denote the (singleton) set of clauses {A; A...A Ay — L}. For every
n € N,let " =SU Neg(Ag) U ...U Neg(A,). Since all A;s are finite, the
S§"s are also finite. Each §" is satisfiable because, by definition, H(A,4+1)
is a model of ™. Let §¥ = U{S8™ : n € N}. Since every 8" is satisfiable,
every finite subset of §% is satisfiable. By the compactness theorem, &% is
therefore satisfiable. Since §“ is a set of clauses, it has a Herbrand model,
and therefore also some minimal Herbrand model H(M). By definition of
S§¥, H(M) is none of the finitely representable models H (A,). Therefore
M is infinite. "

Although finite representability (of a set of formulas) is a stronger prop-
erty than finite satisfiability, we conjecture that it is semi-decidable like finite
satisfiability. We also conjecture that the finitary property is semi-decidable.

Let & be a set of clauses whose minimal Herbrand models are all finitely
representable. By Theorem 18 a PUHR tableau for § pruned from those
branches corresponding to nonminimal models is finite. Note, however, that
a finitary theory may have inifinite nonminimal Herbrand models, as is
shown by Example 5 below.

In many applications, the finite representability of the minimal Herbrand
models is often assumed. This is the case in particular of disjunctive data-
bases [15] and of some forms of nonmonotonic reasoning [25, 24, 11]. Thus,
from the viewpoint of applications, Theorem 18 seems to be an important
result.

4.2 Complement Splitting

If C=A;Vv..VA,is an atom or a disjunction of atoms, let Neg(C') denote
the finite set of clauses in implication form Neg(C'):= {A; — L,..., A, —
1},

Definition 19 (Complement splitting rule)

FiV FEy
Fq Fy
Neg(E2)

Like the splitting rule, the complement splitting rule (already mentioned
in [19], called reduction in [23] and folding-down in [13]) is applied in the
following definitions to ground disjunctions. Tableaux expanded with the
positive unit hyper-resolution and the complement splitting rules are defined
inductively, similarly as in Definition 7. Let us call such tableaux PUHR
complement tableauz. Note that nodes of PUHR complement tableaux are
sets of ground atoms, disjunctions of ground atoms, and ground implications
of the form A — 1.

16

Definition 20 (PUHR complement tableaux) Positive unit hyper-res-
olution (PUHR) complement tableauz for a set S of clauses in implication
form are trees whose nodes are sets of ground atoms, disjunctions of ground
atoms, and ground implications of the form A — L. They are inductively

defined as follows:

1. {T} is a positive unit hyper-resolution complement tableau for S.

2. If T is a positive unit hyper-resolution complement tableau for S, if L
is a leaf of T' such that an application of the PUHR rule (resp. comple-
ment splitting rule) to formulas in L yields a formula F (resp. two sets
of formulas {F1, Neg(F3)} and {E3}), then the tree T' obtained from
T by adding the node LU{E?} (resp. the two nodes L U{F1, Neg(F3)}
and L U{E3}) as successor(s) to L is a positive unit hyper-resolution
complement tableau for S.

For PUHR complement tableaux, closedness and openness of branches
and tableaux are defined like in Definition 7: A branch of a PUHR comple-
ment tableau is said to be closed, if it includes a node containing the atom
1. A PUHR complement tableau is said to be closed if all its branches are
closed. A branch (resp. PUHR complement tableau) which is not closed is
said to be open.

Definition 21 Let S be a set of range-restricted clauses in implication form
and A a set of ground atoms, disjunctions, and clauses in implication form.
A is said to be saturated with respect to S for the positive unit hyper-
resolution and the complement splitting expansion rules when the following
properties hold:

o f (AiN..NA, = FE)eS, BieAB, €A and (A1N...NA,) and
(B1,..., B,) are unifiable, then Eo € A for some most general unifier
ogof (A4 N...NA,) and (B, ..., B,).

o If(E1V Ey) € A, then {F1}U Neg(F3) C A, or 3 € A.

Note that if A is saturated with respect to S for the positive unit hyper-
resolution and the complement splitting expansion rules, then it is also sat-
urated for the positive unit hyper-resolution and the splitting expansion
rules.

Model soundness for PUHR complement tableaux follows from Theo-
rem 14.

Lemma 22 Let S be a set of clauses and Aq, ..., An(n > 1) be atoms.

1. If M is a minimal Herbrand model of S such that M = Ay A ... N Ay,
then M is a minimal Herbrand model of SU{A1 A ... N A, — L}.

17

2. If M is a minimal Herbrand model of S U{Ay A ... N A,, — L}, then
M s also a minimal Herbrand model of §.

Proof: 1. Let H(M) be a nonminimal model of SU{A; A ... A4, — L}
There exists My C M such that H (M) is a model of SU{A1A...AA,, — L}.
Hence, H (M) is not a minimal model of S.

2. Assume that H(M)is a Herbrand model of SU{A; A... AN A4, — L}
which is not a minimal Herbrand model of §. There is M; C M such that
H(M) is a model of §. Since H(M) [~ A; for some i = 1,...,n and since
My C M, HMy) £ A;. H(My) is therefore not a minimal Herbrand
model of SU{A; A...A A, — L}, and the same holds of H(M). n

Lemma 23 Let £ be a set of clauses in tmplication form, ground atoms and
disjunctions of ground atoms, I’y V Fy € £ be a ground clause, and M be a
set of ground atoms. H(M) is a minimal model of £ if and only if

1. either it is a minimal model of £ U {E1} U Neg(Ls)

2. or it is a minimal model of EU{FE3} and for all My C M, H(My) is
not a minimal model of €U Neg(FEs).

Proof: Let H(M) be a minimal model of £. If H(M) does not satisfy Es,
then H (M) is a model of EU{Fy — L}. By Lemma 22, H(M) is a minimal
model of £ U Neg(FEs). If H(M) satisfies Iy it is a model of EU {Fy}. If it
is not a minimal model of £ U {F,}, then there exists M; C M such that
H(M,) is a model of £ U {F3}, hence of &, contradicting the hypothesis
that H(M)is a minimal model of £. By Lemma 22, if H(,M) is a minimal
model of £ U Neg(Fs), then it is also a minimal model of . Let H (M) be
a minimal model of & U {F,}. If H(M) is not a minimal model of &, then
there exists My C M such that H(M;) is a minimal model of £. Since
H (M) is a minimal model of & U {F,}, H (M) does not satisfy F,. Since
EyVEyin £, H(M,) satisfies Fy . Therefore, H(My) satisfies EU{Fy — L},
i.e. there exists My C My C M, such that H(My3) is a minimal model of
EU Neg(L,). n

Theorem 24 (Minimal model completeness for complement ta-
bleaux) Let S be a satisfiable set of range-restricted clauses in implication
form, T be a fair PUHR complement tableau for S, and M a set of ground
atoms. If H(M) is a minimal model of S, then there is a branch B of T
such that Atoms(UB) = M.

Proof: Follows from Corollary 16 since by definition every PUHR comple-
ment tableau for a set S can be constructed from a PUHR (noncomplement)
tableaux by adding L to some of its nodes, and from Lemma 23 which ba-
sically states that minimal models are preserved by complement splitting.
|

18

The following example shows that complement splitting is not always
sufficient to prune all nonminimal models.

Example 5 Let § = {T — P(a), P(z) — P(b)V P(f(2)), P(a) — P(b)}.
Let T be the PUHR complement tableau for § by applying first the PUHR
rule on T — P(a) and P(a) — P(b), and then alternatively the PUHR
and splitting rule on P(x) — P(b) Vv P(f(z)). Although H({P(a), P(b)})is
the unique minimal model of &, T also has branches corresponding to the

models H({P(a), P(b), P(f(a)),...,P(f"(a))}) for all n € N.

Although possibly having branches corresponding to nonminimal models,
PUHR complement tableaux never have two distinct branches defining the
same model, as established next.

Lemma 25 Let § be a satisfiable set of range-restricted clauses in impli-
cation form, T be a fair PUHR complement tableau for S, and By, and Br
be two open branches of T. If By appears to the left of Br in T, then
Atoms(UBRr) € Atoms(UBr,).

Proof: Let Ar be an atom in the first node of B (in a root to leaf traversal)
which is not not in By. By definition of the complement splitting rule,
(Ap — 1) € UBL. Hence Ap ¢ UBy,. n

Corollary 26 Let S be a satisfiable set of range-restricted clauses in impli-
cation form, T be a fair PUHR complement tableau for § and By, ..., B, ...
a left-to-right enumeration of the open branches of T.

1. H(Atoms(UBy)) is a minimal model of §.
2. If i # j, then Atoms(UB;) # Atoms(UB;)

Proof: 1. Since By is the leftmost branch of 7', by Lemma 25 H (Atoms(By))
is a minimal model of S.
2. Follows directly from Lemma 25.]
The following example demonstrates that a PUHR complement tableau
can generate nonminimal models.

Example 6 Let § be the set of clauses of Example 3, i.e.:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a) Vv P(d)

Figure 4 gives a PUHR complement tableau for §. The models generated by
this PUHR complement tableau are H({P(a), P(d)}), H({P(b), P(c), P(a)}),
H({P(b), P(a)}),and H({P(b), P(c),P(d)}). Note that although some are

not minimal, the PUHR complement tableau returns no duplicates.

19

P(a) vV P(b)
g T
Py — L |
|
P(b) v P(d) P(a)V P(c)
PN e ~
() P(d) Pla) P(e)
P(d) — 1 P(c) — 1 |
|
1 P(a) v P(d)
_— N
Pla) P(d)
P(d) — L

Figure 4: A PUHR complement tableau.

4.3 Implementation of Complement Splitting

Complement splitting can be built into SATCHMO by replacing the proce-
dure satisfy by the following procedure cs_satisfy, as shown by Figure 5.
cs_component returns not only the atoms of a disjunction, like component
does, but also the rest of the disjunction on the right hand side of the
returned atom (false if this right hand side is empty). This implemen-
tation, which we call CS-SATCHMO, departs slightly from Definition 19
since it represents Neg(A; V ...V A,) as Ay V...V A, — L instead of
{Ay — L,..., A, — L}. Since the A; are ground, the two representations
are equivalent.
The complete program of CS-SATCHMO is given in Appendix A.

4.4 Constrained Search

By Corollary 26 the first model returned from a depth-first-left-first traver-
sal of a PUHR complement tableau is minimal, and by Lemma 25 no models
are <-larger than subsequently returned models. In order to prune PUHR
complement tableaux from nonminimal models, it therefore suffices to con-
strain any model under construction not to be <-larger than any previously
returned model. This is easily achieved by adding to the set of clauses a
constraint Neg({Ay,....,4,}) = {41 A ... A A, — L} once a (finite) model
H({A1,....,A.}) has been constructed.

20

cs_satisfy_all([]1).
cs_satisfy_all([_B ---> H | Taill]) :-
H,
',
cs_satisfy_all(Tail).
cs_satisfy_all([_B ---> H | Taill]) :-
cs_satisfy(H),
cs_satisfy_all(Tail).

cs_satisfy(E) :-
cs_component (Atom, Suffix, E),
not (Atom = false),
assume (Atom) ,
assume_neg(Suffix).

cs_component (A, S, (A ; S)).
cs_component (A, S, (_ ; Rest)) :-
1

cs_component (A, S, Rest).
cs_component (A, false, A).

assume_neg(false) :-
1

assume_neg(E) :-
assume (E ---> false).

Figure 5: Complement splitting for SATCHMO

21

Definition 27 (Depth-first minimal model generation procedure)
Let § be a set of range restricted clauses in implication form. Applying the
depth-first minimal model generation procedure to S consists in a depth-first-
left-first construction of a fair PUHR complement tableau for § such that §
is augmented with Neg(M) after each computation of a model H(M) of §.

Note that, by Definitions 7 and 19, if &; and Sy are sets of range-
restricted clauses in implication form such that & C Sy and all clauses
in Sy \ Sy are of the form Ay A...A A, — L, then every PUHR complement
tableau for 8y can be obtained from a PUHR complement tableau for §; by
adding L to some nodes. Conversely, every PUHR complement tableau for
S1 can be obtained from a PUHR complement tableau for S by discarding
1 from some nodes.

Recall that a set of clauses is finitary if its minimal Herbrand models are
all finitely representable.

Lemma 28 Let S be a finitary and finite set of range-restricted clauses in
mmplication form, and T be a PUHR complement tableau for S.

Ift is a node in T, let By, ..., B,, be branches of T to the left of t such
that H(Atoms(UBy)), ..., H(Atoms(UB,,)) are minimal models of S.

Let Ty be the PUHR complement tableau for SUN eg(UBy)U...UNeg(UB,,)
corresponding to T'. If B is a branch of T, let By denote the corresponding
branch in T; and conversely.

By is open in Ty if and only if B is open in T and Atoms(UB;) ¢
Atoms(UBy), for all i =0,...,n,.

Proof: Assume that B is an open branch of T"and Atoms(UB;) € Atoms(UB),
for all ¢ = 0,...,ns For all ¢ = 0,...,ns there exists an atom A; € UB such
that A; € UB \ UB;. Therefore, H(Atoms(UB)) = Neg(UB;). Hence B; is
open in T%.

Assume that By is an open branch of T;. If Atoms(UB;) € Atoms(UB),
for all ¢ =0,...,n¢, then L ¢ UB. Hence B is open in T.]

Theorem 29 (Soundness and completeness of the depth-first mini-
mal model generation procedure) Let S be a finite set of range-restricted
clauses in implication form. If S is finitary, then applied on S, the depth-
first minimal model generation procedure terminates, returns all minimal
models of S (i.e. it is complete), does not return any nonminimal model of
S (i.e. itis sound), and does not return any minimal model more than once.

Proof: Let § be a finitary and finite set of range restricted clauses in impli-
cation form.

Soundness: By Corollary 26 the first model returned by the procedure is a
minimal model of §. Assume that the first n models H(My),..., H(M;_1)
returned by the procedure are minimal models of §. Let T be the tableau

22

expanded so far. After returning the first n models, the procedure backtracks
to anode t of T, such that the branches corresponding to previously returned
models are to the left of £. The (n + 1)-th model returned by the procedure
corresponds to the first open branch of a tableau 7} for SU Neg(Mg)U...U
Neg(M,,_1). By Lemma 28, this model is not <-larger than any previously
returned model. By Corollary 26 it is a minimal model of S U Neg(Mg) U
..U Neg(M,,_1). Hence, by Lemma 22 it is a minimal model of § as well.
By induction, all models returned are minimal models of S.
Completeness: For any two minimal models H(M;) and H(My) of S,
My € My and My € M. Therefore, H(M;y) = Neg(Myz) and H(Ms) =
Neg(M;i). Consequently, no branches corresponding to a minimal model
H(M) of § with M ¢ {My,..., M.} of a PUHR complement tableau for
S can be closed in a tableau for S U Neg(Mg) U ...U Neg(M,,), for some
minimal models H(My),..., H(M,,) of S. Since the procedure returns only
minimal models, the result follows. From Lemma 28, it follows that no
models are generated more than once.
Termination: Since § is finitary, it has by Theorem 18 finitely many minimal
models. Since the procedure returns all and only minimal models of &,
and since no minimal models are generated more than once, the procedure
terminates.]
The following example shows how the depth-first minimal model gener-
ation procedure generates only minimal models and does not return dupli-
cates.

Example 7 Figure 6 gives the search spaces of the depth-first minimal
model generation procedure for the set of clauses of Examples 3 and 6, i.e.:

T — P(a)V P(b) P(a) — P(b)V P(d)
T — P(a)V P(c) P(b) — P(a)V P(d)

Note that all models returned by the procedure are minimal.

It is worth noting that fairness is necessary for the depth-first minimal
model generation procedure, as the following counter-example shows.

Example 8 Let § = {T — P(a), P(z) — P(f(z))V P(b), P(a) — P(b)}.
An unfair PUHR complement tableau for S with leftmost branch {P(a),
P(f(a)), ..., P(f*(a)),...} not containing P(b) does not return the minimal
model H({P(a), P(b)}) and does not give rise to applying the constraint
P(a) A P(b) — L for pruning redundant branches.

4.5 MM-SATCHMO

Figure 7 gives a program, we call MM-SATCHMO, which implements the
depth-first minimal model generation procedure. It builds upon the im-
plementation of complement splitting described in Section 4.2. A slight

23

P(a) v P(b)
P(a)/ T P(b)
Pb) — L P(a) A P(d) — L
P(b) \|/ P(d) P(a) \|/ P(e)
PN o~
Py P P Pie)
Pd)— L P(e)— L PB)AP(a) — L
J|_ P(a) \|/ P(d)
o™ T~
Pd)— L PB)AP(c)ANP(a) — L

Figure 6: A run of the depth-first minimal model generation procedure.

modification of satisfiable suffices to construct the constraints induced
by a (minimal) model.

The argument of the procedure mm is the body of the constraint under
construction. This data structure is redundant, for the model under con-
struction is also represented in the Prolog database. This redundancy can
be easily removed, at the cost of a less readable program. A more serious
source of inefficiency lies in the way how violated clauses are detected: the
last inserted atoms are not used for an incremental detection. Although
quite simple, an incremental evaluation requires longer and more compli-
cated programs. An incremental clause evaluation turns out to be especially
beneficial for the constrained search.

The complete program of MM-SATCHMO is given in Appendix B.

4.6 Breadth-First Minimal Model Generation

The depth-first minimal model generation procedure relies on chronologi-
cal backtracking for introducing constraints ensuring the minimality of the
subsequently generated models. If some minimal model M of the set § of
clauses under consideration is infinite, then the depth-first minimal model
generation procedure fails to generate those finite minimal models that were
not constructed before M. This can be avoided with a breadth-first expan-

24

minimal_model :-
mm(true) .

mm(C1) :-
findall(Clause, violated_instance(Clause), Set),

not (Set = [1),
1
mn_satisfy_all(Set, C1, C2),
mm(C2) .
mm(C) :-

asserta(C ---> false).

mm_satisfy_all([], ¢, C).
mn_satisfy_all([_B ---> H | Taill], C1, C3) :-
H,
',
mm_satisfy_all(Tail, C1, C3).
mn_satisfy_all([_B ---> H | Taill], C1, C3) :-
mn_satisfy(H, A),
and_merge (A, C1, C2),
mm_satisfy_all(Tail, C2, C3).

mn_satisfy(E, Atom) :-
cs_component (Atom, Suffix, E),
not (Atom = false),
assume (Atom),
assume_neg(Suffix).

and_merge (Atom, true, Atom) :-
1

and_merge (Atom, Conj, (Atom, Conj)).

Figure 7: The MM-SATCHMO program.

25

sion of PUHR tableaux.

The definitions of PUHR tableaux and PUHR complement tableaux in
terms of two expansion rules, the PUHR rule and the splitting or comple-
ment splitting rule, was convenient so far, for it gives rise to rather simple
proofs and appropriately conveys the intuition of the SATCHMO programs.
In investigating the breadth-first expansion of PUHR tableaux or PUHR
complement tableaux, it is convenient to rely on a sligthly more stringent
definition of these tableaux based on a single expansion rule combining both,
the positive unit hyper-resolution and the splitting or complement splitting
rules.

Definition 30 (PUHR splitting and PUHR complement splitting
rules) Let S be a set of clauses in implication form.

o PUHR splitting rule:
By
B,
Fio ‘ ‘ FE,o

o PUHR complement splitting rule:
By
B,
Fio ... | Fio E, o
Neg(Eqo V...V E,,0) Neg(Eiy10V ...V Epo0)

In both rules, o denotes a most general unifier of the body of a clause
(AT AN ANA, — B4V .V EV..VE,) €S and of (By,...,B,).

Definition 30 gives rise to revised definions of PUHR tableaux and of
PUHR complement tableaux similar to Definition 7 and Definition 31:

Definition 31 (Revised PUHR (complement) tableaux) PUHR (com
plement) tableaux for a set S of clauses in implication form are trees whose
nodes are sets of ground atoms, disjunctions of ground atoms and ground
implications of the form A — L, resp. They are inductively defined as
follows:

1. {T} is a revised PUHR (complement) tableau for S.

26

P(a) P(b)V (P(c) v PQ
P(b) — P(c) v P(d)
™~
o~ P(d)

a. PUHR tableau for § = {T — P(a)V (P(b)V (P(c)V P(d)))}.

T

A

Pla) P(b) Ple) P(d)

b. Revised PUHR tableau for S.
Figure 8: PUHR and revised PUHR tableaux compared.

2. If T is a revised PUHR (complement) tableau for S, if L is a leaf of
T such that an application of the PUHR (complement) splitting rule
to formulas in L yields m sets of formulas S, ..., S, then the tree T’
obtained from T by adding the m nodes LU S, ..., LU S5 as successors
to L is a revised PUHR (complement) tableauzx for S.

In contrast with the tableaux considered in the previous section, an
atom is introduced at each node of a revised PUHR (complement) tableaux.
This is illustrated by Figure 8. Revised PUHR (complement) tableaux are
natural candidates for implementations. It is preferable to split a disjunction
immediately after it has been introduced, indeed. Immediate splitting of an
m-ary disjunction into m branches is also preferable to repeated splittings
of binary disjunctions. In fact, the SATCHMO programs given so far do
implement the PUHR, splitting or PUHR, complement splitting rules.

Theorem 32 Under breadth-first expansion of a fair revised PUHR (com-
plement) tableau:

1. The first model returned is minimal.

2. Let{H(My),..., H(M,)} be the set of minimal models generated so far
during a breadth-first expansion of a fair revised PUHR (complement)
tableau. Any subsequently generated model H(M) is minimal if and

only if for all i € {1,...,n}, M; ¢ M.

27

Proof: 1. A model returned is necessarily finite. Since an atom is introduced
at each node of a revised PUHR (complement) tableau, the first model
returned during a breadth-first expansion of a revised PUHR (complement)
tableau necessarily has a minimal cardinality. It follows that it is minimal.
2. Let {My,..., M,} be the set of minimal models generated so far during
a breadth-first expansion of a fair revised PUHR (complement) tableau.
Let H(M) be the model returned next. H (M) is a minimal model if for no
(previously or subsequently) returned model H(N'), N C M. By hypothesis,
this holds if H(N) is a model returned by the procedure before H(M), i.e.
if N = M; for some ¢ € {1,...,n}. Let H(AN) be a model returned by
the procedure after H(M). Since an atom is introduced at each node of a
revised PUHR (complement) tableau and since the procedure expands the
tableaux breadth-first, necessarily |N| > |M|. Hence, N' ¢ M. .

In the same spirit as with the depth-first minimal model generation pro-
cedure, and since the first model generated during a breadth-first expansion
of revised PUHR (complement) tableaux is minimal, adding the same con-
straints as in the depth-first procedure prevents the generation of nonmini-
mal as well as of duplicate minimal models without affecting the soundness
and completeness properties of model generation. The result is a minimal
model generation procedure capable of dealing with sets of clauses having
infinite minimal models.

Definition 33 (Breadth-first minimal model generation procedure)
Let § be a set of range restricted clauses in implication form. Applying the
breadth-first minimal model generation procedure to S consists in a breadth-
first construction of a fair PUHR tableau or of a fair PUHR complement
tableau for S such that S is augmented with N eg(M) after each computation
of @ model H(M) of S.

We want to emphasize that, in contrast to the depth-first minimal model
generation procedure, the breadth-first minimal model generation procedure
does not have to rely on complement splitting. However, relying on com-
plement splitting in the breadth-first minimal model generation procedure
guarantees that no duplicate models are produced, that the “leftmost model”
is minimal and that no models can be subsumed by another “on its right”.
The last property indicates that even among the models generated so far
we need to check against those “to the left” of the newly generated model.
All this may result in substantial savings during the model computation
process.

Additionally, since infinite models necessarily are “generated” last, we
are guaranteed that the breadth-first minimal model generation procedure
will eventually return all the finite minimal models of the considered set of
clauses. A branch corresponding to a nonminimal infinite model H (M) is
abandoned as soon as a finite minimal model H (M) is produced such that

28

Figure 9: A revised PUHR tableau for the set of clauses of Example 9.

M is a subset of the already computed part of M.,. Consider the following
example:

Example 9 Let § = {T — P(a), P(z) — Q(z), P(z) — P(f(z))V Q(b)}.

S has an infinite minimal model, namely H({P(a), Q(a), P(f(a)),
Q(f(a)), P(f(f(a))), Q(f(f(a))),...}) in addition to the finite minimal
model H({P(a), Q(a), Q(b)}). The revised PUHR tableau for § is given
by Figure 9. Note that many models can be abandoned as a result of the
constraint induced by the first minimal model {P(a),Q(a),Q(b)} (No con-
straints are displayed in the figure). Applied on S, the depth-first minimal
model generation procedure is stuck on the infinite (minimal) model and
does not return the finite minimal model.

5 Conclusions and Future Work

This paper presented two procedures for computing the minimal Herbrand
models of sets of range restricted clauses. Both procedures are based on
a positive unit hyper-resolution (PUHR) tableau method, which was intro-
duced. The first minimal model generation procedure performs a depth-first
expansion of PUHR tableaux relying on a form of backtracking involving
constraints. The second minimal model generation procedure performs a
breadth-first, constrained expansion of PUHR (complement) tableaux. Both

29

procedures are optimal in the sense that each minimal model is constructed
only once, and the construction of nonminimal models is interrupted as soon
as possible. They are sound and complete in the following sense: The depth-
first minimal model generation procedure computes all minimal Herbrand
models of the considered clauses provided these models are all finite. The
breadth-first minimal model generation procedure computes all finite mini-
mal Herbrand models of the set of clauses under consideration. A compact
implementation of the depth-first minimal model generation procedure in
the form of a short Prolog program called MM-SATCHMO was also pre-
sented.

As a tableau procedure the proposed approach enjoys a good degree of
efficiency stemming from its restricted search space, from limiting the ap-
plications of expansion rules and the use of matching without occur-check
rather than full unification — see the performances reported in [29]. This
is possible because, as a side-effect of a special range-restricted syntacti-
cal form, the generated tableaux are ground. Since it makes instantiation
necessary, groundness of tableaux might be considered as a source of in-
efficiency in a refutation procedure. However, since Herbrand models are
characterized as sets of ground atoms, this objection does not apply to a
model generation procedure.

As model generation procedures, the approach proposed in this paper
compares well with those reported in the literature, many of which are not
sound in the sense that they generate nonminimal models [19, 12]. Com-
pared with approaches based on model generation then testing for minimal-
ity [7, 20] the approach proposed here avoids nonminimal model generation
altogether. The generation of nonminimal models is aborted as soon as
possible, in general before they are fully developed. Also, the method we
propose is applicable to first-order clauses and not confined to propositional
or ground theories as the algorithms reported in [7, 35, 20]. While the
applicability of the approach proposed in this article to sets of first-order
clauses is a major advantage, most of the techniques increasing the efficiency
for propositional or ground clauses proposed in [35, 20] can be incorporated
into versions of the algorithms described here tailored for that case. More-
over, the approach proposed here requires no order to be placed on the
sequence in which individual atoms are expanded — although such an or-
der can be incorporated without substantial changes to the algorithm [35].
In [11] the concept of a ghost tableau is used to check the minimality of
models that may be made nonminimal by the existential instantiation rule
(or 6 expansion [27]) in the (primary) tableau when testing for a “mini-
consequence” property. The concept is useful when existential quantifiers
are allowed in the theory which is not the case we consider in the present
article.

Among the limitations of the procedures decribed here are their ap-
plicability only to range restricted and so called finitary sets of first-order

30

clauses. However, range restriction is not much of a constraint, because
a model preserving transformation of general clauses into range restricted
ones was given. Moreover, most database and artificial intelligence applica-
tions naturally yield range-restricted specifications. We believe that much of
real-life tasks enjoy the finiteness properties needed for the applicability of
the depth-first minimal model generation procedure. For those applications
with infinite minimal models, the breadth-first minimal model generation
procedure can be applied for an exhaustive construction of all finite min-
imal models. One of the shortcomings of the procedures as reported here
is their lack of incrementality. Further improvements, not discussed in this
paper, can also be incorporated into the procedure. Another point is that,
in some cases, the large number of constraints corresponding to generated
minimal models may overwhelm the process without much positive contri-
bution to discarding nonminimal models. A localized test that decides the
minimality of the model based on the content of that model alone with no
reference to other models can be found in [33]. Space considerations prevent
us from detailing the approach here.

Testing of a prototype of the depth-first minimal model generation pro-
cedure points to its efficiency both as a model generator, and as a refutation
system [29]. Indeed, the restriction to minimal models often dramatically
reduces the search space, thus speeding up the closing of a tableaux. The
prototype was able to deal with theories with a large number of minimal
models with performances comparable to the best reported in the litera-
ture [20]. Further testing is needed to better evaluate the gains in perfor-
mance and compare the minimal model generation procedure with existing
systems. We plan also to further investigate applying a similar approach for
query answering, integrity constraint enforcement, knowledge assimilation in
data and knowledge base applications, as well as other possible approaches
to testing model minimality.

Acknowledgments

We thank Norbert Fisinger, Heribert Schiitz and Tim Geisler for the many
fruitful discussions on the topic of this paper. Part of this research was done
while the second author was visiting at Ludwig-Maximilians-Universitét
Miinchen on an Alexander von Humboldt Research Fellowship. The sup-
port of Alexander-von-Humboldt-Stiftung is appreciated.

References

[1] S. Abdennadher and H. Schiitz. Model generation with existentially
quantified variables and constraints. In Proc. Sizth Int. Conf. on Alge-
braic and Logic Programming, Springer-Verlag, LNCS, 1997.

31

[2]

[10]

[11]

[12]

[13]

[14]

P. Baumgartner, U. Furbach, and 1. Niemeld. A tableau calculus for
diagnosis applications. In Proc. Seventh Workshop on Theorem Proving
with Analytic Tableaux and Related Methods, Springer-Verlag, LNCS,
1997.

F. Bry. Intensional updates: Abduction via deduction. In Proc. Seventh
Int. Conf. on Logic Programming, MIT Press, 1990.

F. Bry and A. Yahya. Minimal model generation with positive unit
hyper-resolution tableaux. In Proc. Fifth Workshop on Theorem
Proving with Analytic Tableauz and Related Methods, Springer-Verlag,
LNCS, 1996.

M. Denecker and D. Schreye. A framework for indeterministic model
generation with equality. In Proc. Conf. on Fifth Generation Computer
Systems, 1992.

R. Fagin, J.D. Ullman, and M.Y. Vardi. On the semantics of updates
in databases. In Proc. Second ACM Symp. on Principles of Database
Systems, 1983

J.A. Ferndndez and J. Minker. Bottom-up evaluation of Hierarchical
Disjunctive Deductive Databases. In Proc. Fighth Int. Conf. on Logic
Programming, 660-675. MIT Press, 1991.

M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, 1987.

P. Gardenfors. Knowledge in Fluz: Modeling the dynamic of epistemic
states. MIT Press, 1988.

T. Geisler, S. Panne, and H. Schiitz. Satchmo: The compiling and
functional variants. J. Automated Reasoning, Vol. 18 No. 2, 227-236,
1997.

J. Hintikka. Model minimization — an alternative to circumscription.
J. Automated Reasoning, Vol. 4, 1-13, 1988.

K. Inoue, M. Koshimura, and R. Hasegawa. Iimbedding negation as
failure into a model generation theorem prover. In Proc. Eleventh Int.
Conf. on Automated Deduction, 1992.

R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut rule
into connection tableau calculi. J. Automated Reasoning, Vol. 13 No.
3, 297-338, 1994.

J.W. Lloyd. Foundations of logic programming. Springer-Verlag, 1984,
second edition 1987.

32

[15] J. Lobo, J. Minker, and A. Rajasekar. Foundations of disjunctive logic
programming. MIT Press, 1992.

[16] S. Lorenz. A tableau prover for domain minimization. J. Automated
Reasoning, Vol. 13, 375-390, 1994.

[17] D. Loveland, D. Reed, and D. Wilson. SATCHMORE: SATCHMO
with RElevancy. J. Automated Reasoning, Vol. 14, 325-351, 1995.

[18] R. Manthey and F. Bry. A hyperresolution-based proof procedure and
its implementation in prolog. In Proc. Eleventh German Workshop on
Artificial Intelligence, Springer-Verlag, LNCS, 456-459, 1987.

[19] R. Manthey and F. Bry. Satchmo: a theorem prover implemented in
Prolog. In Proc. Ninth Int. Conf. on Automated Deduction, Springer-
Verlag, LNCS, 456-459, 1988.

[20] I. Niemeld. A tableau calculus for minimal model reasoning. In Proc.
Fifth Workshop on Theorem Proving with Analytic Tableaur and Re-
lated Methods, Springer-Verlag, LNCS, 1996.

[21] N. Olivetti. Tableaux and sequent calculus for minimal entailment. J.
Automated Reasoning, Vol. 9, 99-139, 1992.

[22] D. Poole, R. Aleliunas, and R. Goebel. THEORIST: A logical reason-
ing system for default and diagnosis. Technical Report, University of
Waterloo, 1985.

[23] D. Prawitz. A new improved proof procedure Theoria, Vol. 26, 102-139,
1960.

[24] A. Ramsay. Formal Methods in Artificial Intelligence. Cambridge Uni-
versity Press, 1988, second edition 1989.

[25] R. Reiter. A theory of disgnosis from first principles. Artificial Intelli-
gence, Vol. 32, 57-95, 1987.

[26] J.A. Robinson. Automatic deduction with hyper-resoultion. Int. J.
Computational Mathematics, Vol. 1, 227-234, 1965.

[27] R. Smullyan. First-Order Logic. Springer-Verlag, 1968.

[28] M. Suchenek. First-order syntactic characterizations of minimal entail-
ment, domain minimal entailment and herbrand entailment. J. Auto-
mated Reasoning, Vol. 10, 237-236, 1993.

[29] H. Schiitz and T. Geisler. FEfficient model generation through compi-
lation. In Proc. Thirteenth Conf. on Automated Deduction, Springer-
Verlag, LNCS, 433-447, 1996.

33

[30]

[31]

[32]

[35]

M. Winslett. Reasoning about actions using a possible models approach.
Proc. Seventh Nat. Conf. on Artificial Inteligence, 1988.

G. Wrightson (Editor). Special issue on automated reasoning with ana-
lytic tableaux, Part I. J. Automated Reasoning, Vol. 13 No. 2, 173-281,
1994.

G. Wrightson (Editor). Special issue on automated reasoning with ana-
lytic tableaux, Part II. J. Automated Reasoning, Vol. 13 No. 3, 283-421,
1994.

A. Yahya. Model generation in disjunctive normal databases.
Tech. Rep. PMS-96-10, Inst. fiir Informatik, Munich University,
1996. http:// www.informatik.uni-muenchen.de/ pms/ publikationen/
berichte/ PMS-FB-1996-10.ps.gz

A. Yahya. Generalized Query Answering in Disjunctive Deductive Data-
bases: Procedural and Nonmonotonic Aspects. In Proc. Fourth Int.
Conf. on Logic Programming and Nonmonotonic Reasoning, Springer-

Verlag, LNCS, 1997.

A. Yahya, J.A. Fernandez, and J. Minker. Ordered model trees: A nor-
mal form for disjunctive deductive databases. J. Automated Reasoning,
Vol. 13 No. 1, 117-144, 1994.

34

Appendix A: CS-SATCHMO

cs_satisfiable :-
findall(Clause, violated_instance(Clause), Set),

not (Set = [1),

1
cs_satisfy_all(Set),
cs_satisfiable.

cs_satisfiable.

violated_instance(Body ---> Head) :-
(Body ---> Head),
Body,
not Head.

cs_satisfy_all([]).
cs_satisfy_all([_B ---> H | Taill) :-
H,
',
cs_satisfy_all(Tail).
cs_satisfy_all([_B ---> H | Taill) :-
cs_satisfy(H),
cs_satisfy_all(Tail).

cs_satisfy(E) :-
cs_component (Atom, Suffix, E),
not (Atom = false),
assume (Atom),
assume_neg(Suffix).

cs_component (Atom, Suffix, (Atom ; Suffix)).

cs_component (Atom, Suffix, (_Atom ; Rest)) :-

[}
..

cs_component (Atom, Suffix, Rest).
cs_component (Atom, false, Atom).

assume (Atom) :-
asserta(Atom).

assume (Atom) :-
once(retract(Atom)),
fail.

assume_neg(false) :-
1

assume_neg(E) :-
assume (E ---> false).

35

Appendix B: MM-SATCHMO

minimal_model :-
mm(true) .

mm(C1) :-
findall(Clause, violated_instance(Clause), Set),

not (Set = [1),
1
mm_satisfy_all(Set, C1, C2),
mm(C2) .
mm(C) :-

asserta(C ---> false).

violated_instance(Body ---> Head) :-
(Body ---> Head),
Body,
not Head.

mm_satisfy_all([1, C, C).
mn_satisfy_all([_B ---> H | Taill], C1, C3) :-
H,
',
mm_satisfy_all(Tail, C1, C3).
mn_satisfy_all([_B ---> H | Taill], C1, C3) :-
mn_satisfy(H, A),
and_merge (A, C1, C2),
mm_satisfy_all(Tail, C2, C3).

mn_satisfy(E, Atom) :-
cs_component (Atom, Suffix, E),
not (Atom = false),
assume (Atom) ,
assume_neg(Suffix).

and_merge (Atom, true, Atom) :-
1

and_merge (Atom, Conj, (Atom, Conj)).

cs_component (Atom, Suffix, (Atom ; Suffix)).

cs_component (Atom, Suffix, (_Atom ; Rest)) :-

[}
..

cs_component (Atom, Suffix, Rest).
cs_component (Atom, false, Atom).

assume (Atom) :-
asserta(Atom).

assume (Atom) :-
once(retract(Atom)),
fail.

36

assume_neg(false) :-
1
assume_neg(E) :-
assume (E ---> false).

37

