
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/2392291

SATCHMOREBID:	SATCHMO(RE)	with
BIDirectional	relevancy

Article		in		New	Generation	Computing	·	December	2001

DOI:	10.1007/BF03037473	·	Source:	CiteSeer

CITATIONS

5

READS

20

2	authors,	including:

Adnan	Yahya

Birzeit	University

40	PUBLICATIONS			434	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Adnan	Yahya

Retrieved	on:	07	September	2016

https://www.researchgate.net/publication/2392291_SATCHMOREBID_SATCHMORE_with_BIDirectional_relevancy?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_2
https://www.researchgate.net/publication/2392291_SATCHMOREBID_SATCHMORE_with_BIDirectional_relevancy?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_1
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_4
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_5
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_6
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_7

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 1
SATCHMOREBID: SATCHMO(RE) withBIDirectional RelevancyDonald W. LOVELAND1 and Adnan H. YAHYA1;21 Department of Computer Science, Duke University, Durham,NC 27708 USA2 Electrical Engineering Department, Birzeit University, Birzeit,Palestinefdwl,yahyag@cs.duke.eduReceived 15 September 2000Abstract SATCHMORE was introduced as a mechanism to integraterelevancy testing with the model-generation theorem prover SATCHMO.This made it possible to avoid invoking some clauses that appear in norefutation, which was a major drawback of the SATCHMO approach.SATCHMORE relevancy, however, is driven by the entire set of negativeclauses and no distinction is accorded to the query negation. Under un-favorable circumstances, such as in the presence of large amounts of neg-ative data, this can reduce the e�ciency of SATCHMORE. In this paperwe introduce a further re�nement of SATCHMO called SATCHMORE-BID: SATCHMORE with BIDirectional relevancy. SATCHMOREBIDuses only the negation of the query for relevancy determination at thestart. Other negative clauses are introduced on demand and only if a refu-tation is not possible using the current set of negative clauses. The searchfor the relevant negative clauses is performed in a forward chaining modeas opposed to relevancy propagation in SATCHMORE which is basedon backward chaining. SATCHMOREBID is shown to be refutationallysound and complete. Experiments on a prototype SATCHMOREBID im-plementation point to its potential to enhance the e�ciency of the queryanswering process in disjunctive databases.Keywords Disjunctive Deductive Databases , Query Answering, Bidi-rectional Search, Model Generation Theorem Proving, Relevancy.

2 Donald W. LOVELAND and Adnan H. YAHYAx1 IntroductionThe common approach to query answering in deductive databases is to�nd a refutation for the set of clauses representing the database and the negationof the query. In disjunctive databases, query processing generally has a high com-putational complexity 6). To achieve acceptable performance several approacheswere suggested. Some are bottom-up in the sense that they start from the factsof the database and derive new information until the negation of the query is con-tradicted. SATCHMO, introduced in 14) and formalized as a tableaux methodin 2), is a representative of this class of algorithms. Other methods are basedon top-down processing. They start from the query and generate subqueriesuntil the generated queries are answerable by the database facts. The deductiontree 9), SLO 17) and the duality 21) methods represent this class. Others stillcombine top-down with bottom-up processing within a single system to improveperformance. SATCHMORE 13) and Non-Horn Magic sets 7, 15), the extensionof magic sets 1) to the disjunctive case, represent this approach. The debate onwhich is the best approach is still an open one 18, 20). Bottom-up processing canexplore a large search space by involving clauses that are irrelevant to the givenquery. Partial relevancy 19) and total relevancy 13) were introduced as meansto restrict the processing to those clauses that are known to contribute to therefutation. Partial relevancy relies on having at least one atom of the head of aclause relevant before that clause can be used in a SATCHMO-style refutationwhile total relevancy requires all head atoms be relevant for this purpose. Bothare refutationally sound and complete 19, 13), but total relevancy tends to explorea smaller search space. Therefore, we concentrate on algorithms employing totalrelevancy as represented by SATCHMORE13).Relevancy, as done by SATCHMORE and related systems 13, 7, 8, 15),starts with negative clauses. In keeping with database terminology, we hereafterrefer to negative clauses (clauses of form A ! ?) also as integrity constraints(ICs), or simply constraints. The symbol ? denotes falsehood, so clauses of theform (A ! ?) encode the formula (not A). SATCHMORE uses all ICs andpropagates the relevancy designation backwards from clause consequence (head)to antecedent (body) and to the matching head atoms of other clauses. Thatall ICs are used means that ICs with no relationship to Q still initiate relevancelabeling�1. Strongly degraded performance can result from the presence of largenumbers of unrelated ICs.�1 SATCHMO and SATCHMORE are presented as theorem proving programs and as suchdeal with refutations of sets of clauses. No advantage is sought from the special status ofthe query IC, but this is not central to a theorem prover.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 3To deal with the problem of propagating relevancy from all ICs we givea procedure SATCHMOREBID: SATCHMO(RE) with BIDirectional relevancy.Initially SATCHMOREBID uses the negation of the query and none of thedatabase ICs as possible sources of relevancy. The latter are promoted to beingsources of relevancy on demand by employing the non-negative clauses of thedatabase to identify ICs that may contribute to advancing the refutation search.This is especially useful in database applications where the query negation isdistinguished from the database ICs.As in other approaches to relevancy testing, the bene�t of the controlledintroduction of ICs has to be weighed against the cost of �nding the neededclauses. Experimental results will be given to show the potential advantagesand limitations of the advanced method.The rest of the paper is organized as follows. In the next section wegive some needed de�nitions, recall the model-generation refutational procedureSATCHMO and the modi�cation SATCHMORE. We discuss relevancy testingin SATCHMORE, its advantages and drawbacks. In Section 3 we introduce theconcept of forward relevancy as a complement to traditional backward relevancyand combine them into an algorithm that performs bidirectional relevancy test-ing to allow for tighter refutation searches. We give an implementation of thesuggested approach in the form of the SATCHMOREBID Prolog program andprove its refutational soundness and completeness. We present the results ofour testing on several classes of examples to demonstrate the e�ciency gainsachievable. We comment on the advantages, limitations and the compromisesinvolved in the SATCHMOREBID approach. In Section 4 we give our conclu-sions, compare our results with others reported in the literature, and mentionsome possible directions of future work.x2 Preliminaries and Background MaterialWe assume familiarity with the basic concepts relating to disjunctivedatabases as e.g. in 11) as well as the theorem provers SATCHMO 14) andSATCHMORE 13) and limit ourselves to brie
y recalling the basic materialneeded for the results presented here.

4 Donald W. LOVELAND and Adnan H. YAHYA2.1 GeneralDe�nition 2.1A database, S, is a set of clauses in implication form: C = B1 ^ : : : ^ Bn !A1 _ � � � _ Am; where m;n � 0 and the Ai and Bj are atoms in a First OrderLanguage (FOL) L possibly with function symbols. C is positive if n = 0 (headis >, true, empty) and negative or an integrity constraint (IC) if m = 0 (bodyis ?, false, empty, bottom). By Head(C) we denote the disjunction of atomsA1_� � �_Am and by Body(C) we denote the conjunction of atoms B1^ : : :^Bn.So C = Body(C)! Head(C).The Herbrand base of S, HBS, is the possibly in�nite set of all groundatoms that can be formed using the predicate symbols and constants in L. AHerbrand interpretation, I , is any subset of HBS such that all ground atoms ofI are assigned true and all other atoms of HBS are assigned false. A clause issatis�ed in an interpretation I if and only if at least one head atom is true in Ior at least one body atom is false in I . A clause is violated in an interpretationI if and only if no head atom is true in I while all its body atoms are true in I .A Herbrand model of S, M , is a Herbrand interpretation such that M j= S (allclauses of S are true in M). M is minimal if no proper subset of M is a modelof S.De�nition 2.2(Range-restriction) A clause C is range-restricted (RR) if every variable oc-curring in the head of C also appears in the body of C. A set of clauses isrange-restricted if and only if every clause in the set is range-restricted.De�nition 2.3(Query) A query is a conjunction of atoms. We assume that all queries areatomic (consist of a single atom Q). Any query of the form C = B1 ^ : : : ^ Bncan be converted into the atomic query Q by adding the clause B1^: : :^Bn ! Qto the database.The provability relation S ` A, where S is a clause set and A is aconjunction (disjunction) of atoms, will be Prolog provability throughout thispaper.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 52.2 SATCHMOSATCHMO and its variations 14, 2) are model-generation based refuta-tion logic theorem provers applicable to the class of range restricted clause sets.Starting from the empty interpretation SATCHMO operates by attempting toconstruct a model of its input clause set by splitting on (ground instances of)clause heads if the clause body is satis�ed in the current interpretation and thehead is not. The result is a new set of interpretations resulting from expandingthe current interpretation by an atom of the expansion clause at a time. A queryQ is a logical consequence of a set of clauses S if and only if S [fQ! ?g hasno model.We utilize a limited bidirectional proof search organization introducedin 14) and adopted in 13). The given disjunctive range-restricted clause setis divided into two sets. The �rst, BC, the Backward-Chaining componentconsists of a decidable Horn Clause set that includes the ICs of the databaseand those representing the negation of the query. The second, FC, the Forward-Chaining component, contains the remaining elements of the database includingall disjunctive clauses.The following is a simpli�ed formal description of SATCHMO 13):De�nition 2.4(SATCHMO) Given a set T of RR clauses, SATCHMO operates as follows:For each set I of ground atoms (initially empty):1. If BC [I ` ? then BC [FC [I is unsatis�able.2. If BC [I 6` ? then select a clause C 2 FC such that BC [I `Body(C)j�, where � is a grounding substitution, andBC[I 6` Head(C)j�(C is violated). If no such clause exists then a minimal model of BC[Iis a model of BC [FC. The set T is satis�able.3. For each atom Ai in Head(C)j� of the violated clause C call the pro-cedure recursively with BC [I 0, where I 0 = I [fAig (and the sameFC).If BC [FC [I 0 is unsatis�able for every Ai then BC [FC [I isunsatis�able.T is shown to be unsatis�able by completing the recursive call on the�rst selected violated clause.The set I of atoms in the above de�nition is called a partial interpreta-tion. The following Prolog code gives the SATCHMO program 14) .

6 Donald W. LOVELAND and Adnan H. YAHYA?- op(1200,xfx,'--->').unsatisfiable:-bottom.unsatisfiable:-not satisfiable.satisfiable:-is_violated(C),!,satisfy(C),satisfiable.satisfiable.is_violated(A,C):-(A --->C),A, not C.
satisfy(C):-component(X,C),asserta(X),write('Asserting:'), write(X), nl,on_backtracking(retract(X)),not bottom.component(X,(Y;Z)):-!, (X=Y; component(X,Z)).component(X,X).on_backtracking(X).on_backtracking(X):-X, !, fail.SATCHMO uses ICs to discard partial interpretations when the latterbecome inconsistent with the constraints. This may be a disadvantage whenSATCHMO is used for query answering, where the negation of the query isadded to the database and a refutation is sought. Except at the �nal stage,SATCHMO computations do not involve the query; they are not goal-directed.This can be costly in many cases.2.3 SATCHMOREThe major shortcoming of SATCHMO is its eagerness to expand violatedclauses even when they have no contribution to the refutation being sought. Toavoid this, the idea of introducing relevancy was suggested 19, 13). Under therestriction, only clauses shown to be relevant are allowed to participate in theSATCHMO-style computation. Partial relevancy 19) allows a clause to be usedin the computation if one of its head atoms is relevant to the query while undertotal relevancy 13) all head atoms are required to be relevant. The latter is themore interesting case and the one which is incorporated into SATCHMORE.De�nition 2.5(Relevant Atom) Given a Horn clause set BC and a conjunction of atoms G,such that BC 6` G, then each leftmost atom of a node in the failed SLD-tree 10)for BC [f? : �Gg is extended relevant to the derivation of G from BC. Aground instance Ag of an extended relevant atom A is relevant if BC 6` Ag .The leftmost atoms of a node in a SLD-tree are the body atoms thathave been expanded, i.e. for which program clauses have been sought to satisfythese body atoms. For any particular failed body atom A, either A or an atombelow A has not found a matching program clause. A failed body atom, marked

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 7by SATCHMORE and considered extended relevant, has as bound variablesonly those variables bound by inheritance from the clause head. We will referto non-ground atoms as relevant when all ground instances are relevant.Consider the following example:Example 2.1We give only the BC clause set component.BC: bottom :- p(X,Y),q(Y).p(X,b) :- r(X,Y).r(a,a).The extended relevant atoms are: p(X;Y); r(X;Y); q(b).The relevant atoms are: p(a; a); p(b; a); p(b; b);r(a; b); r(b; b); r(b; a); q(b).De�nition 2.6(Relevant Clause) Given a set of (extended) relevant atoms R and a clauseC in FC then C is an (extended) relevant clause if and only if Head(C) � R.That is, i� all head atoms of C are (extended) relevant.The following is a simpli�ed formal description of SATCHMORE 13):De�nition 2.7(SATCHMORE) Given a set T of RR clauses, SATCHMORE operates asfollows: For each set I of ground atoms (initially empty):1. If BC [I ` ? then BC [FC [I is unsatis�able.In attempting to derive ? mark any extended relevant literals encoun-tered.2. If BC [I 6` ? then select an extended relevant clause C 2 FC. If nosuch clause is found then the minimal model of BC[I can be extendedinto a model of BC [FC.3. If C is not violated then return to step 2 for another extended relevantclause.While checking for violation of C mark any extended relevant literalsencountered.4. If C is violated: BC [I ` Body(C)j�, where � is a grounding sub-stitution, and BC [I 6` Head(C)j� then the ground instance Cj� isrelevant. For each atom Ai in Head(C)j� call the procedure recursivelywith backward-chaining component BC [I 0, where I 0 = I [fAig (and

8 Donald W. LOVELAND and Adnan H. YAHYAthe same FC).If BC [FC [I 0 is unsatis�able for every Ai then BC [FC [I isunsatis�able.T is shown to be unsatis�able by completing the recursive call on the�rst selected violated relevant clause.The following Prolog code gives SATCHMORE program.?- op(1200,xfx,'--->').unsatisfiable:-bottom.unsatisfiable:-not satisfiable.satisfiable:-is_relevant(A,C),is_violated(A,C),!,satisfy(C),satisfiable.satisfiable.is_violated(A,C):-A, not C.is_relevant(A,C):-retract(new_mark),(A--->C), each_marked(C).is_relevant(A,C):-new_mark,is_relevant(A,C).

satisfy(C):-component(X,C),(retract(marked(_)), fail; true),asserta(X),write('Asserting:'), write(X), nl,on_backtracking(retract(X)),not bottom.component(X,(Y;Z)):-!, (X=Y; component(X,Z)).component(X,X).on_backtracking(X).on_backtracking(X):-X, !, fail.each_marked((C1;CRest)):-!, marked(C1),each_marked(CRest).each_marked(C):-marked(C).mark_unique(X):-(marked(Y), is_instance(X,Y),!;subsume_and_mark(X)).subsume_and_mark(X):-marked(Y), is_instance(Y,X), retract(marked(Y)), fail.subsume_and_mark(X):-(new_mark, !; asserta(new_mark)),assertz(marked(X)).is_instance(X,Y):- not X=Y , !, fail.is_instance(X,Y):- var(Y),!.is_instance(X,Y):- nonvar(X),functor(X,F,N), functor(Y,F,N), inst_args(X,Y,N).inst_args(_,_,0):- !.inst_args(X,Y,N):- arg(N,X,Ax), arg(N,Y,Ay),is_instance(Ax,Ay), N1 is N-1, inst_args(X,Y,N1).The step where SATCHMORE di�ers from SATCHMO is that it checks for a

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 9relevant violated clause rather than simply a violated clause as a candidate forexpansion. This is done through the invocation of is_relevant(A,C), whichprecedes is_violated(A,C) in satisfiable. Propagation of extended rele-vancy takes place when the relevant clause is tested for violation. The mecha-nism for determining extended relevant atoms, that is, the appropriate entriesin the failure tree, involves the marking clause, which uses the mark_uniquepredicate. Each atom A in the head of a FC clause has a marking clause at theend of BC whose head subsumes A. A marking clause is called after failure to�nd any other eligible clause in BC. It executes a check for previously markedatoms so as to retain the most general instance, and, if appropriate, records thenew atom as marked. Example 2.2 includes the appropriate marking clauses,which are omitted from further examples.Due to the exponential nature of answer computations in disjunctivetheories, the relevancy restriction often results in better performance despitethe relevancy testing overhead. This is shown in detail in 13).The following example taken from 13) demonstrates the possible gainsresulting from relevancy testing employed by SATCHMORE.Example 2.2The following set of clauses is in the proper input format.BC: bottom :-p(c,X,Y).bottom :-q(X,c,Z).bottom :-r(X,Y,c).t(X) :- mark_unique(t(X)), fail.p(X,Y,Z) :- mark_unique(p(X,Y,Z)), fail.q(X,Y,Z) :- mark_unique(q(X,Y,Z)), fail.r(X,Y,Z) :- mark_unique(r(X,Y,Z)), fail.FC: true ---> t(a).true ---> t(b).true ---> t(c).t(X), t(Y), t(Z) ---> p(X,Y,Z); q(X,Y,Z); r(X,Y,Z).A SATCHMO computation will examine all possible instances of the lastclause with the resulting large number of cases considered. SATCHMORE onthe other hand examines exactly the required instance, since only that instanceis extended relevant and violated, to �nd a refutation. The di�erence in per-formance (resulting from expanding only the required instance of the last input

10 Donald W. LOVELAND and Adnan H. YAHYAclause) is large 13).2.4 Relevancy and Integrity Constraints (ICs)The way SATCHMORE detects relevancy is by declaring all ICs, in-cluding the query negation, relevant and propagating this relevancy from clauseheads to clause bodies. This is the result of propagating extended relevancy from? at step 1 of the SATCHMORE algorithm. However, some of these ICs mayhave no contribution to the process of answering the query at hand and theirpresence may be undesirable as it drags members of FC into the computationthat are not needed for �nding a refutation.Here is an example where a single irrelevant IC drags into \relevancy"useless components of the given set of clauses.Example 2.3Consider S = Sr [Snotr where Sr = fC1 = > ! b; C2 = b ! Qg, Snotr =fa0 ! ?; an ! an�1; :::; a2 ! a1; a1 ! a0; a0_a1; a1_a2; ::::g and the query Q.Then, a suitable input in the SATCHMORE style is:BC = f? : �Q; b;Q : �b;? : �a0; an�1 : �an; :::; a1 : �a2; a0 : �a1gFC = f> ! an; an�1;> ! an�1; an�2; ::::;> ! a2; a1;> ! a1; a0g.Including the IC of Snotr in BC will make all literals of Snotr relevantand expand the search space�2 with all elements of FC.However, clearly one cannot ignore the constraints in the refutation pro-cess; it becomes incomplete.Example 2.4Consider S = fC1 = Q _ b; C2 = b! c; C3 = c! ?g and the query Q.Clearly none of the clauses of S is relevant if C3 is ignored. If used thenall the clauses become relevant and the refutation is achieved.One way to avoid the problems illustrated here is to initially use thenegation of the query and none of the other ICs. The latter are introduced ondemand (and only after failing to �nd clauses relevant to the query alone). If weare unable to �nd a relevant and violated clause without introducing ICs, thenwe would like to invoke only the ICs that are necessary to advance the search for�2 The source of the elements of Snotr could be e.g. portions of databases independent ofthat to which the query is posed in a distributed environment.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 11a refutation by contributing to the relevancy of clauses needed in the refutation.We approximate this ideal in large part by seeking to extend selected partiallyrelevant seed clauses to (totally) relevant clauses. This is done by determiningsets of ICs that allow SATCHMORE to deduce that those seed clauses arerelevant. This is done one seed clause at a time, with an unsatis�ability testdone after each IC set is added.The details are given in Section 3.2.5 Sources of (Harmful) Negative DataSeveral sources of negative data are possible that may drag into relevancya large portion of the database. A partial list is:1. Instances of nonground integrity constraints. Only certain (a smallnumber of) instances of a constraint may be relevant to a given query.However, the irrelevant instances are still there and may render manyof the database clauses relevant and they negatively a�ect the compu-tation.Example 2.5Consider the following set of clauses.BC: bottom :-p(c,X,Y).bottom :-q(X,c,Z).bottom :-r(X,Y,c).FC: true ---> t(a).true ---> t(b).true ---> t(c).t(X), t(Y), t(Z) ---> p(X,Y,Z); q(X,Y,Z); r(X,Y,Z).v(X,Y,Z),s(X) ---> r(a,b,c).k(X,Y,Z) ---> v(X,Y,Z).m(X,Y,Z) ---> v(X,Y,Z).n(X,Y,Z) ---> v(X,Y,Z).j(X),j(Y),j(Z) ---> k(X,Y,Z);m(X,Y,Z);n(X,Y,Z).true ---> j(g).true ---> j(h).true ---> j(i).This is an expansion of Example 2.2. The added clauses are dragged

12 Donald W. LOVELAND and Adnan H. YAHYAinto the computation by having the irrelevant instance r(a,b,c) ofthe IC bottom :-r(X,Y,c). in the head of the �rst added clausev(X,Y,Z),s(X) ---> r(a,b,c). In a sense this instance creates arelevancy link between the original and new components. Operatingon the resulting set of clauses, SATCHMORE takes days to answer thequery though it could do that in a fraction of a second without theadded irrelevant clauses.2. Combining knowledge bases: When the constraints in one base, saySi, while useful for answering queries against Si maybe (and generallyare) of no use to queries against Sj , j 6= i. However, they may havethe e�ect of making much of the other bases relevant and thereforeparticipate in the computation.Example 2.6We present a class of clause sets, with a �xed BC and an indexed FCi.For FCi there is a �xed portion Sb (the �rst eight clauses) and anindexed portion we label NHi for future reference.BC: bottom :- Q.FCi: a,d---> e;f.c,e---> b.d,f---> g.c--->d. true --->c.true --->Q;a.f,g--->bottom.b,e--->bottom.ti,ri,mi---> si.ti,ki---> mi;si.ji,ni---> si;ti.hi,mi---> si;ti.ri--->mi;ni.true --->ti;ri.true --->ki;pi.true --->hi;ti;ji.
ti,ki,si--->bottom.ti,ki,mi--->bottom.ni,hi,ri--->bottom.ji,ki,ti--->bottom.ji,ri,si--->bottom.hi,ti,ji--->bottom.ti,ri--->bottom.si,ni,mi--->bottom.Sb is the base set of clauses in which the query Q is answerable andNHi is the foreign NonHorn set of clauses which has nothing to dowith the query.SATCHMORE will activate both sets in its search for a refutation andthe resulting timing of proving the query Q deteriorates rapidly as more

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 13foreign bases are added. We will give our experimentation results at alater stage.x3 SATCHMOREBIDIn SATCHMORE, all ICs, independent of whether they originate in thedatabase itself or query negation, participate in the computation on equal footingand relevancy is propagated from any of them. In de�ning our new procedure,SATCHMOREBID, we will use only a subset of the ICs; usually the initial ICset comes only from the query. The set of useful ICs is grown as the computationproceeds, and often a su�cient set of ICs is obtained before all ICs are invoked.To realize this we form two overlapping subsets BC0 and FC from the givendatabase S plus the query negation. FC is static and includes all elements ofS (but not the query negation). BC0 consists of the negation of the query inaddition to any user-selected Horn clauses of S such that proof termination isassured. Usually no other ICs are included in BC0, but the user may chooseto include any IC clauses known to participate in the query deduction. At anygiven stage and for the current value of i, only ICs in BCi and no other ICof FC are used in de�ning relevancy. Relevant atoms and clauses are alwaysde�ned relative to the current BCi, even when this is not explicitly mentioned.Non-negative clauses of FC are used in a forward chaining mode to detect ICs inFC that are later promoted to become elements of the next BCi. ICs promotedto the backward chaining component are not removed from FC and thereforeFC stays constant.The ICs of BCi are distinguished from the ICs of FC by their form.The forms are ? : �Body(C) and Body(C)! ? respectively.An IC Body(C)! ? 2 FC is promoted to be an element of BCi+1 by assertingthe clause ? : �Body(C).De�nition 3.1(Partially Relevant Clause; Atom) Given a set of (extended) relevant atomsR and a clause C in FC, then C is a partially relevant clause if and only ifHead(C) \ R 6= ; but C is not an (extended) relevant clause. A head atom Aof a partially relevant clause is a partially relevant atom if and only if A 62 R.De�nition 3.2(SATCHMOREBID) Given a RR database S, an atomic query Q and the setBC0 de�ned as a Horn subset of S union f? : �Qg, SATCHMOREBID operates

14 Donald W. LOVELAND and Adnan H. YAHYAas follows:For each set I of ground atoms (initially empty) and the current BCi(initially i = 0):1. If BCi [I ` ? then BCi [FC [I is unsatis�able.In attempting to derive ? mark any extended relevant literals encoun-tered.2. If BCi [I 6` ? then select an extended relevant clause C 2 FC. Ifno such clause is found then let BCi+1 = BCi [FR(BCi; I), whereFR(BCi; I) is the set of ICs in FC that are forward reachable�3 from Iand the set of partially relevant atoms relative to BCi. If BCi+1 = BCithen S [BC0 is satis�able and the minimal model of BCi [I can beextended into a model of S [BC0.Otherwise, (BCi+1 6= BCi). Let i = i+ 1; and go to Step 1.3. If C is not violated then return to step 2 for another extended relevantclause.While checking for violation of C mark any extended relevant literalsencountered.4. If C is violated, where � is a grounding substitution, and BCi [I 6`Head(C)j� then the ground instance Cj� is relevant. For each atomAi in Head(C)j� call the procedure recursively with backward-chainingcomponent BCi [I 0, where I 0 = I [fAig (and the same FC).If BCi [FC [I 0 is unsatis�able for every Ai then BCi [FC [I isunsatis�able.S [BC0 is shown to be unsatis�able by completing the recursive callon the �rst selected violated clause.We comment on item 2 of the de�nition. On failing to �nd a refutationusing SATCHMORE with the current BCi SATCHMOREBID doesn't fail butattempts to expand BCi into BCi+1 by promoting ICs from FC. This is donethrough computing FR(BCi; I), the set of ICs in FC that are forward reachablefrom I and the set of partially relevant atoms relative to BCi. If this set is emptythen the procedure fails and reports satis�ability. Otherwise, BCi changes andthe SATCHMORE code is invoked with BCi+1. So only if both SATCHMOREwith the current BCi and the forward reachability search fails does the procedurereport failure (satis�ability). Otherwise it makes another attempt at �nding arefutation. Therefore, for a given BCi and I it is well-de�ned to talk about the�3 This term is formally de�ned later.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 15SATCHMORE invocations in SATCHMOREBID, as we do frequently later inthis paper.3.1 SATCHMOREBID ProgramWe now list the SATCHMOREBID program. The input is in two (gen-erally overlapping) components, BC and FC, where FC contains all clausesexcept the IC associated with the query. BC is a decidable subset of the Hornclauses, contains the query IC but generally does not include all the needed ICs.If more than one IC is included in BC then the query IC should appear �rst.The formats for the clauses of BC and FC are as previously stated, and as forSATCHMO and SATCHMORE.The operation of SATCHMOREBID is as for SATCHMORE until noextended relevant clause can be found. Recall that an extended relevant clausehas each head atom extended relevant, i.e. satisfying the marked predicate.The only variations from the original SATCHMORE code (other than the callto part_relevant) are the goal clause(bottom, Q) by which the query atomname is acquired and the assertion and possible retraction of new_in_I(X) foreach new member X added to the partial interpretation I. These are of no useuntil part_relevant is invoked. (By invoking part_relevant we will meanthe activation of the second clause of part_relevant due to a failing backto part_relevant, often called a REDO call to part_relevant. A call topart_relevant is a passthrough (NO OP) that allows SATCHMORE to pro-ceed until completion or failure to �nd an extended relevant clause, which causesa REDO call to part_relevant.)The purpose of part_relevant is to add to the set of ICs entered in BCto increase the chance that SATCHMORE will succeed. We seek to enrich the ICset in BC by chaining forward to the ICs needed. The forward chaining beginswith a \seed", either a partially relevant clause or an element of I. Each headatom of a selected clause is matched with a body atom (the forward linking) ofa clause of FC and all head atoms of the new clause again linked to other bodyatoms. (The query atom is excepted; see below.) This recursion forms a \fan"of paths from the seed to a collection of ICs of FC plus the query negation,some of which may be in BC already. Those that are not are added to BC. Thefan of paths must all terminate in ICs for part_relevant to succeed, otherwisebacktracking occurs, perhaps back so far as to select a new seed. That all pathsterminate in ICs is a necessary condition for the seed clause to be determined

16 Donald W. LOVELAND and Adnan H. YAHYA
?- op(1200,xfx,'--->').unsatisfiable:-bottom.unsatisfiable:-clause(bottom,Q),not satisfiable.satisfiable:-part_relevant,is_relevant(A,C),is_violated(A,C),!,satisfy(C),satisfiable.satisfiable.is_violated(A,C):-A, not C.is_relevant(A,C):-retract(new_mark),(A--->C), each_marked(C).is_relevant(A,C):-new_mark,is_relevant(A,C).satisfy(C):-component(X,C),(retract(marked(_)), fail; true),asserta(X), asserta(new_in_I(X)),write('Asserting:'), write(X), nl,on_backtracking(X),not bottom.component(X,(Y;Z)):-!, (X=Y; component(X,Z)).component(X,X).on_backtracking(X).on_backtracking(X):-retract(X),(retract(new_in_I(X)); true),!, fail.each_marked((C1;CRest)):-!, marked(C1),each_marked(CRest).each_marked(C):- marked(C).

part_relevant.part_relevant:-from_the_top,((A--->C), one_marked(C); true_in_I(A,C)),forward(A,C),retract(new_IC),find_relevant_atoms.true_in_I(true, element_of_I):-retract(new_in_I(element_of_I)).one_marked(C):-component(X,C),marked(X), !.forward(A,bottom):-!, (clause(bottom, A), !;assertz((bottom :- A)),(new_IC; assertz(new_IC)),(added_IC; assertz(added_IC))).forward(_,C):-each_forw(C).each_forw((C1;CRest)):-!,(C1=Q; find_body(C1)),each_forw(CRest).each_forw(C):-(C=Q; find_body(C)).find_body(Ccomp):-(A--->C), ck_in_A(Ccomp,A),forward(A,C).ck_in_A(Ccomp,A):-body_component(X,A),Ccomp=X.body_component(X,(Y,Z)):-!, (X=Y; body_component(X,Z)).body_component(X,X).from_the_top.from_the_top:- retract(added_IC), from_the_top.find_relevant_atoms:- bottom, !.find_relevant_atoms.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 17mark_unique(X):-(marked(Y), is_instance(X,Y), !;subsume_and_mark(X)).subsume_and_mark(X):-marked(Y), is_instance(Y,X), retract(marked(Y)), fail.subsume_and_mark(X):-(new_mark, !; asserta(new_mark)),assertz(marked(X)).is_instance(X,Y):- not X=Y , !, fail.is_instance(X,Y):- var(Y),!.is_instance(X,Y):- nonvar(X),functor(X,F,N), functor(Y,F,N), inst_args(X,Y,N).inst_args(_,_,0):- !.inst_args(X,Y,N):- arg(N,X,Ax), arg(N,Y,Ay),is_instance(Ax,Ay), N1 is N-1, inst_args(X,Y,N1).relevant by SATCHMORE, and constitutes an atomic step, in some sense, inthe progress of SATCHMORE towards a refutation.We now outline a walkthrough of an invocation of the procedure part_relevant.The procedure from_the_top is a passthrough when called; its purpose is to forcea repeat of part_relevant. This may be needed if an IC has been added ina previous execution of part_relevant since new ICs can de�ne new partiallyrelevant clauses which in turn are seeds for discovery of new ICs. Recall thatpart_relevant does not succeed due to the discovery of one new IC, but rathermust complete a fan of paths. Failing completion, backtracking occurs and newseeds may have to be processed.The compound goal following from_the_top creates the seeds for theforward chaining. A seed may be a partially relevant clause, detected by thepresence of a marked atom, or an element of I . If every clause in FC either failsone_marked or cannot identify an IC for each forward path, then elements of Iare selected as seeds, structured as (true ---> X), for X 2 I .The next goal in part_relevant is forward(A,C), which contains thebasic recursion of the forward chaining. The �rst clause of the procedure forwardhandles the IC, checking for redundancy and then asserting the IC. The
ags arethen set; added_IC is used by from_the_top, discussed above. The
ag new_ICindicates that at least one new IC has been de�ned, a requirement for successof part_relevant. Note that the purpose of new_IC is quite di�erent from the
ag added_IC; the former is turned on at most once per run of part_relevant,the latter is turned o� with each REDO of from_the_top.If the clause passed to forward is not an IC, then the second clause of

18 Donald W. LOVELAND and Adnan H. YAHYAforward sends the clause head to each_forw, which in turn sends each headatom excepting the query atom to find_body. The query atom is excludedbecause its IC is not in FC, the only clause not in FC. No search for ICs to es-tablish the relevance of the query is needed, of course. A more complex programcan remove other atoms of each_forw so they do not reach find_body. Headatoms of paths originating in partially relevant clauses can be blocked if they areextended relevant. Relevant atoms already have paths to ICs, by the de�nitionof relevance. Provable head atoms prevent the clause from being violated, so theclause cannot be on the path that uses the IC to establish relevancy for the seedhead atom. However, no similar argument holds for elements of I , which use thesame forward chaining mechanism. Failure to use the more complex programdesign may cost extra computation time, but we suspect that few unneeded ICsenter for this reason. This is partly because provable atoms either use elementsof I (hence handled elsewhere) or will not connect to an IC as FC is consistent.The procedure find_body �nds a clause instance in FC with a bodyatom that agrees with the given atom. The discovered clause instance is in turnprocessed by forward, which perpetuates the recursion.The recursion terminates with the discovery of an IC or with failurein find_body to �nd a clause to continue the forward chaining. The latteroutcome triggers a backtracking where the main choice points are the sweep ofFC in find_body and part_relevant. Exhaustion at these points results inthe failure of part_relevant. Failure of part_relevant generally means thatthe clause set is satis�able, but ICs could have been introduced that make BCunsatis�able. This only arises if the database itself is inconsistent and catchingthis inconsistency would be a happenstance that all pertinent clauses were inBC at this point. No action is taken to detect this anomaly, although theaddition of body not bottom to the second clause of satisfiable will detectthe unsatis�ability of BC. Again, failure of part_relevant means satis�abilityof BC0 [FC (this strange case excepted).If the recursion does terminate with an IC, then find_body succeedsand each_forw may call another instance of find_body. Barring failure offind_body, discussed above, the call to forward in part_relevant eventuallysucceeds. Then new_IC is probed (and retracted). If a new IC was enteredinto BC during this invocation of part_relevant then a new attempt to provebottom identi�es any new (extended) relevant atoms de�ned by the new ICs inBC. Now part_relevant succeeds and control is returned to the SATCHMOREcode for a new try at proving unsatis�ability.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 193.2 Correctness of SATCHMOREBIDUntil otherwise stated, all clause sets of this section are ground. Through-out the proofs of this section it is very important to be clear about relevancyand extended relevancy. We will use the term \extended relevancy" wheneverthat term is intended.Lemma 3.1(SATCHMORE property) When SATCHMORE fails with BCi, then every(totally) relevant clause in FC (relative to BCi) also has a body atom that isrelevant.Proof If some relevant clause has no relevant body atom, then all bodyatoms are provable, whereupon the clause is violated and a head atom enteredinto the partial interpretation. Such a head atom is not relevant, contradictingour assumption that the clause is relevant.De�nition 3.3(Forward Reached) An atom is a Forward Reached (FR) atom if and only ifit appears as an argument of the find_body procedure and is not relevant.Starting with the head atoms of seed clauses, all head atoms that arepassed to forward, except for bottom, are also passed to find_body. (We men-tioned in the last subsection that a more complex program can �lter out markedatoms when the seed of this forward chaining is a partially relevant clause.) Theset of FR atoms includes all atoms of the current partial interpretation I asthese atoms are seeds retrieved by true_in_I. These atoms cannot be relevantas their assertion makes them provable, but they might be extended relevant byhappenstance (by an occurrence in a failed antecedent). Note that bottom isnot a FR atom.Lemma 3.2(Clauses with FR body atoms) Given a set of RR clauses S and for a givenBCi and partial interpretation I , if both SATCHMORE and part_relevantfail then any clause in FC with a FR body atom has either1. A FR head atom, or2. A relevant body atom.Proof By the construction of procedures forward, each_forward and find_body,every non-relevant head atom (excepting bottom) of a clause containing a FRbody atom is a FR atom. Every clause with the FR body atom is processed

20 Donald W. LOVELAND and Adnan H. YAHYAbecause the failure of part_relevant means that the �rst goal of find_bodyattempts a uni�cation with all clauses of FC before it fails. If all the head atomsare relevant atoms then, by the SATCHMORE property, the clause also has arelevant body atom. Thus, the lemma holds for non-IC clauses. For an IC-clausethat is in BCi we note that the body always contains a relevant atom, so thencondition 2 is satis�ed. If an IC-clause is not in BCi but contains an FR bodyatom then it must have been promoted to be a member of BCi+1. But thenBCi+1 6= BCi and part_relevant would not have failed. A contradiction.Thus there is no IC-clause not in BCi with an FR body atom. So, the lemmaholds for all clauses in FC with a FR body atom.Lemma 3.3(part_relevant success) If FC is satis�able, FC[BC0 is unsatis�able, SATCH-MOREBID has de�ned BCi, for some i � 0, in the processing of FC[BC0, andpart_relevant is reentered after a failure of SATCHMORE, then part_relevantwill succeed with BCi+1 6= BCi.Proof Because part_relevant cannot succeed without the addition of someIC-clause to BCi, by explicit test, we need only show that part_relevant suc-ceeds. We suppose that part_relevant is reentered but does not succeed.From that we will show that then FC [BC0 has a model, contradicting theunsatis�ability of FC [BC0.We de�ne the interpretation M for FC [BC0 by the following steps:1. All relevant atoms are de�ned to be false. The relevant atoms aredetermined by the last failed run of SATCHMORE.2. All FR atoms are de�ned to be true.3. The minimum model M� of FC provides the truth assignments to theremaining atoms.Since FC is satis�able one or more models exist for FC without theconstraints of (1) and (2).We now show that M is a model for FC [BC0 under the assumptionthat BCi+1 = BCi.1. BC0 clauses. This contains IC-clause bottom:- Q. The atom Q isrelevant, hence false in M . The clause thus is true in M . All otherclauses appear also in FC and are considered there.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 212. For FC clauses, we need only be concerned with clauses that involveatoms with truth values changed from M� as M� is a model of FC.a. C is a clause of the form Body(C) ! Head(C) and Head(C) hasat least one reassigned head atom. We need only be concerned withhead atoms reassigned to false in M. But only the relevant atomscould have been reassigned to false. Thus we can assume that atleast one head atom is relevant. If all head atoms are relevant thenby the SATCHMORE property there is also a relevant body atom,and that is false in M . Such a clause is therefore true in M. If not allhead atoms are relevant atoms then the clause is partially relevant,and by the code of part_relevant the non-relevant atoms are FRatoms. Such atoms are reassigned true in M , so such clauses are truein M .b. C is a clause of form Body(C) ! Head(C) and Body(C) has atleast one reassigned body atom. We need only be concerned withthe reassignment of a truth value to true in the body. Suppose thatA has been reassigned to true in M . Then A must be a FR atom.By the Lemma 3.2, C then has either a FR head atom, with truthvalue true inM , or a relevant body atom, which has truth value falsein M . In either case, C is true in M .Having accounted for all cases we see that M is a model of FC [BC0.SATCHMO, SATCHMORE and SATCHMOREBID all have termina-tion problems, but those of SATCHMOREBID di�er from the others. SATCH-MOREBID has termination problems with the forward relevancy checking ofpart_relevant and this can occur at the ground level. Clauses a��� > b andb��� > a together in FC can cause looping as can any more complex clause setsthat incur looping. For databases, the focus of applications of SATCHMORE-BID in our view, cycles are less likely than in theorem proving applications, butwe must note the hazard. The protection against non-termination is that em-ployed by SATCHMO 14) (at the �rst-order level), the use of level-saturation.This is in e�ect a breadth-�rst search (but most likely would be implementedas an iterative-deepening search) which is de�nitely more expensive than thedepth-�rst style search employed by Prolog. Non-termination comes to all theabove systems for �rst-order clause sets, so we do not view the added exposureto non-termination in part_relevant as a serious problem. Completeness re-

22 Donald W. LOVELAND and Adnan H. YAHYAsults must assume the level-saturation version, although such versions will notbe used in practice for most problems. Of course, it is necessary to make BCalways terminating (\decidable") but this is easily done by careful selection ofHorn clauses for BC.Theorem 3.1(Ground completeness of SATCHMOREBID) Let Q be an atomic queryand S be a consistent range-restricted database. If T = S [f? : �Qg is un-satis�able and either T contains no cycles or SATCHMOREBID employs level-saturation to insure termination, then SATCHMOREBID succeeds (reports un-satis�ability).Proof The clause set T is represented by BC0 [FC, where BC0 containsclause ? : �Q and possibly other Horn clauses (including other ICs on occa-sion). (We assume BC0 is decidable.) By Lemma 3.3 whenever both SATCH-MORE and part_relevant fail, then BCi+1 properly contains BCi. Failureof SATCHMOREBID requires a succession of failures of both SATCHMOREand part_relevant, for each failure that creates a new BCi+1 forces SATCH-MORE to process the new representation BCi+1 [FC. ICs are thus added tothe variants of BC until SATCHMORE succeeds, because the completeness ofSATCHMORE assures detection of unsatis�ability when the full set of ICs ofthe unsatis�able set BC0 [FC is active.Note that in order for SATCHMOREBID to work correctly, we insistthat the original set of clauses (without the query negation) be consistent. Atest of this fact needs to be performed outside of SATCHMOREBID. In a sense,SATCHMOREBID is attempting to �nd a subset of the database that is incon-sistent with the query negation. If such a component exists then the procedurereports success. Otherwise it reports failure (satis�ability), even if the databaseitself was inconsistent. While the latter is not logically correct it may be a fea-ture that is useful for answering queries in the presence of inconsistent data.However, we don't pursue the details of this topic here.Example 3.1T = f> ! Q1 _ c;>! Q2 _ f; c! d _ e; d! ?; e! ?;>! b; b! cg.The set is inconsistent. However, given the queries Q1 and Q2, usingSATCHMOREBID one is able to �nd a refutation that involvesQ1 but none thatinvolves Q2. Note that SATCHMORE detects the inconsistency of the clause

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 23set for both queries, and the clauses used exclude the queries.We now consider the general �rst-order case. That is, the clause sets (ordatabases and queries) are derived from sets of formulas of �rst-order logic.Theorem 3.2(Soundness of SATCHMOREBID) If SATCHMOREBID succeeds using aProlog with full uni�cation on a �rst-order clause set T = S [f? : �Qg, whereS is consistent then Q follows from S.Proof SATCHMOREBID uses SATCHMORE code to process clause setsall of which are subsets of BC0 [FC. Therefore, the soundness of SATCH-MOREBID follows form the soundness of SATCHMORE.We have already noted that care is needed to assure termination ofSATCHMOREBID for arbitrary clause sets. First-order termination is a prob-lem for all SATCHMO-based systems. See the discussion in 14).Theorem 3.3(Completeness of SATCHMOREBID) Given a level-saturated version ofSATCHMOREBID using a Prolog with full uni�cation, if a database S is aconsistent set of �rst-order clauses and atomic query Q logically follows from Sthen SATCHMOREBID succeeds given the clause set T = S [f? : �Qg.Proof Using a now-standard lifting argument the ground completeness the-orem is used to yield the �rst-order theorem. See a standard text on resolutiontheory, such as 4) for details.From preceding considerations in this paper, it is clear that the abovetheorem can be generalized to arbitrary unsatis�able clause sets. We have statedthe theorem to address the most common envisioned use of SATCHMOREBID.3.3 E�ciency Considerations and Design Tradeo�sThe goal of SATCHMOREBID is to limit the number of ICs that par-ticipate in SATCHMORE-style computations on the assumption that the lessthe number of such clauses the more the computation is focused on the trulyrelevant clauses. The ideal situation is that only ICs needed for the refutationare promoted to BCi. In an implementation the cost of �ltering out undesiredICs should be weighed against the possible gains. The following are some of thepoints where one has to consider these tradeo�s and the choices adopted in the

24 Donald W. LOVELAND and Adnan H. YAHYAimplementation:� Once a nonground IC is shown relevant we can promote the originalclause, the instance as reached (maybe partially instantiated) or a par-ticular ground instance. Promoting the entire clause may save us fu-ture potential visits to that clause but will also make relevant clauseinstances that are not really so and have them participate in the compu-tation. One may opt for the middle ground as a compromise: promotethe clause instance as reached during the forward relevancy computation.E.g. if the IC has the form p(X),q(Y)--->bottom and the partially rel-evant atom is p(a) then assert bottom :- p(a),q(Y) rather than, say,bottom :- p(a),q(a) or bottom :- p(X),q(Y).However the other op-tions are open. In the implementation the reached clause instance ispromoted, be it ground or otherwise.� Independent of the choice in the previous point, we may elect to promoteto BCi all ICs that are reachable in the forward relevancy computationor just one IC covering set at a time. An IC covering set is the set ofICs that terminate the fan of paths, as introduced in Section 3.1. Thefan of paths only associates one clause at a choice point with each headatom; backtracking can yield other choices. The alternate choices belongto other potential IC covering sets. Once more the choice is betweenpotentially promoting ICs not needed for the computation or being forcedto redo the forward relevancy test if the promoted ones were not su�cient.Here also one may select the middle ground by promoting one IC coveringset at a time while keeping the computation results in case there is a needto promote additional clauses. The implementation promotes one set ata time. Each IC set could be bu�ered and no IC is added to BCi untilall paths terminate in ICs (a covering set is found). If the fan of paths isnot completed, no IC need be added to BCi.� The fact that SATCHMOREBID uses SATCHMORE as its unsatis�abil-ity detection mechanismmakes it possible to apply e�ciency improvementmeasures that are applicable to SATCHMORE here as well. One exampleis the test for availability where a clause is only expanded if its atoms areboth relevant and available in that they stand a chance of being proved8). Another example is that a clause not allowed to be used for promot-ing constraints unless all of its body atoms are shown to be provable byhaving a link to a positive clause of the database or an element of thecurrent interpretation.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 253.4 Testing ResultsAdding relevancy to SATCHMO contributed to improved performancein many cases. In cases where relevancy testing is \irrelevant", e.g. in the casewhere all clauses of the database are relevant for the refutation, relevancy testingis an overhead and performance will deteriorate as a result.Similar reasoning is applicable to the introduction of forward relevancyin SATCHMOREBID. If all ICs are relevant to the refutation, any forwardrelevancy testing is unnecessary overhead and is bound to hurt performance.The hope is that given a query Q, combining forward and backward relevancywill isolate the clauses that need to participate in the refutation, be they ICs orotherwise.To see how forward relevancy impacts query processing e�ciency we ex-perimented with several classes of examples. Next we report on our experimentswith the SATCHMOREBID program and compare the results with those forboth SATCHMO�4 and SATCHMORE. In all cases, when the processing time �5exceeded 3 hours the run was aborted. The timing in this case is marked by OT.1. (Nonground case) We tested variants of the problem in Example2.5 which is borrowed from 13) with an added set of clauses that aremeant to make relevant clauses that have no contribution to the refu-tation. Using SATCHMOREBID, the original and modi�ed exampleswere processed in time comparable to that of SATCHMORE on theoriginal (less than 0.2 seconds). SATCHMORE timing was 0.1 for thecase when only the j(g) fact was included, 704 seconds for the casewhen the j(g); j(h) facts were included, and days for the case when thej(g); j(h); j(i) facts were included (the computation was aborted after3 days).2. (NonHorn case) To test possible gains in performance as the pro-portion of irrelevant ICs increases, we used a suite of problems basedon Example 2.6. We retained Sb and added a progressively expand-ing set of nonHorn clauses and related constraints. For each i, thetested clause set is the query negation as BC and Sb [([j�iNHj) as�4 SATCHMO tests were performed on a version given in 13) which is close to the SATCH-MORE implementation. That version is not fair and therefore the results here representthe worst case scenario for SATCHMO as the unsatis�able part of the theory appearedlast in the clause list.�5 We emphasize the comparative performance of the programs on the given examples. Theexperimentation was done on a Sun Microsystems Ultra 1 machine, 143 MHz clock speedand 128 MB of memory .

26 Donald W. LOVELAND and Adnan H. YAHYAFCi (see Example 2.6). The results are in line with our expectations.SATCHMOREBID was able to isolate the required component for therefutation and therefore maintained a constant processing time. Theperformance of SATCHMORE on the other hand decreased as the pro-portion of irrelevant ICs increased. The results are given in column 2of Table 1.3. (NearHorn case) The examples in the previous testing have majornonHorn components. Since one may expect that real-life problems tobe nearHorn 12), we performed tests on another suite of problems wherethe base component, Sb, is the same as that of Example 2.6 but theirrelevant components had a more nearHorn structure by having onlya single nonHorn clause:nHi = f ti,ki---> ji.ti,ki,ji---> mi;si;hi.si,ji---> ni.ki,mi---> ri.ti,hi--->ri.true --->ti.true --->ki.si,hi --->ri.
ti,hi,si--->bottom.ti,ki,mi--->bottom.mi,hi,ki--->bottom.ri,mi,ji--->bottom.ji,ri,si--->bottom.hi,si,ji--->bottom.ni,ri--->bottom.ni,mi--->bottom.gWe did the testing for several values of i. The clause set is as for theNonHorn case, but with Sb[([j�i nHj) as FCi. Here too the results werein line with our expectations. SATCHMOREBID was able to isolatethe required component for the refutation and therefore maintaineda constant processing time. The performance of SATCHMORE onthe other hand decreased as the proportion of irrelevant ICs increased,though the absolute times were always less than for the previous case,re
ecting the simpler nature of the irrelevant clause set. The resultsare given in column 3 of Table 1.4. (Mixed case) We also tested the case when the irrelevant set wasa combination of the two previous cases�6. BC stays as before andFC2i = Sb [([j2f2;4;:::;2ig(nHj=2 [NHj=2)). As expected, the results�6 Since the mixed case involved having a balance of nonHorn and nearHorn clauses, thenumbers given are restricted to half that of the nearHorn case. Other cases are markedNA (not applicable).

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 27were intermediate and are given in column 4 of Table 1.Each ground test problem is balanced in the sense that the numbers ofregular clauses and ICs are almost equal. This and the internal structure ofthe test examples explain the di�erences in run times between SATCHMO andSATCHMORE. However, the fact that SATCHMOREBID performs well hereis an indication that it will perform well in real-life situations where excessivenumbers of ICs irrelevant to the queries being considered are present such aswhen unrelated databases are combined. Of course, it is always possible toconstruct examples where relevancy testing as a whole, and forward relevancytesting in particular, are not needed and they will only add an overhead to thecomputation.x4 Comparisons, Conclusions and Future WorkIn this paper we presented the SATCHMOREBID approach to queryanswering in disjunctive databases. The approach is based on detecting rele-vant integrity constraints that are needed to answer the given query and havingonly them participate in the refutation and no other ICs. This is done througha forward search for the ICs of the database relevant to the query being pro-cessed. The detected ICs are promoted to participate in a SATCHMORE-stylecomputation.In as far as the e�ect of ICs on their clause expansion strategy, SATCHMOand SATCHMORE represent two extremes. SATCHMO is not query or IC sen-sitive in the sense that its clause expansion is not in
uenced by the ICs, whileSATCHMORE is equally sensitive to all ICs: its clause expansion process isdriven by ICs independent of their source. SATCHMOREBID on the otherhand is query sensitive. Its expansion is driven by the query negation and onlyICs shown relevant to the refutation. This approach complements the backwardrelevancy testing discussed in 19, 13) and implemented in SATCHMORE 19, 13)and avoids the drawback of SATCHMORE resulting from treating all ICs of thedatabase on parity with the negation of the query.Testing results of SATCHMOREBID showed substantially improved per-formance over a certain class of problems in comparison with SATCHMO andSATCHMORE. This holds for problems with a large number of ICs, and maybea large extensional component (facts), such as the result of combining looselycoupled knowledge bases. Even for problems for which either SATCHMOREor SATCHMO are e�cient, SATCHMOREBID performed well due to the ef-

28 Donald W. LOVELAND and Adnan H. YAHYA�ciency of the forward relevancy check. By controlling the IC content of theinitial backward chaining component, BC0, one can manipulate the distance be-tween SATCHMORE and SATCHMOREBID. SATCHMOREBID will simulateSATCHMORE if all ICs are included in BC0 in which case both procedures willhave almost the same performance, as was con�rmed by our testing. SATCH-MOREBID can be viewed as a generalization of SATCHMORE in the sensethat we can achieve SATCHMORE behavior by having all negative clauses ofthe database as well as the query negation in BC0.As is the case for SATCHMORE, SATCHMOREBID is a refutationalprocedure rather than a model generator as is SATCHMO. In cases when thetheory is satis�able it may return only a partial model. Actually, for certainsatis�able theories the procedure may �nd no relevant (forward or backward)clauses and thus perform no clause expansions. SATCHMO on the other handwill return a model (of the database satisfying the query) if it fails to �nd arefutation and reports satis�ability. While for certain applications the modelgeneration property is desirable, the introduction of relevancy was meant to cutshort many of the computations that are needed for model generation. Thispruning e�ect is a major source of e�ciency of SATCHMOREBID.The procedure was de�ned in close connection to SATCHMO and itsextension SATCHMORE. However detecting relevant clauses has a more generalutility and can be incorporated into other procedures, an issue that warrantspursuing as a topic of further research.Another issue of interest is to test SATCHMO and its modi�cations,including SATCHMOREBID, against randomly generated sets of clauses andstudy the behavior of each of these systems for di�erent classes of inputs.Acknowledgment This research was conducted while the secondauthor was visiting at the Computer Science Department of Duke University asa Fulbright Scholar and an AFESD Fellow. The support of the Fulbright andAFESD programs is highly appreciated.References1) F. Bancilhon, Y. Sagiv, and J. Ullman. Magic Sets and Other Strange Waysto Implement Logic Programs. In Proceedings of the Fifth ACM SIGMOD-SIGART Symposium on Principles of Database Systems, pages 1{15, 1988.2) F. Bry and A. Yahya. Minimal Model Generation with Positive Unit Hyper-Resolution tableaux. Journal of Automated Reasoning,Volume 25, Issue 1, July2000 pages 35-82.

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 293) F. Bry. Query Evaluation in Recursive Databases: Bottom-up and Top-downReconciled. Data & Knowledge Engineering, pages 289{312, 1990.4) C. L. Chang and K. C. Lee. Symbolic Logic and Mechanical Theorem Proving,Academic Press, New York, 1973.5) R. Demolombe. An E�cient Strategy for Non-Horn Deductive Databases. The-oretical Computer Science, 78:245{259, 1991.6) T. Eiter and G. Gottlob. Complexity Aspects of Various Semantics for Disjunc-tive Databases, Proceedings of the Twelfth ACM SIGACT SIGMOD-SIGARTSymposium on Principles of Database Systems (PODS-93), 1993, June, 158-167,7) R. Hasegawa, K. Inoue, Y. Ohta and M. Koshimura. NonHorn Magic Sets toIncorporate Top-down Inference into Bottom-up Theorem Proving. Proceedingsof CADE97 pages 176-190. 1997.8) L. He, Y. Chao, Y. Shimajiri, H. Seki and H. Itoh. A-SATCHMORE: SATCH-MORE with Availability Checking New Generation Computing: 16, 1998, pages55{74.9) C.A. Johnson. Top-down Deduction in Inde�nite Deductive Databases. InJournees Bases de Donnees Avances, pages 119{138, Toulouse, France, 1993.10) J. Lloyd. Foundations of Logic Programming. Second Edition. Springer Verlag,1987.11) J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Pro-gramming. MIT Press, 1992.12) D.W. Loveland. Near-Horn Prolog. In J.-L. Lassez, editor,Proc. of the 4th Int.Conf. on Logic Programming, pages 456{469.MIT Press, 1987.13) D.W. Loveland, D. Reed, and D. Wilson. SATCHMORE: SATCHMO withRElevancy. J. Automated Reasoning, 14:349{363, July 1995.14) R. Manthey and F. Bry. SATCHMO: a Theorem Prover Implemented in Prolog.In J.L. Lassez, editor, Proc. 9th CADE, pages 456{459, 1988.15) Y. Ohta, K. Inoue and R. Hasegawa. On the Relationship Between Non-HornMagic Sets and Relevancy Testing. Proceedings of CADE -15, LNAI 421, pages333-348, 1998.16) D. Plaisted. An E�cient Relevance Criterion for Mechanical Theorem Proving.,AAAI-1980, pages 79{83, 198017) A. Rajasekar and H. Yusuf. Dwam - A WAM Model Extension for DisjunctiveLogic Programming. Annals of Mathematics and Arti�tial Intelligence, 14:275{308, 1995.18) R. Ramakrishnan and S. Sudarshan. Top-down vs. Bottom-up Revisited. InProceedings of the ISLP'91, 1991.19) A. Ramsay. Generating Relevant Models. In Journal of Automated Reasoning,Vol. 7. 1991. pages 359{368.20) M. Stickel. Upside-down Meta-Interpretation of the Model Elimination Theo-rem Proving Procedure for Deduction and Abduction. J. Automated Reasoning,13(2):349{363, Oct 1994.21) A. Yahya. A Goal-driven Approach to E�cient Query Processing in Disjunc-tive Deductive Databases. Technical Report PMS-FB-1996-12. Department ofComputer Science, Munich University. July 1996.

https://www.researchgate.net/publication/44790956_SATCHMO_a_theorem_prover_implemented_in_Prolog?el=1_x_8&enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ=

30 Donald W. LOVELAND and Adnan H. YAHYA
of Irrelevant Blocks NonHorn NearHorn Mixed0-SATCHMORE 0.03 0.03 NA0-SATCHMO 0.01 0.01 NA1-SATCHMORE 0.52 0.15 NA1-SATCHMO 0.03 0.05 NA2-SATCHMORE 5.28 0.38 1.522-SATCHMO 0.13 0.12 0.233-SATCHMORE 45.02 0.82 NA3-SATCHMO 4.98 0.30 NA4-SATCHMORE 342.82 1.48 26.184-SATCHMO 31.58 0.65 4.455-SATCHMORE 2434.17 2.43 NA5-SATCHMO 190.73 1.52 NA6-SATCHMORE OT 3.73 312.886-SATCHMO 1114.02 4.05 62.237-SATCHMORE OT 5.45 NA7-SATCHMO OT 8.92 NA8-SATCHMORE OT 7.62 3065.008-SATCHMO OT 21.05 797.809-SATCHMORE OT 10.17 NA9-SATCHMO OT 46.90 NA10-SATCHMORE OT 13.33 26022.2010-SATCHMO OT 104.32 9823.6920-SATCHMORE OT 85.62 OT20-SATCHMO OT OT OTTable 1 Timing (in seconds) for SATCHMORE and SATCHMO as compared to the almostconstant SATCHMOREBID time of less than 0.1 seconds.

