
INSTITUT F�UR INFORMATIKLehr- und Forschungseinheit f�urProgrammier- und ModellierungssprachenOettingenstra�e 67, D{80538 M�unchen
Positive Unit Hyper-Resolution Tableauxfor Minimal Model GenerationFran�cois Bry and Adnan Yahya
http://www.pms.informatik.uni-muenchen.de/publikationenForschungsbericht/Research Report PMS-FB-1997-8, August 1997

Positive Unit Hyper-Resolution Tableauxfor Minimal Model GenerationFran�cois Bry 1 Adnan Yahya 21 Institut f�ur Informatik, Ludwig-Maximilians-Universit�at M�unchen,Oettingenstra�e 67, D { 80538 M�unchen, Germany2 Electrical Engineering Department, Birzeit University, Birzeit,PalestineContact person: Fran�cois Bry at the above address.Phone: 49-89-21 78-22 10, Fax : 49-89-21 78-22 11bry@informatik.uni-muenchen.deAbstractMinimal Herbrand models for clausal theories are useful in severalareas of computer science, e.g. automated theorem proving, programveri�cation, logic programming, databases, and arti�cial intelligence.In most cases, the conventional model generation algorithms are in-appropriate because they generate nonminimal Herbrand models andcan be ine�cient. This article describes a novel approach for gener-ating the minimal Herbrand models of sets of clauses. The approachbuilds upon positive unit hyper-resolution (PUHR) tableaux, that are ingeneral smaller than conventional tableaux. PUHR tableaux formalizethe approach initially introduced with the theorem prover SATCHMO.Two minimalmodel generation procedures are described. The �rst oneexpands PUHR tableaux depth-�rst relying on a complement splittingexpansion rule and on a form of backtracking involving constraints.A Prolog implementation, named MM-SATCHMO, of this procedureis described. The second minimal model generation procedure per-forms a breadth-�rst, constrained expansion of PUHR (complement)tableaux. Both procedures are optimal in the sense that each minimalmodel is constructed only once, and the construction of nonminimalmodels is interrupted as soon as possible. They are complete in thefollowing sense: The depth-�rst minimal model generation procedurecomputes all minimal Herbrand models of the considered clauses pro-vided these models are all �nite. The breadth-�rst minimal modelgeneration procedure computes all �nite minimal Herbrand models ofthe set of clauses under consideration.1

1 Introduction:Generating Herbrand models of clausal theories is useful in several areas ofcomputer science. In automated theorem proving, models can assist in mak-ing conjectures, that can be later checked for provability with conventionalprovers. In automated theorem proving and program veri�cation, modelgeneration can also be applied to searching for counter-examples to con-jectures. In both application areas, it is worthwhile and helpful to restrictmodel generation to minimal models.The generation of minimal models is useful in logic programming and de-ductive databases for specifying their declarative semantics [14, 15], in someapproaches to query answering [7, 12, 35, 34], for updating database factsand views [6, 9, 30, 3], in arti�cal intelligence for solving design synthesisand diagnosis problems [22, 25, 2], and in nonmonotonic reasoning [11] { seealso [24]. Arti�cial intelligence production systems can be seen as minimalmodel generators for propositional or �rst-order logic Horn clauses.The conventional tableaux methods [27, 8, 31, 32] are however inappro-priate as model generation procedures because they often return redundantor nonminimal models [11, 21, 28, 16]. The a posteriori detection of redun-dant models is tedious and might be time consuming. Moreover, redundantmodels are a source of ine�ciency because they blow up the search space.This article describes two procedures for generating the minimal Herbrandmodels of a set of �rst-order clauses. The proposed procedures are optimalin the sense that each minimal model is generated only once, and nonmini-mal models are rejected as soon as possible, in general before their completeconstruction. Measurements on an implementation in Prolog of one of theprocedures, which is described in the paper, point to the e�ciency of theapproach.Both prcedures are based on positive unit hyper-resolution tableaux (shortPUHR tableaux), a (novel) formalization of an approach �rst introduced withthe theorem prover SATCHMO [18, 19]. PUHR tableaux are ground andpositive, more precisely their nodes consist of sets of ground atoms and dis-junctions of ground atoms. They are expanded by means of only two rules,the positive unit hyper-resolution and the splitting (a simple version of �expansion [27, 8]) rules, from range-restricted clauses. Range-restriction is asyntactical property required in deductive database languages which is com-parable to Skolemization: although requiring an extension of the language,it preserves models in a certain sense. The branching factor, the size ofPUHR tableaux, and the size of the nodes of PUHR tableaux are in mostcases signi�cantly smaller than those of conventional tableaux. Positiveunit hyper-resolution makes it possible not to blindly instantiate universallyquanti�ed variables. Instead, it combines in one step instantiations (or
expansions [27, 8]) and splittings (or � expansion [27, 8]), thus reducingthe depth of PUHR tableaux. Thanks to range-restrictedness full uni�ca-2

tion is not needed for computing positive unit hyper-resolvents. \Half-wayuni�cation" (or \merging") su�ces.The �rst minimal model generation procedure expands PUHR tableauxdepth-�rst relying on a complement splitting expansion rule and on a formof backtracking involving constraints. Complement splitting rule (called \re-duction" in [23] and \folding-down" in [13]) cuts out some branches leadingto nonminimal models. Because PUHR tableaux are ground, complementsplitting can be nicely and e�ciently built into the method and into theSATCHMO programs. While discarding many nonminimal models, andpreventing the generation of duplicate models, complement splitting is notalways su�cient to reject all nonminimal models. In order to prune redun-dant models as soon as possible, a special depth �rst search strategy withextended backtracking is applied. The resulting depth-�rst minimal modelgeneration procedure is sound in the sense that it generates only minimalHerbrand models, and complete in the sense that it returns all minimal Her-brand models of the input clauses, provided these minimal models are all�nite. It is shown that this condition implies that there are �nitely manyminimal models. A variation, called MM-SATCHMO, of the SATCHMOprogram is given, which implements the depth-�rst minimal model genera-tion procedure in Prolog.The second minimal model generation procedure performs a breadth-�rst, possibly constrained expansion of PUHR (complement) tableaux. Itis complete in the sense that it computes in �nite time every �nite minimalHerbrand model of the set of clauses under consideration.The plan of the rest of this paper is as follows. Section 2 introduces termi-nology and notations, de�nes range-restricted clauses and PUHR tableaux,and recalls the SATCHMO implementation of PUHR tableaux. Section 3is devoted to model generation using PUHR tableaux. Section 4 de�nes thedepth-�rst and breadth-�rst minimal model generation procedures as a mod-i�ed PUHR tableaux method and gives the Prolog implementation, calledMM-SATCHMO, of the depth-�rst minimal model generation procedure.The last chapter compares the proposed procedure with other approachesdiscussed in the literature, draws some conclusions, and points to possibledirections for future research.A preliminary version of this paper (without the proofs and Section 4.6)has been published in the Proceedings of the Fifth Workshop on TheoremProving with Analytic Tableaux and Related Methods [4].2 Preliminaries2.1 Terminology and NotationThroughout the paper usual terminology and notations are used, as in e.g.[27, 8]. When not explicitly otherwise stated, a �rst-order language L is3

implicitly assumed. It is also assumed that two special atoms > and ? areavailable, expressing respectively truth and falsity, i.e. > is satis�ed in everyinterpretation, no interpretations satisfy ? .Every clause C = L1 _ :::_Lk with negative literals f:A1; :::;:Ang andpositive literals fB1; :::; Bmg can be represented by a clause in implicationform: C 0 = A1 ^ ::::^An ! B1 _ :::_Bm. A1 ^ ::::^ An is called the bodyof C 0, B1 _ ::: _ Bm its head. If C contains no negative literals, C 0 = > !B1 _ :::_Bm. If C contains no positive literals, C 0 = A1 ^ ::::^ An ! ?.A uni�er � of a conjunction of atoms (A1 ^ :::: ^ An) and a sequenceof atoms (B1; :::; Bn) (possibly with repeated atoms) is de�ned as a substi-tution � such that Ai� = Bi�, for all i = 1; :::; n. If (A1 ^ :::: ^ An) and(B1; :::; Bn) have a uni�er, they are uni�able. Note that, since repeatitionsin the sequence (B1; :::; Bn) are allowed, a conjunction (A1 ^ ::::^An) mightbe uni�able with a sequence containig less than n (distinct) atoms. A uni�er� of (A1^ ::::^An) and (B1; :::; Bn) is called a most general uni�er (mgu) of(A1 ^ ::::^An) and (B1; :::; Bn), if for each uni�er � of (A1 ^ ::::^ An) and(B1; :::; Bn), there exists a substitution
 such that � = �
.An atom A is said to subsume an atom B (a disjunction of atoms B1 _:::_ Bn, resp.) if there exists a substitution � such that A� = B (A� = Bifor some i 2 f1; :::; ng, resp.).An interpretation of L will be denoted as a pair (D; m) where the non-empty set D is the universe (or domain) and m is the mapping interpretingthe symbols and expressions of the language.The universal closure of a clause C is 8x1:::8xnC, where x1; :::; xn arethe variables occurring in C. A clause (resp. a set of clauses) is said tobe satis�ed by an interpretation when the universal closure of the clause(resp. the set of the universal closures of the clauses) is satis�ed by thisinterpretation. A clause (resp. a set of clauses) is said to be satis�able if ithas at least one interpretation in which it is satis�ed. A clause (resp. a set ofclauses) is said to be �nitely satis�able if it is satis�ed by an interpretationwith a �nite domain.A term or formula in which no variable occurs is said to be ground. If Ais a set of ground atoms, H(A) denotes the Herbrand interpretation whichsatis�es a ground atom B if and only if B 2 A. A Herbrand interpretationH(A) is said to be �nitely representable if A is �nite. Since confusions canbe avoided from the context, a set of formulas having a �nitely representableHerbrand model will be said to be �nitely representable. Note that �niterepresentability (of sets of formulas) and �nite satis�ability are two distinctproperties.The subset relationship � over sets of ground atoms induces an order� on Herbrand interpretations: given two sets A1 and A2 of ground atoms,H(A1) � H(A2) if and only if A1 � A2. If S is a set of clauses, � inducesan order on Herbrand models of S. A Herbrand model H(A) of S is saidto be a minimal Herbrand model of S if it is minimal for �, i.e. for every4

Herbrand model H(A0) of S, if H(A0) � H(A), then A0 = A.If E is a set of formulas, Atoms(E) denotes the set of atoms (i.e. positiveunit clauses) that are elements of E .Variables are denoted by x and y with or without subscripts, constantsby a, b, c or d, predicate symbols by D, P , Q, and R, and function symbolsby f .In this paper a tableau method and a minimal model generation pro-cedure for clausal theories are de�ned, i.e. it is assumed that existentialquanti�cations have been removed through Skolemization.2.2 Range RestrictionDe�nition 1 (Range restricted clause) A clause (resp. a clause in im-plication form) is said to be range restricted if every variable occurring in apositive (resp. head) literal also appears in a negative (resp. body) literal.Clearly, a range restricted clause in implication form is ground if its bodyis ground, e.g. if it is >. A transformation is �rst de�ned, which associatesa set RR(S) of range restricted clauses in implication form with every set Sof clauses in implication form.De�nition 2 (Range restriction transformation) Let L0 be an exten-sion of the language L with a unary predicate D (not belonging to L).For every L-clause C = A1 ^ :::^An ! B1 _ :::_Bm, let RR(C) be thefollowing L0-clause:RR(C) := 8>>><>>>: C if C is range restricted;D(x1) ^ :::^D(xk) ^ A1 ^ :::^An ! B1 _ :::_ Bm otherwise,where x1; :::; xk are the variables occurring in the Bis and innone of the Ajs.Let S be a set of L-clauses. For a term t distinct from a variable occur-ring in S, let Ct be the L0-clause:Ct := (D(x1) ^ :::^D(xk)! D(t) if the variables x1; :::; xk occur in t;> ! D(t) if no variables occur in t.Let � be the set of nonvariable terms occurring in S. Let S 0 be the followingset of L0-clauses:S0 := (fCt j t 2 �g if � contains a constant;fCag [fCt j t 2 �g otherwise, for some constant a.RR(S) := fRR(C) j C 2 Sg [S 0 is the range restriction of S.5

Note that by construction the clauses in RR(S) are range restricted andthat RR(S) is �nite if S is �nite. Strictly speaking, the range restrictiontransformation does not preserve models because it extends the language Lwith the unary predicate D.Example 11. If S = f> ! P (f(x))g, then RR(S) = fD(x) ! P (f(x)) ; > !D(a) ; D(x) ! D(f(x))g where, in the �rst clause, D(x) ^ > is sim-pli�ed into D(x).2. If S = fP (x; y)! P (f(x); y)g, then RR(S) = fP (x; y)! P (f(x); y) ;> ! D(a) ; D(x)! D(f(x))g.The following theorem shows that the range restriction transformationpreserves models in a certain sense, similar to the way Skolemization does.Theorem 3 Let S be a set of clauses in a language L (with no other func-tion symbols than those occurring in S except possibly the constant a). LetRR(S) be the range restriction of S (in an extension L0 of L with a unarypredicate D).1. If (D; m) is a model of S and if m0 is the mapping over L0 de�ned asfollows: m0(s) := (m(s) if s 6= D;D if s = D:then (D; m0) is a model of RR(S).2. If (D; m0) is a model of RR(S), then (D; m0jL) is a model of S, wherem0jL denotes the restriction of m0 to L.Proof: Point 1 follows immediately from De�nition 2. For point 2 the non-emptiness of S 0 (cf. De�nition 2) is necessary, because the clauses RR(C)are satis�ed over any interpretation mapping the added unary predicate Dto the empty set.This result means that range restrictedness can be seen as just a specialsyntactic form rather than a real restriction { from a theoretical point ofview. For practical purposes, on the other hand, range restrictedness doesmake a di�erence. In the context of PUHR tableaux, the range restrictiontransformation induces an enumeration of the ground terms, making the
expansion rule of conventional tableaux [27, 8] super
uous. Thus, if theprocedures presented in this paper are applied to a set RR(S) obtainedfrom S by the transformation above, then the newly introduced atoms withpredicate D have basically the same e�ect as an instantiation { or
 { rulefor the clauses of the original set S. 6

When applied in a refutation procedure, instantiation is often a sourceof ine�ciency. Note, however, that this is not the case for model generation.In contrast to refutation, model generation requires instantiation anyway,indeed, for Herbrand models are characterized as sets of ground atoms.De�nition 4 (Positive unit hyperresolution) Let C = A1 ^ :::^An !E1_ :::_Em be a clause in implication form, B1; :::; Bn be n (not necessarilydistinct) atoms such that (A1 ^ :::^ An) uni�es with (B1; :::; Bn). If � is amost general uni�er of (A1^ :::^An) and (B1; :::; Bn), then (E1_ :::_Em)�is a positive unit hyper-resolvent of C and B1; :::; Bn.Lemma 5 The positive unit hyper-resolvent of a range restricted clause inimplication form and ground atoms is a ground atom or a disjunction ofground atoms.Proof: Immediate.Note that no occur-checks need to be performed for computing the pos-itive unit hyper-resolvent of a range restricted clause in implication formand ground atoms. Indeed, half-way uni�cation (or matching) su�ces incomputing a positive unit hyper-resolvent of a range restricted clause inimplication form and of ground atoms.In the next section, positive unit hyper-resolution tableaux are de�nedfor range restricted clauses. This is not a signi�cant restriction, for there isa transformation of any set of clauses into a set of range-restricted clauseswhich preserves models in the sense of Theorem 3. Note also that most data-base and arti�cial intelligence applications naturally yield range restrictedspeci�cations.2.3 Positive Unit Hyper-Resolution TableauxStarting from the set f>g, the PUHR tableaux method expands a tree {or positive unit hyper-resolution (PUHR) tableau { for a set S of rangerestricted clauses in implication form by applying the following expansionrules that are de�ned with respect to S. The nodes of a PUHR tableau aresets of ground atoms or disjunctions of ground atoms.De�nition 6 (PUHR tableaux expansion rules) Let S be a set ofclauses in implication form.� Positive unit hyper-resolution (PUHR) rule:B1...BnE� 7

where � is a most general uni�er of the body of a clause(A1 ^ :::^ An ! E) 2 S and of (B1; :::; Bn).� Splitting rule:E1 _E2E1 E2In the following de�nition, the splitting rule is applied to ground disjunc-tions.De�nition 7 (PUHR tableaux) Positive unit hyper-resolution (PUHR)tableaux for a set S of clauses in implication form are trees whose nodes aresets of ground atoms and disjunctions of ground atoms. They are inductivelyde�ned as follows:1. f>g is a positive unit hyper-resolution tableau for S.2. If T is a positive unit hyper-resolution tableau for S, if L is a leaf ofT such that an application of the PUHR rule (resp. splitting rule) toformulas in L yields a formula E (resp. two formulas E1 and E2) notsubsumed by an atom in L, then the tree T 0 obtained from T by addingthe node L [fEg (resp. the two nodes L [fE1g and L [fE2g) assuccessor(s) to L is a positive unit hyper-resolution tableau for S.A branch of a positive unit hyper-resolution tableau is said to be closed,if it includes a node containing the atom ?. A positive unit hyper-resolutiontableau is said to be closed if all its branches are closed. A branch (resp.tableau) which is not closed is said to be open.A positive unit hyper-resolution tableau T for S is said to be satis�ableif the union of S with the nodes of a branch of T is satis�able.Note that if P is a path from the root to a node N of a PUHR tableaux,then by De�nition 7, N = [P .Convention. If N1 and N2 are the nodes of a PUHR tableau T con-taining respectively E1 and E2 and resulting from an application of thesplitting rule to E1_E2, it is assumed in the sequel that the PUHR tableauT is ordered such that N1 is the left sibling of E2.Example 2 Figure 1 gives a PUHR tableau for the following set of clausesin implication form:> ! P (a) _Q(b) P (b)! ?P (x)! P (f(x)) _Q(f(x)) P (f(x))! ?Q(x)! P (x) _R(x) P (x)^ Q(f(x))! ?8

>P (a) _Q(b)ffffffffffffff VVVVVVVVVVP (a) Q(b)P (f(a)) _Q(f(a))lllll RRRRR P (b) _ R(b)qqqq MMMMP (f(a)) Q(f(a)) P (b) R(b)? ? ?Figure 1: A PUHR tableau for the set of clauses of Example 2.For the sake of readability, the nodes of the tree of Figure 1 are labeled withthe ground atoms or disjunctions of ground atoms added at these nodes. Werecall that by De�nition 7 the nodes of a PUHR tableau are sets of groundatoms and disjunctions of ground atoms.By Lemma 5 the nodes of a positive unit hyper-resolution tableau fora set of range restricted clauses are sets of ground atoms and disjunctionsof ground atoms. Note that sets of clauses for which PUHR tableaux arede�ned may be in�nite. According to De�nition 6 clauses whose heads are ?only contribute to close branches. Since negative formulas do not explicitlyoccur in PUHR tableaux, closure is simply detected by the presence of ?,which is simpler than checking for atomic closure [8].De�nition 8 Let S be a set of range-restricted clauses in implication formand A a set of ground atoms and disjunctions of ground atoms. A is saidto be saturated with respect to S for the positive unit hyper-resolution andsplitting expansion rules when the following properties hold:1. if (A1^ :::^An ! E) 2 S, B1 2 A, ..., and Bn 2 A, and (A1^ :::^An)and (B1; :::; Bn) are uni�able, then E� 2 A for a most general uni�er� of (A1 ^ :::^An) and (B1; :::; Bn).2. If (E1 _ E2) 2 A, then E1 2 A or E2 2 A.Note that if B is an open or a closed branch of a PUHR tableau, then [Bis not necessarily saturated. As well, if [B is saturated, then B is neithernecessarily open, nor necessarily closed.Lemma 9 The application of an expansion rule to a satis�able PUHR tableauresults in a satis�able PUHR tableau.Proof: If M is a model of a set F of clauses, atoms and disjunctions, and ifE is a positive unit hyper-resolvent of elements of F , then M j= E. If M isa model of F and E1 _E2 2 F , then M j= E1 or M j= E2.9

Theorem 10 (Refutation soundness) Let S be a set of range-restrictedclauses in implication form. If there exists a closed PUHR tableau for S,then S is unsatis�able.Proof: Assume S is satis�able. By Lemma 9 there are no closed PUHRtableaux for S.De�nition 11 A PUHR tableau is said to be fair, if the union of the nodesof each of its open branches is saturated for the expansion rules.Informally, a PUHR tableaux is fair if along each of its open branches,each possible application of an expansion rule is performed at least once.If B is a branch of a tableau, then Atoms([B) denotes the set of atoms(i.e. positive unit clauses) that are elements of some nodes in B. In thesequel, Atoms(E) will always be refered to in cases where all atoms in E areground. Recall that if Atoms(E) is a set of ground atoms, it characterizesthe Herbrand interpretation H(Atoms(E)).Lemma 12 Let S be a set of range-restricted clauses in implication formand E be a set of ground atoms and disjunctions of ground atoms. If S[E issaturated for the expansion rules with respect to S and if E does not contain?, then H(Atoms(E)) is a model of S.Proof: Immediate.Theorem 13 (Refutation completeness) Let S be a set of range-restrictedclauses in implication form. If S is unsatis�able, then every fair positive unithyper-resolution tableau for S is closed.Proof: Let T be an open fair PUHR tableau for S, and B an open branchof T . Since T is fair, then [B is saturated for the expansion rules. ByLemma 12 H(Atoms([B)) is a model of S. Hence S is satis�able.PUHR tableaux are de�ned for sets of range restricted clauses. Com-bined with the PUHR expansion rule of De�nition 6, the range restrictiontransformation induces an enumeration of the ground terms, as observedin [17].2.4 Implementation in PrologThe Prolog program of Figure 2 expands fair PUHR tableaux for sets ofrange-restricted clauses in implication form under a depth-�rst search strat-egy. The tableaux expanded by this program are strict [8] and subsumption-free. Strictness means that no application of an expansion rule is performedmore than once to given clauses, atoms, or disjunctions. Subsumption-freeness means that only ground disjunctions that are not subsumed bypreviously generated atoms or disjunctions can be split.10

satisfiable :-findall(Clause, violated_instance(Clause), Set),not (Set = []), !,satisfy_all(Set),satisfiable.satisfiable.violated_instance(B ---> H) :-(B ---> H), B, not H.satisfy_all([]).satisfy_all([_B ---> H | Tail]) :-H, !, satisfy_all(Tail).satisfy_all([_B ---> H | Tail]) :-satisfy(H), satisfy_all(Tail).satisfy(E) :-component(Atom, E), not (Atom = false),assume(Atom).component(Atom, (Atom ; _Rest)).component(Atom, (_ ; Rest)) :-!, component(Atom, Rest).component(Atom, Atom).assume(Atom) :-asserta(Atom).assume(Atom) :-once(retract(Atom)),fail.Figure 2: The SATCHMO program.
11

Backtracking over satisfiable returns Herbrand models H(M). Theground atoms of M are inserted into the Prolog database by the predicateassume. On backtracking, they are removed. A clause A1 ^ ::: ^ An !B1 _ :::_Bm is represented in the Prolog database asA1, ..., An ---> B1 ; ... ; Bm,where ---> is declared as an in�x binary predicate. ? is represented asfalse, > as the built-in predicate true, which is always satis�ed.Fairness is ensured by the call to the all-solutions built-in predicatefindall. The predicate component on backtracking successively returnsthe atoms of a disjunction. The predicate satisfy on backtracking suc-cessively returns the components of a disjunction that are not subsumedby atoms previoulsy inserted into the Prolog database. For each groundinstance _B ---> H of a clause returned by the the callfindall(Clause, violated_instance(Clause), Set)the predicate satisfy_all selects an atom in the head H and asserts it inthe Prolog database. On backtracking, the di�erent ways to satisfy the headH of each ground instance _B ---> H returned by the call to findall areconsidered.The program of Figure 2, called SATCHMO, as well as variations ofit have been �rst published in [18, 19]. In these articles, the programsare explained in more detail and performance on benchmark examples isreported. The PUHR tableaux introduced in Section 2.3 are a formalizationof the principle of the SATCHMO programs. This is, to the best of ourknowledge, the �rst formalization of the SATCHMO approach to theoremproving.It is worth pointing out that satisfy_all is a simple and straightfor-ward implementation which, in some cases, has drawbacks. Consider forexample the following Prolog representations R1 and R2 of the same set ofclauses: R1: R2:true ---> p(a) true ---> p(b) ; p(a)true ---> p(b) ; p(a) true ---> p(a)Applied to R1, the call tofindall(Clause, violated_instance(Clause), Set),instantiates Set with the list [(true ---> p(a)),(true ---> p(b);p(a))].Then the call to satisfy_all �rst asserts p(a) into the Prolog databaseso as to satisfy the head of true ---> p(a). Since now p(b) ; p(a) issatis�ed, no further actions are taken, as speci�ed by the second clause ofsatisfy_all. If in contrast R2 is considered, the call to12

findall(Clause, violated_instance(Clause), Set)binds Set to the list:[(true ---> p(b) ; p(a)) (p(a), true ---> p(a))]The call to satisfy_all now satis�es �rst p(b) ; p(a), then p(a). Thatis p(b) is �rst asserted, then p(a). On backtracking, p(a) only is asserted.Such a behaviour depending on the order of the clauses in Prolog can beavoided with a more sophisticated implementation of satisfy_all whichsatis�es the considered set of heads of ground clauses by a minimal set ofatoms. Since such a re�ned implementation of satisfy_all is not neededfor the purpose of this report, it is not given here.3 Model Generation with PUHR TableauxIn the previous section, PUHR tableaux were considered from the angle ofrefutation. In this section, their properties with respect to model generationare investigated.Theorem 14 (Model soundness) Let S be a satis�able set of range-restricted clauses in implication form and T a fair PUHR tableau for S.If B is an open branch of T , then H(Atoms([B)) is a model of S.Proof: Fairness ensures saturation with respect to the expansion rules. The-orem 14 follows from Lemma 12.Theorem 15 Let S be a satis�able set of range-restricted clauses in impli-cation form, T be a PUHR tableau for S, and M a set of ground atoms. IfH(M) is a model of S, then there is a branch B of T such that Atoms([B) �M.Proof: Let B0; :::;Bi; ::: be an enumeration of the branches of T , whose atomsare not in M. For each i 2 N let Ai be an atom of the branch Bi which isnot in M. Let S 0 = S [fAi ! ? : i 2 Ng. By de�nition of S 0, since noAi is in M, H(M) is also a model of S 0. Furthermore T can be extendedinto a positive unit hyper-resolution tableau T 0 of S 0 by adding ? to thesuccessor nodes of those nodes of T that contain some Ai. Let B0i denotesuch an extension of the branch Bi in T 0. By Theorem 10, T 0 has an openbranch, say B. Since B is open, it is none of the B0i. Since all clauses of S,whose heads are ?, are also in S 0, B is also an open branch of T . B is noneof the Bi because otherwise, by de�nition of T 0, it would be one of the B0i.By de�nition of the Bis Atoms([B) �M.13

>P (a) _ P (b)hhhhhhhhh VVVVVVVVVP (a) P (b)P (b) _ P (d)rrrr LLLL P (a) _ P (c)rrrr QQQQQQP (b) P (d) P (a) P (c)P (a) _ P (d)mmmmmm MMMMP (a) P (d)Figure 3: A PUHR tableau for Example 3 with nonminimal and duplicatemodels.Corollary 16 (Minimal model completeness) Let S be a satis�able setof range-restricted clauses in implication form, T be a fair positive unithyper-resolution tableau for S, and M a set of ground atoms. If H(M) is aminimal model of S, then there is a branch B of T such that Atoms([B) =M.Proof: By Theorem 15, there is a branch B of T such that Atoms([B) �M.Since T is fair, by Theorem 14 H(Atoms([B)) is a model of S. Since H(M)is a minimal model of S, Atoms([B) =M.The following example demonstrates that a plain PUHR tableau cangenerate both, nonminimal and duplicate models.Example 3 Let S be the following set of clauses:> ! P (a) _ P (b) P (a)! P (b)_ P (d)> ! P (a) _ P (c) P (b)! P (a) _ P (d)Figure 3 is a PUHR tableau for S. The minimal model H(fP (a); P (b)g)of S is generated twice, at the leftmost branch and at the third branchfrom the left of the PUHR tableau. The fourth branch from the left ofthe PUHR tableau generates the nonminimal model H(fP (a); P (b); P (c)g).Note that the PUHR tableau returns among others all minimal models ofS, i.e. H(fP (a); P (b)g),H(fP (a); P (d)g), and H(fP (b); P (c); P (d)g).Corollary 16 is established, though in a di�erent context, in [5] andmentioned without proof in [12]. As the following counter-example shows,fairness is necessary in Corollary 16, although not in Theorem 15.14

Example 4 With the theory S = f> ! P (a); P (x) ! P (f(x)) _ P (b);P (a) ! P (b)g consistently expanding on the second clause will not allowthe generation of the (only) minimal model H(fP (a); P (b)g) of S.4 Minimal Model GenerationBy Corollary 16 fair PUHR tableaux generate all minimal models. However,they often also generate duplicate and/or nonminimal models, as e.g. in Ex-ample 3 above. A naive approach to minimal model generation consists in�rst expanding (fair) PUHR tableaux, and later pruning them from redun-dant branches. In this section a more e�cient approach is described whichconsists in a depth-�rst expansion of PUHR tableaux combined with an ex-tended backtracking which prunes the search space from redundant branchesas soon as possible. Under certain �niteness conditions, this depth-�rst min-imal model generation procedure is complete. However, it is inappropriate ifsome minimal models are in�nite. The generation of minimal models basedon breadth-�rst expansion of (fair) PUHR tableaux is �nally discussed.4.1 Finiteness PropertiesTheorem 17 Let S be a set of formulas. If S has a �nitely representableHerbrand model it also has a �nite model.Proof: Let (D; m) be a �nitely representable Herbrand model of S, and Abe the set of ground atoms that are satis�ed in (D; m). A �nite model of Sis built by identifying the elements of the universe D over which no termsoccurring in A are mapped. Formally, let � be the equivalence relation overD de�ned by: d1 � d2 if and only if d1 = d2 or for all R(t1; :::; tn) 2 A andfor all i = 1; :::; n, m(ti) 6= d1 and m(ti) 6= d2. Let f be the mapping of anelement of D to its equivalence class for � in D= �. Let D0 = D= � andm0 = f �m. Since A is �nite, D= � is �nite. By de�nition of D0 and m0,a ground atom is satis�ed in (D0; m0) if and only if it is satis�ed in (D; m).Since (D; m) j= S, it follows that (D0; m0) j= S.The following result relates the �niteness of the set of minimal models tothe �nite representability of the minimal models. Let us call �nitary a setof clauses, whose minimal Herbrand models are all �nitely representable.Theorem 18 Let S be a set of clauses. If S is �nitary, then S has �nitelymany minimal Herbrand models.Proof: Let S be a set of clauses with an in�nite number of �nitely repre-sentable minimal Herbrand models. Let H(A0); :::; H(An); ::: be an enumer-ation of all �nitely representable minimal Herbrand models of S, such thatthe Ais are pairwise distinct. If A is a �nite set of atoms fA1; :::; Akg, let15

Neg(A) denote the (singleton) set of clauses fA1 ^ :::^Ak ! ?g. For everyn 2 N, let Sn = S [Neg(A0) [:::[Neg(An). Since all Ais are �nite, theSns are also �nite. Each Sn is satis�able because, by de�nition, H(An+1)is a model of Sn. Let S! = [fSn : n 2 Ng. Since every Sn is satis�able,every �nite subset of S! is satis�able. By the compactness theorem, S! istherefore satis�able. Since S! is a set of clauses, it has a Herbrand model,and therefore also some minimal Herbrand model H(M). By de�nition ofS!, H(M) is none of the �nitely representable models H(An). ThereforeM is in�nite.Although �nite representability (of a set of formulas) is a stronger prop-erty than �nite satis�ability, we conjecture that it is semi-decidable like �nitesatis�ability. We also conjecture that the �nitary property is semi-decidable.Let S be a set of clauses whose minimal Herbrand models are all �nitelyrepresentable. By Theorem 18 a PUHR tableau for S pruned from thosebranches corresponding to nonminimal models is �nite. Note, however, thata �nitary theory may have ini�nite nonminimal Herbrand models, as isshown by Example 5 below.In many applications, the �nite representability of the minimal Herbrandmodels is often assumed. This is the case in particular of disjunctive data-bases [15] and of some forms of nonmonotonic reasoning [25, 24, 11]. Thus,from the viewpoint of applications, Theorem 18 seems to be an importantresult.4.2 Complement SplittingIf C = A1 _ :::_An is an atom or a disjunction of atoms, let Neg(C) denotethe �nite set of clauses in implication form Neg(C) := fA1 ! ?; :::; An !?g.De�nition 19 (Complement splitting rule)E1 _ E2E1 E2Neg(E2)Like the splitting rule, the complement splitting rule (already mentionedin [19], called reduction in [23] and folding-down in [13]) is applied in thefollowing de�nitions to ground disjunctions. Tableaux expanded with thepositive unit hyper-resolution and the complement splitting rules are de�nedinductively, similarly as in De�nition 7. Let us call such tableaux PUHRcomplement tableaux. Note that nodes of PUHR complement tableaux aresets of ground atoms, disjunctions of ground atoms, and ground implicationsof the form A! ?. 16

De�nition 20 (PUHR complement tableaux) Positive unit hyper-res-olution (PUHR) complement tableaux for a set S of clauses in implicationform are trees whose nodes are sets of ground atoms, disjunctions of groundatoms, and ground implications of the form A ! ?. They are inductivelyde�ned as follows:1. f>g is a positive unit hyper-resolution complement tableau for S.2. If T is a positive unit hyper-resolution complement tableau for S, if Lis a leaf of T such that an application of the PUHR rule (resp. comple-ment splitting rule) to formulas in L yields a formula E (resp. two setsof formulas fE1; Neg(E2)g and fE2g), then the tree T 0 obtained fromT by adding the node L[fEg (resp. the two nodes L[fE1; Neg(E2)gand L [fE2g) as successor(s) to L is a positive unit hyper-resolutioncomplement tableau for S.For PUHR complement tableaux, closedness and openness of branchesand tableaux are de�ned like in De�nition 7: A branch of a PUHR comple-ment tableau is said to be closed, if it includes a node containing the atom?. A PUHR complement tableau is said to be closed if all its branches areclosed. A branch (resp. PUHR complement tableau) which is not closed issaid to be open.De�nition 21 Let S be a set of range-restricted clauses in implication formand A a set of ground atoms, disjunctions, and clauses in implication form.A is said to be saturated with respect to S for the positive unit hyper-resolution and the complement splitting expansion rules when the followingproperties hold:� if (A1^ :::^An ! E) 2 S, B1 2 A; :::; Bn 2 A, and (A1^ :::^An) and(B1; :::; Bn) are uni�able, then E� 2 A for some most general uni�er� of (A1 ^ :::^An) and (B1; :::; Bn).� If (E1 _ E2) 2 A, then fE1g [Neg(E2) � A, or E2 2 A.Note that if A is saturated with respect to S for the positive unit hyper-resolution and the complement splitting expansion rules, then it is also sat-urated for the positive unit hyper-resolution and the splitting expansionrules.Model soundness for PUHR complement tableaux follows from Theo-rem 14.Lemma 22 Let S be a set of clauses and A1; :::; An(n � 1) be atoms.1. If M is a minimal Herbrand model of S such that M 6j= A1 ^ :::^An,then M is a minimal Herbrand model of S [fA1 ^ :::^An ! ?g.17

2. If M is a minimal Herbrand model of S [fA1 ^ :::^ An ! ?g, thenM is also a minimal Herbrand model of S.Proof: 1. Let H(M) be a nonminimal model of S [fA1 ^ ::: ^ An ! ?g.There existsM1 �M such thatH(M1) is a model of S[fA1^:::^An ! ?g.Hence, H(M) is not a minimal model of S.2. Assume that H(M) is a Herbrand model of S [fA1 ^ :::^An ! ?gwhich is not a minimal Herbrand model of S. There is M1 � M such thatH(M) is a model of S. Since H(M) 6j= Ai for some i = 1; :::; n and sinceM1 � M, H(M1) 6j= Ai. H(M1) is therefore not a minimal Herbrandmodel of S [fA1 ^ :::^ An ! ?g, and the same holds of H(M).Lemma 23 Let E be a set of clauses in implication form, ground atoms anddisjunctions of ground atoms, E1 _E2 2 E be a ground clause, and M be aset of ground atoms. H(M) is a minimal model of E if and only if1. either it is a minimal model of E [fE1g [Neg(E2)2. or it is a minimal model of E [fE2g and for all M1 �M, H(M1) isnot a minimal model of E [Neg(E2).Proof: Let H(M) be a minimal model of E . If H(M) does not satisfy E2,then H(M) is a model of E [fE2 ! ?g. By Lemma 22, H(M) is a minimalmodel of E [Neg(E2). If H(M) satis�es E2 it is a model of E [fE2g. If itis not a minimal model of E [fE2g, then there exists M1 � M such thatH(M1) is a model of E [fE2g, hence of E , contradicting the hypothesisthat H(M) is a minimal model of E . By Lemma 22, if H(M) is a minimalmodel of E [Neg(E2), then it is also a minimal model of E . Let H(M) bea minimal model of E [fE2g. If H(M) is not a minimal model of E , thenthere exists M1 � M such that H(M1) is a minimal model of E . SinceH(M) is a minimal model of E [fE2g, H(M1) does not satisfy E2. SinceE1_E2 in E , H(M1) satis�es E1 . Therefore,H(M1) satis�es E[fE2 ! ?g,i.e. there exists M2 � M1 � M, such that H(M2) is a minimal model ofE [Neg(E2).Theorem 24 (Minimal model completeness for complement ta-bleaux) Let S be a satis�able set of range-restricted clauses in implicationform, T be a fair PUHR complement tableau for S, and M a set of groundatoms. If H(M) is a minimal model of S, then there is a branch B of Tsuch that Atoms([B) =M.Proof: Follows from Corollary 16 since by de�nition every PUHR comple-ment tableau for a set S can be constructed from a PUHR (noncomplement)tableaux by adding ? to some of its nodes, and from Lemma 23 which ba-sically states that minimal models are preserved by complement splitting.18

The following example shows that complement splitting is not alwayssu�cient to prune all nonminimal models.Example 5 Let S = f> ! P (a); P (x) ! P (b) _ P (f(x)); P (a) ! P (b)g.Let T be the PUHR complement tableau for S by applying �rst the PUHRrule on > ! P (a) and P (a) ! P (b), and then alternatively the PUHRand splitting rule on P (x)! P (b)_ P (f(x)). Although H(fP (a); P (b)g) isthe unique minimal model of S, T also has branches corresponding to themodels H(fP (a); P (b); P (f(a)); :::; P (fn(a))g) for all n 2 N.Although possibly having branches corresponding to nonminimal models,PUHR complement tableaux never have two distinct branches de�ning thesame model, as established next.Lemma 25 Let S be a satis�able set of range-restricted clauses in impli-cation form, T be a fair PUHR complement tableau for S, and BL and BRbe two open branches of T . If BL appears to the left of BR in T , thenAtoms([BR) 6� Atoms([BL).Proof: Let AR be an atom in the �rst node of BR (in a root to leaf traversal)which is not not in BL. By de�nition of the complement splitting rule,(AR ! ?) 2 [BL. Hence AR 62 [BL.Corollary 26 Let S be a satis�able set of range-restricted clauses in impli-cation form, T be a fair PUHR complement tableau for S and B0; :::;Bi; :::a left-to-right enumeration of the open branches of T .1. H(Atoms([B0)) is a minimal model of S.2. If i 6= j, then Atoms([Bi) 6= Atoms([Bj)Proof: 1. Since B0 is the leftmost branch of T , by Lemma 25 H(Atoms(B0))is a minimal model of S.2. Follows directly from Lemma 25.The following example demonstrates that a PUHR complement tableaucan generate nonminimal models.Example 6 Let S be the set of clauses of Example 3, i.e.:> ! P (a) _ P (b) P (a)! P (b)_ P (d)> ! P (a) _ P (c) P (b)! P (a) _ P (d)Figure 4 gives a PUHR complement tableau for S. The models generated bythis PUHR complement tableau areH(fP (a); P (d)g),H(fP (b); P (c); P (a)g),H(fP (b); P (a)g), and H(fP (b); P (c); P (d)g). Note that although some arenot minimal, the PUHR complement tableau returns no duplicates.19

>P (a) _ P (b)kkkkkkk VVVVVVVVVVP (a) P (b)P (b)! ?P (b) _ P (d)pppp HHH P (a) _ P (c)qqqq OOOOOP (b) P (d) P (a) P (c)P (d)! ? P (c)! ?? P (a) _ P (d)ooooo HHHP (a) P (d)P (d)! ?Figure 4: A PUHR complement tableau.4.3 Implementation of Complement SplittingComplement splitting can be built into SATCHMO by replacing the proce-dure satisfy by the following procedure cs_satisfy, as shown by Figure 5.cs_component returns not only the atoms of a disjunction, like componentdoes, but also the rest of the disjunction on the right hand side of thereturned atom (false if this right hand side is empty). This implemen-tation, which we call CS-SATCHMO, departs slightly from De�nition 19since it represents Neg(A1 _ ::: _ An) as A1 _ ::: _ An ! ? instead offA1 ! ?; :::; An ! ?g. Since the Ai are ground, the two representationsare equivalent.The complete program of CS-SATCHMO is given in Appendix A.4.4 Constrained SearchBy Corollary 26 the �rst model returned from a depth-�rst-left-�rst traver-sal of a PUHR complement tableau is minimal, and by Lemma 25 no modelsare �-larger than subsequently returned models. In order to prune PUHRcomplement tableaux from nonminimal models, it therefore su�ces to con-strain any model under construction not to be �-larger than any previouslyreturned model. This is easily achieved by adding to the set of clauses aconstraint Neg(fA1; ::::; Ang) = fA1 ^ ::: ^ An ! ?g once a (�nite) modelH(fA1; ::::; Ang) has been constructed.20

cs_satisfy_all([]).cs_satisfy_all([_B ---> H | Tail]) :-H,!,cs_satisfy_all(Tail).cs_satisfy_all([_B ---> H | Tail]) :-cs_satisfy(H),cs_satisfy_all(Tail).cs_satisfy(E) :-cs_component(Atom, Suffix, E),not (Atom = false),assume(Atom),assume_neg(Suffix).cs_component(A, S, (A ; S)).cs_component(A, S, (_ ; Rest)) :-!,cs_component(A, S, Rest).cs_component(A, false, A).assume_neg(false) :-!.assume_neg(E) :-assume(E ---> false).Figure 5: Complement splitting for SATCHMO
21

De�nition 27 (Depth-�rst minimal model generation procedure)Let S be a set of range restricted clauses in implication form. Applying thedepth-�rst minimal model generation procedure to S consists in a depth-�rst-left-�rst construction of a fair PUHR complement tableau for S such that Sis augmented with Neg(M) after each computation of a model H(M) of S.Note that, by De�nitions 7 and 19, if S1 and S2 are sets of range-restricted clauses in implication form such that S1 � S2 and all clausesin S2 n S1 are of the form A1 ^ :::^An ! ?, then every PUHR complementtableau for S2 can be obtained from a PUHR complement tableau for S1 byadding ? to some nodes. Conversely, every PUHR complement tableau forS1 can be obtained from a PUHR complement tableau for S2 by discarding? from some nodes.Recall that a set of clauses is �nitary if its minimal Herbrand models areall �nitely representable.Lemma 28 Let S be a �nitary and �nite set of range-restricted clauses inimplication form, and T be a PUHR complement tableau for S.If t is a node in T , let B0; :::;Bnt be branches of T to the left of t suchthat H(Atoms([B0)); :::; H(Atoms([Bnt)) are minimal models of S.Let Tt be the PUHR complement tableau for S[Neg([B0)[:::[Neg([Bnt)corresponding to T . If B is a branch of T , let Bt denote the correspondingbranch in Tt and conversely.Bt is open in Tt if and only if B is open in T and Atoms([Bi) 6�Atoms([Bt), for all i = 0; :::; nt.Proof: Assume thatB is an open branch of T andAtoms([Bi) 6� Atoms([B),for all i = 0; :::; nt. For all i = 0; :::; nt there exists an atom Ai 2 [B suchthat Ai 2 [B n [Bi. Therefore, H(Atoms([B)) j= Neg([Bi). Hence Bt isopen in Tt.Assume that Bt is an open branch of Tt. If Atoms([Bi) 6� Atoms([B),for all i = 0; :::; nt, then ? 62 [B. Hence B is open in T .Theorem 29 (Soundness and completeness of the depth-�rst mini-mal model generation procedure) Let S be a �nite set of range-restrictedclauses in implication form. If S is �nitary, then applied on S, the depth-�rst minimal model generation procedure terminates, returns all minimalmodels of S (i.e. it is complete), does not return any nonminimal model ofS (i.e. it is sound), and does not return any minimal model more than once.Proof: Let S be a �nitary and �nite set of range restricted clauses in impli-cation form.Soundness: By Corollary 26 the �rst model returned by the procedure is aminimal model of S. Assume that the �rst n models H(M0); :::; H(Mn�1)returned by the procedure are minimal models of S. Let T be the tableau22

expanded so far. After returning the �rst nmodels, the procedure backtracksto a node t of T , such that the branches corresponding to previously returnedmodels are to the left of t. The (n+ 1)-th model returned by the procedurecorresponds to the �rst open branch of a tableau Tt for S [Neg(M0)[:::[Neg(Mn�1). By Lemma 28, this model is not �-larger than any previouslyreturned model. By Corollary 26 it is a minimal model of S [Neg(M0) [:::[Neg(Mn�1). Hence, by Lemma 22 it is a minimal model of S as well.By induction, all models returned are minimal models of S.Completeness: For any two minimal models H(M1) and H(M2) of S,M1 6� M2 and M2 6� M1. Therefore, H(M1) j= Neg(M2) and H(M2) j=Neg(M1). Consequently, no branches corresponding to a minimal modelH(M) of S with M 62 fM0; :::;Mng of a PUHR complement tableau forS can be closed in a tableau for S [Neg(M0) [::: [Neg(Mn), for someminimal models H(M0); :::; H(Mn) of S. Since the procedure returns onlyminimal models, the result follows. From Lemma 28, it follows that nomodels are generated more than once.Termination: Since S is �nitary, it has by Theorem 18 �nitely many minimalmodels. Since the procedure returns all and only minimal models of S,and since no minimal models are generated more than once, the procedureterminates.The following example shows how the depth-�rst minimal model gener-ation procedure generates only minimal models and does not return dupli-cates.Example 7 Figure 6 gives the search spaces of the depth-�rst minimalmodel generation procedure for the set of clauses of Examples 3 and 6, i.e.:> ! P (a) _ P (b) P (a)! P (b)_ P (d)> ! P (a) _ P (c) P (b)! P (a) _ P (d)Note that all models returned by the procedure are minimal.It is worth noting that fairness is necessary for the depth-�rst minimalmodel generation procedure, as the following counter-example shows.Example 8 Let S = f> ! P (a); P (x) ! P (f(x)) _ P (b); P (a) ! P (b)g.An unfair PUHR complement tableau for S with leftmost branch fP (a);P (f(a)); :::; P (fn(a)); :::g not containing P (b) does not return the minimalmodel H(fP (a); P (b)g) and does not give rise to applying the constraintP (a) ^ P (b)! ? for pruning redundant branches.4.5 MM-SATCHMOFigure 7 gives a program, we call MM-SATCHMO, which implements thedepth-�rst minimal model generation procedure. It builds upon the im-plementation of complement splitting described in Section 4.2. A slight23

>P (a) _ P (b)uuu TTTTTTTP (a) P (b)P (b)! ? P (a) ^ P (d)! ?P (b) _ P (d)zzz 666 P (a) _ P (c)rrrr QQQQQQP (b) P (d) P (a) P (c)P (d)! ? P (c)! ? P (b) ^ P (a)! ?? P (a) _ P (d)mmmmmm TTTTTTTTP (a) P (d)P (d)! ? P (b) ^ P (c) ^ P (a)! ??Figure 6: A run of the depth-�rst minimal model generation procedure.modi�cation of satisfiable su�ces to construct the constraints inducedby a (minimal) model.The argument of the procedure mm is the body of the constraint underconstruction. This data structure is redundant, for the model under con-struction is also represented in the Prolog database. This redundancy canbe easily removed, at the cost of a less readable program. A more serioussource of ine�ciency lies in the way how violated clauses are detected: thelast inserted atoms are not used for an incremental detection. Althoughquite simple, an incremental evaluation requires longer and more compli-cated programs. An incremental clause evaluation turns out to be especiallybene�cial for the constrained search.The complete program of MM-SATCHMO is given in Appendix B.4.6 Breadth-First Minimal Model GenerationThe depth-�rst minimal model generation procedure relies on chronologi-cal backtracking for introducing constraints ensuring the minimality of thesubsequently generated models. If some minimal model M of the set S ofclauses under consideration is in�nite, then the depth-�rst minimal modelgeneration procedure fails to generate those �nite minimal models that werenot constructed beforeM. This can be avoided with a breadth-�rst expan-24

minimal_model :-mm(true).mm(C1) :-findall(Clause, violated_instance(Clause), Set),not (Set = []),!,mm_satisfy_all(Set, C1, C2),mm(C2).mm(C) :-asserta(C ---> false).mm_satisfy_all([], C, C).mm_satisfy_all([_B ---> H | Tail], C1, C3) :-H,!,mm_satisfy_all(Tail, C1, C3).mm_satisfy_all([_B ---> H | Tail], C1, C3) :-mm_satisfy(H, A),and_merge(A, C1, C2),mm_satisfy_all(Tail, C2, C3).mm_satisfy(E, Atom) :-cs_component(Atom, Suffix, E),not (Atom = false),assume(Atom),assume_neg(Suffix).and_merge(Atom, true, Atom) :-!.and_merge(Atom, Conj, (Atom, Conj)).Figure 7: The MM-SATCHMO program.
25

sion of PUHR tableaux.The de�nitions of PUHR tableaux and PUHR complement tableaux interms of two expansion rules, the PUHR rule and the splitting or comple-ment splitting rule, was convenient so far, for it gives rise to rather simpleproofs and appropriately conveys the intuition of the SATCHMO programs.In investigating the breadth-�rst expansion of PUHR tableaux or PUHRcomplement tableaux, it is convenient to rely on a sligthly more stringentde�nition of these tableaux based on a single expansion rule combining both,the positive unit hyper-resolution and the splitting or complement splittingrules.De�nition 30 (PUHR splitting and PUHR complement splittingrules) Let S be a set of clauses in implication form.� PUHR splitting rule:B1...BnE1� � � � Em�� PUHR complement splitting rule: B1...BnE1� ... Ei� ... Em�Neg(E2� _ :::_ Em�) Neg(Ei+1� _ :::_Em�)In both rules, � denotes a most general uni�er of the body of a clause(A1 ^ :::^An ! E1 _ :::_ Ei _ :::_Em) 2 S and of (B1; :::; Bn).De�nition 30 gives rise to revised de�nions of PUHR tableaux and ofPUHR complement tableaux similar to De�nition 7 and De�nition 31:De�nition 31 (Revised PUHR (complement) tableaux) PUHR (com-plement) tableaux for a set S of clauses in implication form are trees whosenodes are sets of ground atoms, disjunctions of ground atoms and groundimplications of the form A ! ?, resp. They are inductively de�ned asfollows:1. f>g is a revised PUHR (complement) tableau for S.26

>P (a) _ (P (b) _ (P (c) _ P (d)))iiiiiiiii XXXXXXXXXP (a) P (b) _ (P (c)_ P (d))fffffffffffff UUUUUUP (b) P (c) _ P (d)iiiiiiii LLLLP (c) P (d)a. PUHR tableau for S = f> ! P (a) _ (P (b)_ (P (c)_ P (d)))g.>lllllll RRRRRRR~~~ @@@P (a) P (b) P (c) P (d)b. Revised PUHR tableau for S.Figure 8: PUHR and revised PUHR tableaux compared.2. If T is a revised PUHR (complement) tableau for S, if L is a leaf ofT such that an application of the PUHR (complement) splitting ruleto formulas in L yields m sets of formulas S1; :::; Sm, then the tree T 0obtained from T by adding the m nodes L[S1; :::; L[S2 as successorsto L is a revised PUHR (complement) tableaux for S.In contrast with the tableaux considered in the previous section, anatom is introduced at each node of a revised PUHR (complement) tableaux.This is illustrated by Figure 8. Revised PUHR (complement) tableaux arenatural candidates for implementations. It is preferable to split a disjunctionimmediately after it has been introduced, indeed. Immediate splitting of anm-ary disjunction into m branches is also preferable to repeated splittingsof binary disjunctions. In fact, the SATCHMO programs given so far doimplement the PUHR splitting or PUHR complement splitting rules.Theorem 32 Under breadth-�rst expansion of a fair revised PUHR (com-plement) tableau:1. The �rst model returned is minimal.2. Let fH(M1); :::; H(Mn)g be the set of minimal models generated so farduring a breadth-�rst expansion of a fair revised PUHR (complement)tableau. Any subsequently generated model H(M) is minimal if andonly if for all i 2 f1; :::; ng,Mi 6� M.27

Proof: 1. A model returned is necessarily �nite. Since an atom is introducedat each node of a revised PUHR (complement) tableau, the �rst modelreturned during a breadth-�rst expansion of a revised PUHR (complement)tableau necessarily has a minimal cardinality. It follows that it is minimal.2. Let fM1; :::;Mng be the set of minimal models generated so far duringa breadth-�rst expansion of a fair revised PUHR (complement) tableau.Let H(M) be the model returned next. H(M) is a minimal model if for no(previously or subsequently) returned model H(N),N �M . By hypothesis,this holds if H(N) is a model returned by the procedure before H(M), i.e.if N = Mi for some i 2 f1; :::; ng. Let H(N) be a model returned bythe procedure after H(M). Since an atom is introduced at each node of arevised PUHR (complement) tableau and since the procedure expands thetableaux breadth-�rst, necessarily jN j � jMj. Hence, N 6� M.In the same spirit as with the depth-�rst minimal model generation pro-cedure, and since the �rst model generated during a breadth-�rst expansionof revised PUHR (complement) tableaux is minimal, adding the same con-straints as in the depth-�rst procedure prevents the generation of nonmini-mal as well as of duplicate minimal models without a�ecting the soundnessand completeness properties of model generation. The result is a minimalmodel generation procedure capable of dealing with sets of clauses havingin�nite minimal models.De�nition 33 (Breadth-�rst minimal model generation procedure)Let S be a set of range restricted clauses in implication form. Applying thebreadth-�rst minimal model generation procedure to S consists in a breadth-�rst construction of a fair PUHR tableau or of a fair PUHR complementtableau for S such that S is augmented with Neg(M) after each computationof a model H(M) of S.We want to emphasize that, in contrast to the depth-�rst minimal modelgeneration procedure, the breadth-�rst minimal model generation proceduredoes not have to rely on complement splitting. However, relying on com-plement splitting in the breadth-�rst minimal model generation procedureguarantees that no duplicate models are produced, that the \leftmost model"is minimal and that no models can be subsumed by another \on its right".The last property indicates that even among the models generated so farwe need to check against those \to the left" of the newly generated model.All this may result in substantial savings during the model computationprocess.Additionally, since in�nite models necessarily are \generated" last, weare guaranteed that the breadth-�rst minimal model generation procedurewill eventually return all the �nite minimal models of the considered set ofclauses. A branch corresponding to a nonminimal in�nite model H(M1) isabandoned as soon as a �nite minimal model H(M) is produced such that28

>P (a)Q(a)llllll HHHP (f(a)) Q(b)Q(f(a))pppp HHHP (f(f(a))) Q(b)Q(f(f(a)))lllll NNNNNP (f(f(f(a)))) Q(b)Q(f(f(f(a))))...Figure 9: A revised PUHR tableau for the set of clauses of Example 9.M is a subset of the already computed part of M1. Consider the followingexample:Example 9 Let S = f> ! P (a); P (x)! Q(x); P (x)! P (f(x))_ Q(b)g.S has an in�nite minimal model, namely H(fP (a); Q(a); P (f(a));Q(f(a)); P (f(f(a))); Q(f(f(a))); :::g) in addition to the �nite minimalmodel H(fP (a); Q(a); Q(b)g). The revised PUHR tableau for S is givenby Figure 9. Note that many models can be abandoned as a result of theconstraint induced by the �rst minimal model fP (a); Q(a); Q(b)g (No con-straints are displayed in the �gure). Applied on S, the depth-�rst minimalmodel generation procedure is stuck on the in�nite (minimal) model anddoes not return the �nite minimal model.5 Conclusions and Future WorkThis paper presented two procedures for computing the minimal Herbrandmodels of sets of range restricted clauses. Both procedures are based ona positive unit hyper-resolution (PUHR) tableau method, which was intro-duced. The �rst minimal model generation procedure performs a depth-�rstexpansion of PUHR tableaux relying on a form of backtracking involvingconstraints. The second minimal model generation procedure performs abreadth-�rst, constrained expansion of PUHR (complement) tableaux. Both29

procedures are optimal in the sense that each minimal model is constructedonly once, and the construction of nonminimal models is interrupted as soonas possible. They are sound and complete in the following sense: The depth-�rst minimal model generation procedure computes all minimal Herbrandmodels of the considered clauses provided these models are all �nite. Thebreadth-�rst minimal model generation procedure computes all �nite mini-mal Herbrand models of the set of clauses under consideration. A compactimplementation of the depth-�rst minimal model generation procedure inthe form of a short Prolog program called MM-SATCHMO was also pre-sented.As a tableau procedure the proposed approach enjoys a good degree ofe�ciency stemming from its restricted search space, from limiting the ap-plications of expansion rules and the use of matching without occur-checkrather than full uni�cation { see the performances reported in [29]. Thisis possible because, as a side-e�ect of a special range-restricted syntacti-cal form, the generated tableaux are ground. Since it makes instantiationnecessary, groundness of tableaux might be considered as a source of in-e�ciency in a refutation procedure. However, since Herbrand models arecharacterized as sets of ground atoms, this objection does not apply to amodel generation procedure.As model generation procedures, the approach proposed in this papercompares well with those reported in the literature, many of which are notsound in the sense that they generate nonminimal models [19, 12]. Com-pared with approaches based on model generation then testing for minimal-ity [7, 20] the approach proposed here avoids nonminimal model generationaltogether. The generation of nonminimal models is aborted as soon aspossible, in general before they are fully developed. Also, the method wepropose is applicable to �rst-order clauses and not con�ned to propositionalor ground theories as the algorithms reported in [7, 35, 20]. While theapplicability of the approach proposed in this article to sets of �rst-orderclauses is a major advantage, most of the techniques increasing the e�ciencyfor propositional or ground clauses proposed in [35, 20] can be incorporatedinto versions of the algorithms described here tailored for that case. More-over, the approach proposed here requires no order to be placed on thesequence in which individual atoms are expanded { although such an or-der can be incorporated without substantial changes to the algorithm [35].In [11] the concept of a ghost tableau is used to check the minimality ofmodels that may be made nonminimal by the existential instantiation rule(or � expansion [27]) in the (primary) tableau when testing for a \mini-consequence" property. The concept is useful when existential quanti�ersare allowed in the theory which is not the case we consider in the presentarticle.Among the limitations of the procedures decribed here are their ap-plicability only to range restricted and so called �nitary sets of �rst-order30

clauses. However, range restriction is not much of a constraint, becausea model preserving transformation of general clauses into range restrictedones was given. Moreover, most database and arti�cial intelligence applica-tions naturally yield range-restricted speci�cations. We believe that much ofreal-life tasks enjoy the �niteness properties needed for the applicability ofthe depth-�rst minimal model generation procedure. For those applicationswith in�nite minimal models, the breadth-�rst minimal model generationprocedure can be applied for an exhaustive construction of all �nite min-imal models. One of the shortcomings of the procedures as reported hereis their lack of incrementality. Further improvements, not discussed in thispaper, can also be incorporated into the procedure. Another point is that,in some cases, the large number of constraints corresponding to generatedminimal models may overwhelm the process without much positive contri-bution to discarding nonminimal models. A localized test that decides theminimality of the model based on the content of that model alone with noreference to other models can be found in [33]. Space considerations preventus from detailing the approach here.Testing of a prototype of the depth-�rst minimal model generation pro-cedure points to its e�ciency both as a model generator, and as a refutationsystem [29]. Indeed, the restriction to minimal models often dramaticallyreduces the search space, thus speeding up the closing of a tableaux. Theprototype was able to deal with theories with a large number of minimalmodels with performances comparable to the best reported in the litera-ture [20]. Further testing is needed to better evaluate the gains in perfor-mance and compare the minimal model generation procedure with existingsystems. We plan also to further investigate applying a similar approach forquery answering, integrity constraint enforcement, knowledge assimilation indata and knowledge base applications, as well as other possible approachesto testing model minimality.AcknowledgmentsWe thank Norbert Eisinger, Heribert Sch�utz and Tim Geisler for the manyfruitful discussions on the topic of this paper. Part of this research was donewhile the second author was visiting at Ludwig-Maximilians-Universit�atM�unchen on an Alexander von Humboldt Research Fellowship. The sup-port of Alexander-von-Humboldt-Stiftung is appreciated.References[1] S. Abdennadher and H. Sch�utz. Model generation with existentiallyquanti�ed variables and constraints. In Proc. Sixth Int. Conf. on Alge-braic and Logic Programming, Springer-Verlag, LNCS, 1997.31

[2] P. Baumgartner, U. Furbach, and I. Niemel�a. A tableau calculus fordiagnosis applications. In Proc. Seventh Workshop on Theorem Provingwith Analytic Tableaux and Related Methods, Springer-Verlag, LNCS,1997.[3] F. Bry. Intensional updates: Abduction via deduction. In Proc. SeventhInt. Conf. on Logic Programming, MIT Press, 1990.[4] F. Bry and A. Yahya. Minimal model generation with positive unithyper-resolution tableaux. In Proc. Fifth Workshop on TheoremProving with Analytic Tableaux and Related Methods, Springer-Verlag,LNCS, 1996.[5] M. Denecker and D. Schreye. A framework for indeterministic modelgeneration with equality. In Proc. Conf. on Fifth Generation ComputerSystems, 1992.[6] R. Fagin, J.D. Ullman, and M.Y. Vardi. On the semantics of updatesin databases. In Proc. Second ACM Symp. on Principles of DatabaseSystems, 1983[7] J.A. Fern�andez and J. Minker. Bottom-up evaluation of HierarchicalDisjunctive Deductive Databases. In Proc. Eighth Int. Conf. on LogicProgramming, 660{675. MIT Press, 1991.[8] M. Fitting. First-Order Logic and Automated Theorem Proving.Springer-Verlag, 1987.[9] P. Gardenf�ors. Knowledge in Flux: Modeling the dynamic of epistemicstates. MIT Press, 1988.[10] T. Geisler, S. Panne, and H. Sch�utz. Satchmo: The compiling andfunctional variants. J. Automated Reasoning, Vol. 18 No. 2, 227{236,1997.[11] J. Hintikka. Model minimization { an alternative to circumscription.J. Automated Reasoning, Vol. 4, 1{13, 1988.[12] K. Inoue, M. Koshimura, and R. Hasegawa. Embedding negation asfailure into a model generation theorem prover. In Proc. Eleventh Int.Conf. on Automated Deduction, 1992.[13] R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut ruleinto connection tableau calculi. J. Automated Reasoning, Vol. 13 No.3, 297{338, 1994.[14] J.W. Lloyd. Foundations of logic programming. Springer-Verlag, 1984,second edition 1987. 32

[15] J. Lobo, J. Minker, and A. Rajasekar. Foundations of disjunctive logicprogramming. MIT Press, 1992.[16] S. Lorenz. A tableau prover for domain minimization. J. AutomatedReasoning, Vol. 13, 375{390, 1994.[17] D. Loveland, D. Reed, and D. Wilson. SATCHMORE: SATCHMOwith RElevancy. J. Automated Reasoning, Vol. 14, 325{351, 1995.[18] R. Manthey and F. Bry. A hyperresolution-based proof procedure andits implementation in prolog. In Proc. Eleventh German Workshop onArti�cial Intelligence, Springer-Verlag, LNCS, 456{459, 1987.[19] R. Manthey and F. Bry. Satchmo: a theorem prover implemented inProlog. In Proc. Ninth Int. Conf. on Automated Deduction, Springer-Verlag, LNCS, 456{459, 1988.[20] I. Niemel�a. A tableau calculus for minimal model reasoning. In Proc.Fifth Workshop on Theorem Proving with Analytic Tableaux and Re-lated Methods, Springer-Verlag, LNCS, 1996.[21] N. Olivetti. Tableaux and sequent calculus for minimal entailment. J.Automated Reasoning, Vol. 9, 99{139, 1992.[22] D. Poole, R. Aleliunas, and R. Goebel. THEORIST: A logical reason-ing system for default and diagnosis. Technical Report, University ofWaterloo, 1985.[23] D. Prawitz. A new improved proof procedure Theoria, Vol. 26, 102{139,1960.[24] A. Ramsay. Formal Methods in Arti�cial Intelligence. Cambridge Uni-versity Press, 1988, second edition 1989.[25] R. Reiter. A theory of disgnosis from �rst principles. Arti�cial Intelli-gence, Vol. 32, 57{95, 1987.[26] J.A. Robinson. Automatic deduction with hyper-resoultion. Int. J.Computational Mathematics, Vol. 1, 227{234, 1965.[27] R. Smullyan. First-Order Logic. Springer-Verlag, 1968.[28] M. Suchenek. First-order syntactic characterizations of minimal entail-ment, domain minimal entailment and herbrand entailment. J. Auto-mated Reasoning, Vol. 10, 237{236, 1993.[29] H. Sch�utz and T. Geisler. E�cient model generation through compi-lation. In Proc. Thirteenth Conf. on Automated Deduction, Springer-Verlag, LNCS, 433{447, 1996. 33

[30] M.Winslett. Reasoning about actions using a possible models approach.Proc. Seventh Nat. Conf. on Arti�cial Inteligence, 1988.[31] G. Wrightson (Editor). Special issue on automated reasoning with ana-lytic tableaux, Part I. J. Automated Reasoning, Vol. 13 No. 2, 173{281,1994.[32] G. Wrightson (Editor). Special issue on automated reasoning with ana-lytic tableaux, Part II. J. Automated Reasoning, Vol. 13 No. 3, 283{421,1994.[33] A. Yahya. Model generation in disjunctive normal databases.Tech. Rep. PMS-96-10, Inst. f�ur Informatik, Munich University,1996. http:// www.informatik.uni-muenchen.de/ pms/ publikationen/berichte/ PMS-FB-1996-10.ps.gz[34] A. Yahya. Generalized Query Answering in Disjunctive Deductive Data-bases: Procedural and Nonmonotonic Aspects. In Proc. Fourth Int.Conf. on Logic Programming and Nonmonotonic Reasoning, Springer-Verlag, LNCS, 1997.[35] A. Yahya, J.A. Fernandez, and J. Minker. Ordered model trees: A nor-mal form for disjunctive deductive databases. J. Automated Reasoning,Vol. 13 No. 1, 117{144, 1994.

34

Appendix A: CS-SATCHMOcs_satisfiable :-findall(Clause, violated_instance(Clause), Set),not (Set = []),!,cs_satisfy_all(Set),cs_satisfiable.cs_satisfiable.violated_instance(Body ---> Head) :-(Body ---> Head),Body,not Head.cs_satisfy_all([]).cs_satisfy_all([_B ---> H | Tail]) :-H,!,cs_satisfy_all(Tail).cs_satisfy_all([_B ---> H | Tail]) :-cs_satisfy(H),cs_satisfy_all(Tail).cs_satisfy(E) :-cs_component(Atom, Suffix, E),not (Atom = false),assume(Atom),assume_neg(Suffix).cs_component(Atom, Suffix, (Atom ; Suffix)).cs_component(Atom, Suffix, (_Atom ; Rest)) :-!,cs_component(Atom, Suffix, Rest).cs_component(Atom, false, Atom).assume(Atom) :-asserta(Atom).assume(Atom) :-once(retract(Atom)),fail.assume_neg(false) :-!.assume_neg(E) :-assume(E ---> false). 35

Appendix B: MM-SATCHMOminimal_model :-mm(true).mm(C1) :-findall(Clause, violated_instance(Clause), Set),not (Set = []),!,mm_satisfy_all(Set, C1, C2),mm(C2).mm(C) :-asserta(C ---> false).violated_instance(Body ---> Head) :-(Body ---> Head),Body,not Head.mm_satisfy_all([], C, C).mm_satisfy_all([_B ---> H | Tail], C1, C3) :-H,!,mm_satisfy_all(Tail, C1, C3).mm_satisfy_all([_B ---> H | Tail], C1, C3) :-mm_satisfy(H, A),and_merge(A, C1, C2),mm_satisfy_all(Tail, C2, C3).mm_satisfy(E, Atom) :-cs_component(Atom, Suffix, E),not (Atom = false),assume(Atom),assume_neg(Suffix).and_merge(Atom, true, Atom) :-!.and_merge(Atom, Conj, (Atom, Conj)).cs_component(Atom, Suffix, (Atom ; Suffix)).cs_component(Atom, Suffix, (_Atom ; Rest)) :-!,cs_component(Atom, Suffix, Rest).cs_component(Atom, false, Atom).assume(Atom) :-asserta(Atom).assume(Atom) :-once(retract(Atom)),fail. 36

assume_neg(false) :-!.assume_neg(E) :-assume(E ---> false).

37

