ResearchGate

See discussions, stats, and author profiles for this publication at:

SATCHMOREBID: SATCHMO(RE) with
BIDirectional relevancy

Article /7 New Generation Computing - December 2001

DOI: 10.1007/BF03037473 - Source: CiteSeer

CITATIONS READS
5 20

2 authors, including:

P N
-

<y BirzeitUniversity

40 PUBLICATIONS 434 CITATIONS

SEE PROFILE

Allin-text references are linked to publications on ResearchGate, Available from: Adnan Yahya
letting you access and read them immediately. Retrieved on: 07 September 2016


https://www.researchgate.net/publication/2392291_SATCHMOREBID_SATCHMORE_with_BIDirectional_relevancy?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_2
https://www.researchgate.net/publication/2392291_SATCHMOREBID_SATCHMORE_with_BIDirectional_relevancy?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_1
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_4
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_5
https://www.researchgate.net/institution/Birzeit_University?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_6
https://www.researchgate.net/profile/Adnan_Yahya3?enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ%3D&el=1_x_7

SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 1

SATCHMOREBID: SATCHMO(RE) with
BlDirectional Relevancy

Donald W. LOVELAND! and Adnan H. YAHYA!*?

L Department of Computer Science, Duke University, Durham,
NC 27708 USA

2 Electrical Engineering Department, Birzeit University, Birzeit,
Palestine

{dwl,yahya}@cs.duke.edu

Received 15 September 2000

Abstract SATCHMORE was introduced as a mechanism to integrate
relevancy testing with the model-generation theorem prover SATCHMO.
This made it possible to avoid invoking some clauses that appear in no
refutation, which was a major drawback of the SATCHMO approach.
SATCHMORE relevancy, however, is driven by the entire set of negative
clauses and no distinction is accorded to the query negation. Under un-
favorable circumstances, such as in the presence of large amounts of neg-
ative data, this can reduce the efficiency of SATCHMORE. In this paper
we introduce a further refinement of SATCHMO called SATCHMORE-
BID: SATCHMORE with BIDirectional relevancy. SATCHMOREBID
uses only the negation of the query for relevancy determination at the
start. Other negative clauses are introduced on demand and only if a refu-
tation is not possible using the current set of negative clauses. The search
for the relevant negative clauses is performed in a forward chaining mode
as opposed to relevancy propagation in SATCHMORE which is based
on backward chaining. SATCHMOREBID is shown to be refutationally
sound and complete. Experiments on a prototype SATCHMOREBID im-
plementation point to its potential to enhance the efficiency of the query
answering process in disjunctive databases.

Keywords Disjunctive Deductive Databases , Query Answering, Bidi-
rectional Search, Model Generation Theorem Proving, Relevancy.



2 Donald W. LOVELAND and Adnan H. YAHYA

81 Introduction

The common approach to query answering in deductive databases is to
find a refutation for the set of clauses representing the database and the negation
of the query. In disjunctive databases, query processing generally has a high com-
putational complexity ®. To achieve acceptable performance several approaches
were suggested. Some are bottom-up in the sense that they start from the facts
of the database and derive new information until the negation of the query is con-
tradicted. SATCHMO, introduced in '* and formalized as a tableaux method
in *, is a representative of this class of algorithms. Other methods are based
on top-down processing. They start from the query and generate subqueries
until the generated queries are answerable by the database facts. The deduction
tree ¥, SLO '™ and the duality *" methods represent this class. Others still
combine top-down with bottom-up processing within a single system to improve
performance. SATCHMORE '® and Non-Horn Magic sets ™ '*, the extension
of magic sets " to the disjunctive case, represent this approach. The debate on

which is the best approach is still an open one ' 2%

. Bottom-up processing can
explore a large search space by involving clauses that are irrelevant to the given
query. Partial relevancy '?) and total relevancy '® were introduced as means
to restrict the processing to those clauses that are known to contribute to the
refutation. Partial relevancy relies on having at least one atom of the head of a
clause relevant, before that clause can be used in a SATCHMO-style refutation
while total relevancy requires all head atoms be relevant for this purpose. Both
are refutationally sound and complete > '®, but total relevancy tends to explore
a smaller search space. Therefore, we concentrate on algorithms employing total
relevancy as represented by SATCHMORE'®.

Relevancy, as done by SATCHMORE and related systems '* 7% ™,
starts with negative clauses. In keeping with database terminology, we hereafter
refer to negative clauses (clauses of form A — 1) also as integrity constraints
(ICs), or simply constraints. The symbol L denotes falsehood, so clauses of the
form (A — 1) encode the formula (not A). SATCHMORE uses all ICs and
propagates the relevancy designation backwards from clause consequence (head)
to antecedent (body) and to the matching head atoms of other clauses. That
all ICs are used means that ICs with no relationship to @) still initiate relevance
labeling™'. Strongly degraded performance can result from the presence of large

numbers of unrelated ICs.

*I SATCHMO and SATCHMORE are presented as theorem proving programs and as such
deal with refutations of sets of clauses. No advantage is sought from the special status of
the query IC, but this is not central to a theorem prover.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 3

To deal with the problem of propagating relevancy from all ICs we give
a procedure SATCHMOREBID: SATCHMO(RE) with BIDirectional relevancy.
Initially SATCHMOREBID uses the negation of the query and none of the
database ICs as possible sources of relevancy. The latter are promoted to being
sources of relevancy on demand by employing the non-negative clauses of the
database to identify ICs that may contribute to advancing the refutation search.
This is especially useful in database applications where the query negation is
distinguished from the database ICs.

As in other approaches to relevancy testing, the benefit of the controlled
introduction of ICs has to be weighed against the cost of finding the needed
clauses. Experimental results will be given to show the potential advantages
and limitations of the advanced method.

The rest of the paper is organized as follows. In the next section we
give some needed definitions, recall the model-generation refutational procedure
SATCHMO and the modification SATCHMORE. We discuss relevancy testing
in SATCHMORE, its advantages and drawbacks. In Section 3 we introduce the
concept of forward relevancy as a complement to traditional backward relevancy
and combine them into an algorithm that performs bidirectional relevancy test-
ing to allow for tighter refutation searches. We give an implementation of the
suggested approach in the form of the SATCHMOREBID Prolog program and
prove its refutational soundness and completeness. We present the results of
our testing on several classes of examples to demonstrate the efficiency gains
achievable. We comment on the advantages, limitations and the compromises
involved in the SATCHMOREBID approach. In Section 4 we give our conclu-
sions, compare our results with others reported in the literature, and mention

some possible directions of future work.

82 Preliminaries and Background Material

We assume familiarity with the basic concepts relating to disjunctive
databases as e.g. in 'Y as well as the theorem provers SATCHMO ** and
SATCHMORE '® and limit ourselves to briefly recalling the basic material

needed for the results presented here.



4 Donald W. LOVELAND and Adnan H. YAHYA

2.1 General

Definition 2.1

A database, S, is a set of clauses in implication form: C = By A ... A B, —
AV ---V Ay, where m,n > 0 and the A; and Bj; are atoms in a First Order
Language (FOL) L possibly with function symbols. C' is positive if n = 0 (head
is T, true, empty) and negative or an integrity constraint (IC) if m = 0 (body
is L, false, empty, bottom). By Head(C) we denote the disjunction of atoms
A1 V---V A, and by Body(C) we denote the conjunction of atoms By A...AB,,.
So C = Body(C) — Head(C).

The Herbrand base of S, HBg, is the possibly infinite set of all ground
atoms that can be formed using the predicate symbols and constants in £. A
Herbrand interpretation, I, is any subset of H Bg such that all ground atoms of
I are assigned true and all other atoms of HBg are assigned false. A clause is
satisfied in an interpretation I if and only if at least one head atom is true in I
or at least one body atom is false in I. A clause is violated in an interpretation
I if and only if no head atom is true in I while all its body atoms are truein I.
A Herbrand model of S, M, is a Herbrand interpretation such that M | S (all
clauses of S are true in M). M is minimal if no proper subset of M is a model
of S.

Definition 2.2
(Range-restriction) A clause C is range-restricted (RR) if every variable oc-
curring in the head of C also appears in the body of C. A set of clauses is

range-restricted if and only if every clause in the set is range-restricted.

Definition 2.3
(Query) A query is a conjunction of atoms. We assume that all queries are
atomic (consist of a single atom ). Any query of the form C = By A... A B,
can be converted into the atomic query ) by adding the clause BiA...AB,, = @
to the database.

The provability relation S + A, where S is a clause set and A is a

conjunction (disjunction) of atoms, will be Prolog provability throughout this

paper.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 5

2.2 SATCHMO

SATCHMO and its variations '*** are model-generation based refuta-
tion logic theorem provers applicable to the class of range restricted clause sets.
Starting from the empty interpretation SATCHMO operates by attempting to
construct a model of its input clause set by splitting on (ground instances of)
clause heads if the clause body is satisfied in the current interpretation and the
head is not. The result is a new set of interpretations resulting from expanding
the current interpretation by an atom of the expansion clause at a time. A query
@ is a logical consequence of a set of clauses S if and only if SU {Q — L} has
no model.

We utilize a limited bidirectional proof search organization introduced

in ' and adopted in '¥.

The given disjunctive range-restricted clause set
is divided into two sets. The first, BC', the Backward-Chaining component
consists of a decidable Horn Clause set that includes the ICs of the database
and those representing the negation of the query. The second, F'C, the Forward-
Chaining component, contains the remaining elements of the database including
all disjunctive clauses.

The following is a simplified formal description of SATCHMO '¥:

Definition 2.4
(SATCHMO) Given a set T of RR clauses, SATCHMO operates as follows:

For each set I of ground atoms (initially empty):

. f BCUIF L then BC UF(C UI is unsatisfiable.

2. If BOCUTI i L then select a clause C € FC such that BC U T F
Body(C)|o, where o is a grounding substitution, and BCUI ¥/ Head(C)|o
(C is wviolated). If no such clause exists then a minimal model of BC'UT
is a model of BC'U FC. The set T is satisfiable.

3. For each atom A; in Head(C)|o of the violated clause C call the pro-
cedure recursively with BC' U I', where I' = T U {A;} (and the same
FQ).

If BC U FC UI' is unsatisfiable for every A; then BC U FC U I is
unsatisfiable.
T is shown to be unsatisfiable by completing the recursive call on the

first selected violated clause.

The set I of atoms in the above definition is called a partial interpreta-
tion.
The following Prolog code gives the SATCHMO program '* .



6 Donald W. LOVELAND and Adnan H. YAHYA

?- op(1200,xfx,’--->’). satisfy(C):-
component(X,C),
unsatisfiable:- asserta(X),
bottom. write(’Asserting:’), write(X), nl,
unsatisfiable:- on_backtracking(retract(X)),
not satisfiable. not bottom.
satisfiable:- component (X, (Y;Z)):-
is_violated(C),!, !, (X=Y; component(X,Z)).
satisfy(C), component (X,X).
satisfiable.
satisfiable. on_backtracking(X).
on_backtracking(X):-
is_violated(A,C):- X, ', fail.

(A --->C),A, not C.
SATCHMO uses ICs to discard partial interpretations when the latter

become inconsistent with the constraints. This may be a disadvantage when
SATCHMO is used for query answering, where the negation of the query is
added to the database and a refutation is sought. Except at the final stage,
SATCHMO computations do not involve the query; they are not goal-directed.

This can be costly in many cases.

2.3 SATCHMORE

The major shortcoming of SATCHMO is its eagerness to expand violated
clauses even when they have no contribution to the refutation being sought. To
avoid this, the idea of introducing relevancy was suggested > '®. Under the
restriction, only clauses shown to be relevant are allowed to participate in the
SATCHMO-style computation. Partial relevancy '* allows a clause to be used
in the computation if one of its head atoms is relevant to the query while under
total relevancy '® all head atoms are required to be relevant. The latter is the

more interesting case and the one which is incorporated into SATCHMORE.

Definition 2.5

(Relevant Atom) Given a Horn clause set BC and a conjunction of atoms G,
such that BC I/ G, then each leftmost atom of a node in the failed SLD-tree '
for BC U {Ll : LG} is extended relevant to the derivation of G from BC. A

ground instance A, of an extended relevant atom A is relevant if BC' i/ A,.

The leftmost atoms of a node in a SLD-tree are the body atoms that
have been expanded, i.e. for which program clauses have been sought to satisfy
these body atoms. For any particular failed body atom A, either A or an atom

below A has not found a matching program clause. A failed body atom, marked



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 7

by SATCHMORE and considered extended relevant, has as bound variables
only those variables bound by inheritance from the clause head. We will refer
to non-ground atoms as relevant when all ground instances are relevant.

Consider the following example:

Example 2.1
We give only the BC clause set component.
BC: bottom :- p(X,Y),q(Y).
pX,b) - r(X,Y).
r(a,a).

The extended relevant atoms are: p(X,Y),r(X,Y), q(b).
The relevant atoms are: p(a,a),p(b,a),p(b,b),r(a,b),r(b,b),r(b,a),q(b).

Definition 2.6
(Relevant Clause) Given a set of (extended) relevant atoms R and a clause
C in FC then C is an (extended) relevant clause if and only if Head(C) C R.

That is, iff all head atoms of C' are (extended) relevant.
The following is a simplified formal description of SATCHMORE '*:

Definition 2.7
(SATCHMORE) Given a set T of RR clauses, SATCHMORE operates as
follows:

For each set I of ground atoms (initially empty):

1. If BCUIF 1 then BC'UFC U is unsatisfiable.

In attempting to derive L mark any extended relevant literals encoun-
tered.

2. If BOUI/ L then select an extended relevant clause C' € FC. If no
such clause is found then the minimal model of BC'UI can be extended
into a model of BC U FC.

3. If C is not wviolated then return to step 2 for another extended relevant
clause.

While checking for violation of C' mark any extended relevant literals
encountered.

4. If C is violated: BC U I + Body(C)|o, where o is a grounding sub-
stitution, and BC' U I i/ Head(C)|o then the ground instance Clo is
relevant. For each atom A; in Head(C)|o call the procedure recursively
with backward-chaining component BC' U I', where I' = TU {A;} (and



Donald W. LOVELAND and Adnan H. YAHYA

the same F'C).

If BC U FC U I' is unsatisfiable for every A; then BC U FC U I is
unsatisfiable.

T is shown to be unsatisfiable by completing the recursive call on the

first selected violated relevant clause.

The following Prolog code gives SATCHMORE program.

The step

7- op(1200,xfx,’——->’).
unsatisfiable:- satisfy(C):-
bottom. component(X,C),
unsatisfiable:- (retract(marked(_)), fail; true),
not satisfiable. asserta(X),
write(’Asserting:’), write(X), nl,
satisfiable:- on_backtracking(retract(X)),
is_relevant(A,C), not bottom.
is_violated(A,C),!,
satisfy(C), component (X, (Y;Z)):-
satisfiable. !, (X=Y; component(X,Z)).
satisfiable. component (X,X).
is_violated(A,C):- on_backtracking(X).
A, not C. on_backtracking(X):-
X, !, fail.
is_relevant (A,C):-
retract (new_mark), each_marked((C1;CRest)):-
(A--->C), each_marked(C). !, marked(C1),
is_relevant (A,C):- each_marked(CRest).
new_mark, each_marked(C):-
is_relevant(A,C). marked(C) .

mark_unique(X):-
(marked(Y), is_instance(X,Y),!;
subsume_and_mark(X)).

subsume_and_mark(X) :-

marked(Y), is_instance(Y,X), retract(marked(Y)), fail.
subsume_and_mark(X) : -

(new_mark, !; asserta(new_mark)),

assertz(marked(X)).

is_instance(X,Y):- not X=Y , !, fail.
is_instance(X,Y):- var(Y),!.
is_instance(X,Y):- nonvar(X),

functor(X,F,N), functor(Y,F,N), inst_args(X,Y,N).
inst_args(_,_,0):- !.

inst_args(X,Y,N):- arg(N,X,Ax), arg(N,Y,Ay),
is_instance(Ax,Ay), N1 is N-1, inst_args(X,Y,N1).

where SATCHMORE differs from SATCHMO is that it checks for a



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 9

relevant violated clause rather than simply a violated clause as a candidate for
expansion. This is done through the invocation of is_relevant(A,C), which
precedes is_violated(A,C) in satisfiable. Propagation of extended rele-
vancy takes place when the relevant clause is tested for violation. The mecha-
nism for determining extended relevant atoms, that is, the appropriate entries
in the failure tree, involves the marking clause, which uses the mark_unique
predicate. Each atom A in the head of a F'C clause has a marking clause at the
end of BC whose head subsumes A. A marking clause is called after failure to
find any other eligible clause in BC. It executes a check for previously marked
atoms so as to retain the most general instance, and, if appropriate, records the
new atom as marked. Example 2.2 includes the appropriate marking clauses,
which are omitted from further examples.

Due to the exponential nature of answer computations in disjunctive
theories, the relevancy restriction often results in better performance despite
the relevancy testing overhead. This is shown in detail in .

The following example taken from '® demonstrates the possible gains

resulting from relevancy testing employed by SATCHMORE.

Example 2.2
The following set of clauses is in the proper input format.
BC: bottom :-p(c,X,Y).

bottom :-q(X,c,Z).
bottom :-r(X,Y,c).
t(X) :- mark_unique(t (X)), fail.
p(X,Y,Z) :- mark_unique(p(X,Y,Z)), fail.
q(X,Y,Z) :- mark_unique(q(X,Y,Z)), fail.
r(X,Y,Z) :- mark_unique(r(X,Y,Z)), fail.

FC: true ---> t(a).
true ---> t(b).
true ——-> t(c).

t(X), t(Y): t(z) -——=> P(X,Y,Z)§ q(X,Y,Z); r(XQYQZ)

A SATCHMO computation will examine all possible instances of the last
clause with the resulting large number of cases considered. SATCHMORE on
the other hand examines exactly the required instance, since only that instance
is extended relevant and violated, to find a refutation. The difference in per-

formance (resulting from expanding only the required instance of the last input



10 Donald W. LOVELAND and Adnan H. YAHYA

clause) is large '*.

2.4 Relevancy and Integrity Constraints (ICs)

The way SATCHMORE detects relevancy is by declaring all ICs, in-
cluding the query negation, relevant and propagating this relevancy from clause
heads to clause bodies. This is the result of propagating extended relevancy from
L at step 1 of the SATCHMORE algorithm. However, some of these ICs may
have no contribution to the process of answering the query at hand and their
presence may be undesirable as it drags members of F'C' into the computation
that are not needed for finding a refutation.

Here is an example where a single irrelevant IC drags into “relevancy”

useless components of the given set of clauses.

Example 2.3

Consider S = S, U Spotr where S, = {C; =T = b,Cy = b = Q}, Snotr =

{ap = L,ap, = ap_1,...,a2 = a1,a1 = ag,apVar,ar Vas, ...} and the query Q.

Then, a suitable input in the SATCHMORE style is:
BC={L:1Q,b;Q:1b,L: Lag,an—1: Lan,...;a1: Las,a0: Lay}
FC={T > an;an-1,T = an_1;0n-2,...., T = ag;a1, T = a1;ap}.
Including the IC of S, in BC will make all literals of S04, relevant

and expand the search space* with all elements of FC.

However, clearly one cannot ignore the constraints in the refutation pro-

cess; it becomes incomplete.

Example 2.4
Consider S ={C; =QVb,Cy =b— ¢,C3 =c¢c— L} and the query Q.
Clearly none of the clauses of S is relevant if C3 is ignored. If used then

all the clauses become relevant and the refutation is achieved.

One way to avoid the problems illustrated here is to initially use the
negation of the query and none of the other ICs. The latter are introduced on
demand (and only after failing to find clauses relevant to the query alone). If we
are unable to find a relevant and violated clause without introducing ICs, then

we would like to invoke only the ICs that are necessary to advance the search for

** The source of the elements of Syt could be e.g. portions of databases independent of
that to which the query is posed in a distributed environment.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 11

a refutation by contributing to the relevancy of clauses needed in the refutation.
We approximate this ideal in large part by seeking to extend selected partially
relevant seed clauses to (totally) relevant clauses. This is done by determining
sets of ICs that allow SATCHMORE to deduce that those seed clauses are
relevant. This is done one seed clause at a time, with an unsatisfiability test
done after each IC set is added.

The details are given in Section 3.

2.5 Sources of (Harmful) Negative Data
Several sources of negative data are possible that may drag into relevancy

a large portion of the database. A partial list is:

1. Instances of nonground integrity constraints. Ounly certain (a small
number of) instances of a constraint may be relevant to a given query.
However, the irrelevant instances are still there and may render many
of the database clauses relevant and they negatively affect the compu-

tation.

Example 2.5

Consider the following set of clauses.

BC: bottom :-p(c,X,Y).
bottom :-q(X,c,Z).
bottom :-r(X,Y,c).

FC: true ---> t(a).
true ---> t(b).
true —--> t(c).
t(X), t(Y), t(Z) ——> p(X,Y,2); q(X,Y,2); r(X,Y,2).

v(X,Y,Z2),s(X) ---> r(a,b,c).

k(X,Y,2) -——> v(X,Y,Z).

mn(X,Y,z) ---> v(X,Y,Z).

n(X,Y,2) ---> v(X,Y,Z).

JX),i(N,j@) —--> k(X,Y,2);m(X,Y,2);n(X,Y,2).
true ---> j(g).

true ---> j(h).

true ---> j(i).

This is an expansion of Example 2.2. The added clauses are dragged



12

Donald W. LOVELAND and Adnan H. YAHYA

into the computation by having the irrelevant instance r(a,b,c) of
the IC bottom :-r(X,Y,c). in the head of the first added clause
v(X,Y,Z),s(X) ---> r(a,b,c). In a sense this instance creates a
relevancy link between the original and new components. Operating
on the resulting set of clauses, SATCHMORE takes days to answer the
query though it could do that in a fraction of a second without the

added irrelevant clauses.

Combining knowledge bases: When the constraints in one base, say
S;, while useful for answering queries against S; maybe (and generally
are) of no use to queries against S;, j # i. However, they may have
the effect of making much of the other bases relevant and therefore

participate in the computation.

Example 2.6
We present a class of clause sets, with a fixed BC' and an indexed F'C;.
For FC; there is a fixed portion S, (the first eight clauses) and an

indexed portion we label N H; for future reference.

BC: bottom :- Q.
FC;: a,d---> e;f. true --->c.
c,e——> b. true --->Q;a.
d,f---> g f,g--->bottom.
c--->d. b,e--->bottom.
ti,ri,mi---> si. ti,ki,si-—-->bottom.
ti,ki——-> mi;si. ti,ki,mi--->bottom.
ji,ni---> si;ti. ni,hi,ri--->bottom.
hi,mi---> sij;ti. ji,ki,ti--->bottom.
ri--->mi;ni. ji,ri,si--->bottom.
true --->ti;ri. hi,ti,ji--->bottom.
true --->ki;pi. ti,ri--->bottom.
true —--->hi;ti;ji. si,ni,mi--->bottom.

Sy is the base set of clauses in which the query @ is answerable and
NH; is the foreign NonHorn set of clauses which has nothing to do
with the query.

SATCHMORE will activate both sets in its search for a refutation and

the resulting timing of proving the query () deteriorates rapidly as more



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 13

foreign bases are added. We will give our experimentation results at a

later stage.

83 SATCHMOREBID

In SATCHMORE, all ICs, independent of whether they originate in the
database itself or query negation, participate in the computation on equal footing
and relevancy is propagated from any of them. In defining our new procedure,
SATCHMOREBID, we will use only a subset of the ICs; usually the initial IC
set comes only from the query. The set of useful ICs is grown as the computation
proceeds, and often a sufficient set of ICs is obtained before all ICs are invoked.
To realize this we form two overlapping subsets BCy and F'C from the given
database S plus the query negation. F'C is static and includes all elements of
S (but not the query negation). BCj consists of the negation of the query in
addition to any user-selected Horn clauses of S such that proof termination is
assured. Usually no other ICs are included in BCy, but the user may choose
to include any IC clauses known to participate in the query deduction. At any
given stage and for the current value of i, only ICs in BC; and no other IC
of FC are used in defining relevancy. Relevant atoms and clauses are always
defined relative to the current BC;, even when this is not explicitly mentioned.
Non-negative clauses of F'C are used in a forward chaining mode to detect ICs in
FC that are later promoted to become elements of the next BC;. ICs promoted
to the backward chaining component are not removed from FC and therefore
F(C stays constant.

The ICs of BC; are distinguished from the ICs of F'C' by their form.
The forms are L : 1 Body(C) and Body(C) — L respectively.
An IC Body(C) — L € FC is promoted to be an element of BC; 1, by asserting
the clause L : L Body(C).

Definition 3.1

(Partially Relevant Clause; Atom) Given a set of (extended) relevant atoms
R and a clause C in FC, then C is a partially relevant clause if and only if
Head(C)N R # § but C is not an (extended) relevant clause. A head atom A

of a partially relevant clause is a partially relevant atom if and only if A ¢ R.

Definition 3.2
(SATCHMOREBID) Given a RR database S, an atomic query ) and the set
BCy defined as a Horn subset of S union {1 : 1@}, SATCHMOREBID operates



14

Donald W. LOVELAND and Adnan H. YAHYA

as follows:

For each set I of ground atoms (initially empty) and the current BC;

(initially i = 0):

1.

If BC;UItF 1 then BC; U FC U I is unsatisfiable.

In attempting to derive L mark any extended relevant literals encoun-
tered.

If BC; UI I/ L then select an extended relevant clause C € FC. 1If
no such clause is found then let BC;11 = BC; U FR(BC;,I), where
FR(BC;, 1) is the set of ICs in F'C that are forward reachable*” from I
and the set of partially relevant atoms relative to BC;. If BC; 11 = BC}
then S U BCj is satisfiable and the minimal model of BC; U I can be
extended into a model of S U BCj.

Otherwise, (BC;y1 # BC;). Let i =i+ 1; and go to Step 1.

If C is not violated then return to step 2 for another extended relevant
clause.

While checking for violation of C' mark any extended relevant literals
encountered.

If C is violated, where ¢ is a grounding substitution, and BC; U I /
Head(C)|o then the ground instance Clo is relevant. For each atom
A; in Head(C)|o call the procedure recursively with backward-chaining
component BC; U I', where I' = TU {A;} (and the same FC).

If BC; U FC U I' is unsatisfiable for every A; then BC; U FC U I is
unsatisfiable.

S U BCj is shown to be unsatisfiable by completing the recursive call

on the first selected violated clause.

We comment on item 2 of the definition. On failing to find a refutation

using SATCHMORE with the current BC; SATCHMOREBID doesn’t fail but
attempts to expand BC; into BC;41 by promoting ICs from F'C. This is done
through computing FR(BCj;, I), the set of ICs in F'C' that are forward reachable

from I and the set of partially relevant atoms relative to BC;. If this set is empty

then the procedure fails and reports satisfiability. Otherwise, BC; changes and
the SATCHMORE code is invoked with BC;y1. So only if both SATCHMORE

with the current BC; and the forward reachability search fails does the procedure

report failure (satisfiability). Otherwise it makes another attempt at finding a
refutation. Therefore, for a given BC; and I it is well-defined to talk about the

*3 This term is formally defined later.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 15

SATCHMORE invocations in SATCHMOREBID, as we do frequently later in
this paper.

3.1 SATCHMOREBID Program

We now list the SATCHMOREBID program. The input is in two (gen-
erally overlapping) components, BC and FC, where FC contains all clauses
except the IC associated with the query. BC is a decidable subset of the Horn
clauses, contains the query IC but generally does not include all the needed ICs.
If more than one IC is included in BC then the query IC should appear first.
The formats for the clauses of BC and F'C are as previously stated, and as for
SATCHMO and SATCHMORE.

The operation of SATCHMOREBID is as for SATCHMORE until no
extended relevant clause can be found. Recall that an extended relevant clause
has each head atom extended relevant, i.e. satisfying the marked predicate.
The only variations from the original SATCHMORE code (other than the call
to part_relevant) are the goal clause(bottom, Q) by which the query atom
name is acquired and the assertion and possible retraction of new_in_I(X) for
each new member X added to the partial interpretation I. These are of no use
until part_relevant is invoked. (By invoking part_relevant we will mean
the activation of the second clause of part_relevant due to a failing back
to part_relevant, often called a REDO call to part_relevant. A call to
part_relevant is a passthrough (NO OP) that allows SATCHMORE to pro-
ceed until completion or failure to find an extended relevant clause, which causes
a REDO call to part_relevant.)

The purpose of part_relevant is to add to the set of ICs entered in BC'
to increase the chance that SATCHMORE will succeed. We seek to enrich the IC
set in BC' by chaining forward to the ICs needed. The forward chaining begins
with a “seed”, either a partially relevant clause or an element of I. Each head
atom of a selected clause is matched with a body atom (the forward linking) of
a clause of F'C' and all head atoms of the new clause again linked to other body
atoms. (The query atom is excepted; see below.) This recursion forms a “fan”
of paths from the seed to a collection of ICs of F'C' plus the query negation,
some of which may be in BC' already. Those that are not are added to BC. The
fan of paths must all terminate in ICs for part_relevant to succeed, otherwise
backtracking occurs, perhaps back so far as to select a new seed. That all paths

terminate in ICs is a necessary condition for the seed clause to be determined



16 Donald W. LOVELAND and Adnan H. YAHYA

?7- op(1200,xfx,’--->’).
part_relevant.
unsatisfiable:- part_relevant:-
bottom. from_the_top,
unsatisfiable:- ((A--->C), one_marked(C); true_in_I(A,C)),
clause(bottom,Q), forward(A,C),
not satisfiable. retract(new_IC),
find_relevant_atoms.
satisfiable:-
part_relevant, true_in_I(true, element_of_I):-
is_relevant(A,C), retract(new_in_I(element_of_I)).
is_violated(A,C),!,
satisfy(C), one_marked(C) : -
satisfiable. component (X,C),
satisfiable. marked(X), !.
is_violated(A,C):- forward(A,bottom) : -
A, not C. I, (clause(bottom, A), !
is_relevant (A,C):- assertz((bottom :- A)),
retract (new_mark), (new_IC; assertz(new_IC)),
(A--->C), each_marked(C). (added_IC; assertz(added_IC))).
is_relevant (A,C):- forward(_,C):-
new_mark, each_forw(C).

is_relevant(A,C).
each_forw((C1;CRest)):-

satisfy(C):- 1,(C1=Q; find_body(C1)),
component (X,C), each_forw(CRest) .
(retract(marked(_)), fail; true), each_forw(C):-
asserta(X), asserta(new_in_I(X)), (C=Q; find_body(C)).
write(’Asserting:’), write(X), nl,
on_backtracking(X), find_body(Ccomp) : -
not bottom. (A--->C), ck_in_A(Ccomp,A),

forward(A,C).
component (X, (Y;2)):-

!, (X=Y; component(X,Z)). ck_in_A(Ccomp,A):-
component (X,X) . body_component (X,A),
Ccomp=X.
on_backtracking(X).
on_backtracking(X):- body_component (X, (Y,Z)):-
retract(X), !, (X=Y; body_component(X,Z)).
(retract(new_in_I(X)); true), body_component (X,X) .
!, fail.
from_the_top.
each_marked((C1;CRest)):- from_the_top:- retract(added_IC), from_the_top.
', marked(C1),
each_marked(CRest) . find_relevant_atoms:- bottom, !.

each_marked(C) :- marked(C). find_relevant_atoms.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 17

mark_unique(X):-
(marked(Y), is_instance(X,Y), !;
subsume_and_mark(X)).

subsume_and_mark(X) : -

marked(Y), is_instance(Y,X), retract(marked(Y)), fail.
subsume_and_mark(X) :-

(new_mark, !; asserta(new_mark)),

assertz(marked(X)).

is_instance(X,Y):- not X=Y , !, fail.
is_instance(X,Y):- var(Y),!'.
is_instance(X,Y):- nonvar(X),

functor(X,F,N), functor(Y,F,N), inst_args(X,Y,N).

inst_args(_,_,0):- !.
inst_args(X,Y,N):- arg(N,X,Ax), arg(N,Y,Ay),
is_instance(Ax,Ay), N1 is N-1, inst_args(X,Y,N1).

relevant by SATCHMORE, and constitutes an atomic step, in some sense, in
the progress of SATCHMORE towards a refutation.

We now outline a walkthrough of an invocation of the procedure part_relevant.
The procedure from_the_topis a passthrough when called; its purpose is to force
a repeat of part_relevant. This may be needed if an IC has been added in
a previous execution of part_relevant since new ICs can define new partially
relevant clauses which in turn are seeds for discovery of new ICs. Recall that
part_relevant does not succeed due to the discovery of one new IC, but rather
must, complete a fan of paths. Failing completion, backtracking occurs and new
seeds may have to be processed.

The compound goal following from_the_top creates the seeds for the
forward chaining. A seed may be a partially relevant clause, detected by the
presence of a marked atom, or an element of I. If every clause in F'C either fails
one_marked or cannot identify an IC for each forward path, then elements of 1
are selected as seeds, structured as (true ---> X), for X € I.

The next goal in part_relevant is forward(A,C), which contains the
basic recursion of the forward chaining. The first clause of the procedure forward
handles the IC, checking for redundancy and then asserting the IC. The flags are
then set; added_IC is used by from_the_top, discussed above. The flag new_IC
indicates that at least one new IC has been defined, a requirement for success
of part_relevant. Note that the purpose of new_IC is quite different from the
flag added_IC; the former is turned on at most once per run of part_relevant,
the latter is turned off with each REDO of from_the_top.

If the clause passed to forward is not an IC, then the second clause of



18 Donald W. LOVELAND and Adnan H. YAHYA

forward sends the clause head to each_forw, which in turn sends each head
atom excepting the query atom to find_body. The query atom is excluded
because its IC is not in F'C, the only clause not in F'C. No search for ICs to es-
tablish the relevance of the query is needed, of course. A more complex program
can remove other atoms of each_forw so they do not reach find_body. Head
atoms of paths originating in partially relevant clauses can be blocked if they are
extended relevant. Relevant atoms already have paths to ICs, by the definition
of relevance. Provable head atoms prevent the clause from being violated, so the
clause cannot be on the path that uses the IC to establish relevancy for the seed
head atom. However, no similar argument holds for elements of I, which use the
same forward chaining mechanism. Failure to use the more complex program
design may cost extra computation time, but we suspect that few unneeded ICs
enter for this reason. This is partly because provable atoms either use elements
of I (hence handled elsewhere) or will not connect to an IC as F'C is consistent.

The procedure find_body finds a clause instance in F'C' with a body
atom that agrees with the given atom. The discovered clause instance is in turn
processed by forward, which perpetuates the recursion.

The recursion terminates with the discovery of an IC or with failure
in find_body to find a clause to continue the forward chaining. The latter
outcome triggers a backtracking where the main choice points are the sweep of
FC in find_body and part_relevant. Exhaustion at these points results in
the failure of part_relevant. Failure of part_relevant generally means that
the clause set is satisfiable, but ICs could have been introduced that make BC
unsatisfiable. This only arises if the database itself is inconsistent and catching
this inconsistency would be a happenstance that all pertinent clauses were in
BC at this point. No action is taken to detect this anomaly, although the
addition of body not bottom to the second clause of satisfiable will detect
the unsatisfiability of BC. Again, failure of part_relevant means satisfiability
of BCy U FC (this strange case excepted).

If the recursion does terminate with an IC, then find_body succeeds
and each_forw may call another instance of find_body. Barring failure of
find_body, discussed above, the call to forward in part_relevant eventually
succeeds. Then new_IC is probed (and retracted). If a new IC was entered
into BC during this invocation of part_relevant then a new attempt to prove
bottom identifies any new (extended) relevant atoms defined by the new ICs in
BC. Now part_relevant succeeds and control is returned to the SATCHMORE

code for a new try at proving unsatisfiability.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 19

3.2 Correctness of SATCHMOREBID

Until otherwise stated, all clause sets of this section are ground. Through-
out the proofs of this section it is very important to be clear about relevancy
and extended relevancy. We will use the term “extended relevancy” whenever

that term is intended.

Lemma 3.1
(SATCHMORE property) When SATCHMORE fails with BC;, then every
(totally) relevant clause in F'C (relative to BC;) also has a body atom that is

relevant.

Proof If some relevant clause has no relevant body atom, then all body
atoms are provable, whereupon the clause is violated and a head atom entered
into the partial interpretation. Such a head atom is not relevant, contradicting

our assumption that the clause is relevant. [ |

Definition 3.3
(Forward Reached) An atom is a Forward Reached (FR) atom if and only if

it appears as an argument of the find_body procedure and is not relevant.

Starting with the head atoms of seed clauses, all head atoms that are
passed to forward, except for bottom, are also passed to find_body. (We men-
tioned in the last subsection that a more complex program can filter out marked
atoms when the seed of this forward chaining is a partially relevant clause.) The
set of FR atoms includes all atoms of the current partial interpretation I as
these atoms are seeds retrieved by true_in_I. These atoms cannot be relevant
as their assertion makes them provable, but they might be extended relevant by
happenstance (by an occurrence in a failed antecedent). Note that bottom is

not a FR atom.

Lemma 3.2

(Clauses with FR body atoms) Given a set of RR clauses S and for a given
BC; and partial interpretation I, if both SATCHMORE and part_relevant
fail then any clause in FC with a FR body atom has either

1. A FR head atom, or
2. A relevant body atom.

Proof By the construction of procedures forward, each_forward and find_body,
every non-relevant head atom (excepting bottom) of a clause containing a FR

body atom is a FR atom. Every clause with the FR body atom is processed



20 Donald W. LOVELAND and Adnan H. YAHYA

because the failure of part_relevant means that the first goal of find_body
attempts a unification with all clauses of F'C before it fails. If all the head atoms
are relevant atoms then, by the SATCHMORE property, the clause also has a
relevant body atom. Thus, the lemma holds for non-IC clauses. For an IC-clause
that is in BC; we note that the body always contains a relevant atom, so then
condition 2 is satisfied. If an IC-clause is not in BC; but contains an FR body
atom then it must have been promoted to be a member of BC;y;. But then
BC;41 # BC; and part_relevant would not have failed. A contradiction.
Thus there is no IC-clause not in BC; with an FR body atom. So, the lemma
holds for all clauses in FC with a FR body atom. ]

Lemma 3.3

(part_relevant success) If F'C is satisfiable, FCUBCj, is unsatisfiable, SAT CH-
MOREBID has defined BC;, for some i > 0, in the processing of FFC' U BCy, and
part_relevant is reentered after a failure of SATCHMORE, then part_relevant
will succeed with BC;y1 # BC;.

Proof Because part_relevant cannot succeed without the addition of some
IC-clause to BC}, by explicit test, we need only show that part_relevant suc-
ceeds.

We suppose that part_relevant is reentered but does not succeed.
From that we will show that then FFC U BCj has a model, contradicting the
unsatisfiability of FC U BCj.

We define the interpretation M for F'C U BCy by the following steps:

1. All relevant atoms are defined to be false. The relevant atoms are
determined by the last failed run of SATCHMORE.
All FR atoms are defined to be true.
The minimum model M* of F'C provides the truth assignments to the

remaining atoms.

Since F'C is satisfiable one or more models exist for F'C' without the
constraints of (1) and (2).

We now show that M is a model for FC' U BCy under the assumption
that BC;y1 = BC;.

1. BCy clauses. This contains IC-clause bottom:- Q. The atom @ is
relevant, hence false in M. The clause thus is true in M. All other

clauses appear also in F'C and are considered there.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 21

2. For FC clauses, we need only be concerned with clauses that involve

atoms with truth values changed from M* as M™ is a model of FC.

a. C is a clause of the form Body(C) — Head(C) and Head(C) has
at least one reassigned head atom. We need only be concerned with
head atoms reassigned to false in M. But only the relevant atoms
could have been reassigned to false. Thus we can assume that at
least one head atom is relevant. If all head atoms are relevant then
by the SATCHMORE property there is also a relevant body atom,
and that is false in M. Such a clause is therefore true in M. If not all
head atoms are relevant atoms then the clause is partially relevant,
and by the code of part_relevant the non-relevant atoms are FR
atoms. Such atoms are reassigned true in M, so such clauses are true
in M.

b. C is a clause of form Body(C) — Head(C) and Body(C) has at
least one reassigned body atom. We need only be concerned with
the reassignment of a truth value to true in the body. Suppose that
A has been reassigned to true in M. Then A must be a FR atom.
By the Lemma 3.2, C then has either a FR head atom, with truth
value true in M, or a relevant body atom, which has truth value false

in M. In either case, C' is true in M.

Having accounted for all cases we see that M is a model of FC U BCyj.
|

SATCHMO, SATCHMORE and SATCHMOREBID all have termina-
tion problems, but those of SATCHMOREBID differ from the others. SATCH-
MOREBID has termination problems with the forward relevancy checking of
part_relevant and this can occur at the ground level. Clausesa L L1 > b and
bl 11 > atogether in FC can cause looping as can any more complex clause sets
that incur looping. For databases, the focus of applications of SATCHMORE-
BID in our view, cycles are less likely than in theorem proving applications, but
we must note the hazard. The protection against non-termination is that em-
ployed by SATCHMO ' (at the first-order level), the use of level-saturation.
This is in effect a breadth-first search (but most likely would be implemented
as an iterative-deepening search) which is definitely more expensive than the
depth-first style search employed by Prolog. Non-termination comes to all the
above systems for first-order clause sets, so we do not view the added exposure

to non-termination in part_relevant as a serious problem. Completeness re-



22 Donald W. LOVELAND and Adnan H. YAHYA

sults must assume the level-saturation version, although such versions will not
be used in practice for most problems. Of course, it is necessary to make BC
always terminating (“decidable”) but this is easily done by careful selection of

Horn clauses for BC.

Theorem 3.1
(Ground completeness of SATCHMOREBID) Let () be an atomic query
and S be a consistent range-restricted database. If T = SU{L : LQ} is un-
satisfiable and either T' contains no cycles or SATCHMOREBID employs level-
saturation to insure termination, then SATCHMOREBID succeeds (reports un-
satisfiability).

Proof

The clause set T is represented by BCy U F'C, where BCy contains
clause L : 1@ and possibly other Horn clauses (including other ICs on occa-
sion). (We assume BCj is decidable.) By Lemma 3.3 whenever both SATCH-
MORE and part_relevant fail, then BC;;1 properly contains BC;. Failure
of SATCHMOREBID requires a succession of failures of both SATCHMORE
and part_relevant, for each failure that creates a new BC;4, forces SATCH-
MORE to process the new representation BC;1, U F'C. ICs are thus added to
the variants of BC until SATCHMORE succeeds, because the completeness of
SATCHMORE assures detection of unsatisfiability when the full set of ICs of
the unsatisfiable set BCy U F'C' is active. [ |

Note that in order for SATCHMOREBID to work correctly, we insist
that the original set of clauses (without the query negation) be consistent. A
test of this fact needs to be performed outside of SATCHMOREBID. In a sense,
SATCHMOREBID is attempting to find a subset of the database that is incon-
sistent with the query negation. If such a component exists then the procedure
reports success. Otherwise it reports failure (satisfiability), even if the database
itself was inconsistent. While the latter is not logically correct it may be a fea-
ture that is useful for answering queries in the presence of inconsistent data.

However, we don’t pursue the details of this topic here.

Example 3.1
T={T->0Q:1Ve,T5Q2V fc>dVe,d— Le— L T—=bb—c}

The set is inconsistent. However, given the queries @}; and (2, using
SATCHMOREBID one is able to find a refutation that involves (J; but none that
involves (3. Note that SATCHMORE detects the inconsistency of the clause



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 23

set for both queries, and the clauses used exclude the queries.

We now consider the general first-order case. That is, the clause sets (or

databases and queries) are derived from sets of formulas of first-order logic.

Theorem 3.2
(Soundness of SATCHMOREBID) If SATCHMOREBID succeeds using a
Prolog with full unification on a first-order clause set T'= S U {L : L@}, where

S is consistent then @ follows from S.

Proof SATCHMOREBID uses SATCHMORE code to process clause sets
all of which are subsets of BCy U FFC. Therefore, the soundness of SATCH-
MOREBID follows form the soundness of SATCHMORE. [ ]

We have already noted that care is needed to assure termination of
SATCHMOREBID for arbitrary clause sets. First-order termination is a prob-
lem for all SATCHMO-based systems. See the discussion in '*.

Theorem 3.3

(Completeness of SATCHMOREBID) Given a level-saturated version of
SATCHMOREBID using a Prolog with full unification, if a database S is a
consistent set of first-order clauses and atomic query @ logically follows from S
then SATCHMOREBID succeeds given the clause set T = SU{L: LQ}.

Proof Using a now-standard lifting argument the ground completeness the-
orem is used to yield the first-order theorem. See a standard text on resolution

theory, such as * for details. [ |

From preceding considerations in this paper, it is clear that the above
theorem can be generalized to arbitrary unsatisfiable clause sets. We have stated
the theorem to address the most common envisioned use of SATCHMOREBID.

3.3 Efficiency Considerations and Design Tradeoffs

The goal of SATCHMOREBID is to limit the number of ICs that par-
ticipate in SATCHMORE-style computations on the assumption that the less
the number of such clauses the more the computation is focused on the truly
relevant clauses. The ideal situation is that only ICs needed for the refutation
are promoted to BC;. In an implementation the cost of filtering out undesired
ICs should be weighed against the possible gains. The following are some of the

points where one has to consider these tradeoffs and the choices adopted in the



24

Donald W. LOVELAND and Adnan H. YAHYA

implementation:

Once a nonground IC is shown relevant we can promote the original
clause, the instance as reached (maybe partially instantiated) or a par-
ticular ground instance. Promoting the entire clause may save us fu-
ture potential visits to that clause but will also make relevant clause
instances that are not really so and have them participate in the compu-
tation. One may opt for the middle ground as a compromise: promote
the clause instance as reached during the forward relevancy computation.
E.g. if the IC has the form p(X),q(Y)--->bottom and the partially rel-
evant atom is p(a) then assert bottom :- p(a),q(Y) rather than, say,
bottom :- p(a),q(a) or bottom :- p(X),q(Y). However the other op-
tions are open. In the implementation the reached clause instance is
promoted, be it ground or otherwise.

Independent of the choice in the previous point, we may elect to promote
to BC; all ICs that are reachable in the forward relevancy computation
or just one IC covering set at a time. An IC covering set is the set of
ICs that terminate the fan of paths, as introduced in Section 3.1. The
fan of paths only associates one clause at a choice point with each head
atom; backtracking can yield other choices. The alternate choices belong
to other potential IC covering sets. Once more the choice is between
potentially promoting ICs not needed for the computation or being forced
to redo the forward relevancy test if the promoted ones were not sufficient.
Here also one may select the middle ground by promoting one IC covering
set at a time while keeping the computation results in case there is a need
to promote additional clauses. The implementation promotes one set at
a time. Each IC set could be buffered and no IC is added to BC; until
all paths terminate in ICs (a covering set is found). If the fan of paths is
not completed, no IC need be added to BC;.

The fact that SATCHMOREBID uses SATCHMORE as its unsatisfiabil-
ity detection mechanism makes it possible to apply efficiency improvement
measures that are applicable to SATCHMORE here as well. One example
is the test for availability where a clause is only expanded if its atoms are
both relevant and available in that they stand a chance of being proved
). Another example is that a clause not allowed to be used for promot-
ing constraints unless all of its body atoms are shown to be provable by
having a link to a positive clause of the database or an element of the

current interpretation.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 25

3.4 Testing Results

Adding relevancy to SATCHMO contributed to improved performance
in many cases. In cases where relevancy testing is “irrelevant”, e.g. in the case
where all clauses of the database are relevant for the refutation, relevancy testing
is an overhead and performance will deteriorate as a result.

Similar reasoning is applicable to the introduction of forward relevancy
in SATCHMOREBID. If all ICs are relevant to the refutation, any forward
relevancy testing is unnecessary overhead and is bound to hurt performance.
The hope is that given a query @, combining forward and backward relevancy
will isolate the clauses that need to participate in the refutation, be they ICs or
otherwise.

To see how forward relevancy impacts query processing efficiency we ex-
perimented with several classes of examples. Next we report on our experiments
with the SATCHMOREBID program and compare the results with those for
both SATCHMO** and SATCHMORE. In all cases, when the processing time *°

exceeded 3 hours the run was aborted. The timing in this case is marked by OT.

1. (Nonground case) We tested variants of the problem in Example

%) with an added set of clauses that are

2.5 which is borrowed from
meant to make relevant clauses that have no contribution to the refu-
tation. Using SATCHMOREBID, the original and modified examples
were processed in time comparable to that of SATCHMORE on the
original (less than 0.2 seconds). SATCHMORE timing was 0.1 for the
case when only the j(g) fact was included, 704 seconds for the case
when the j(g), j(h) facts were included, and days for the case when the
j(9),7(h),7(i) facts were included (the computation was aborted after
3 days).

2. (NonHorn case) To test possible gains in performance as the pro-
portion of irrelevant ICs increases, we used a suite of problems based
on Example 2.6. We retained S, and added a progressively expand-
ing set of nonHorn clauses and related constraints. For each i, the

tested clause set is the query negation as BC and S, U (U NH;j) as
J<i

*1 SATCHMO tests were performed on a version given in '® which is close to the SATCH-
MORE implementation. That version is not fair and therefore the results here represent
the worst case scenario for SATCHMO as the unsatisfiable part of the theory appeared
last in the clause list.

** We emphasize the comparative performance of the programs on the given examples. The
experimentation was done on a Sun Microsystems Ultra 1 machine, 143 MHz clock speed
and 128 MB of memory .



26

Donald W. LOVELAND and Adnan H. YAHYA

FC; (see Example 2.6). The results are in line with our expectations.
SATCHMOREBID was able to isolate the required component for the
refutation and therefore maintained a constant processing time. The
performance of SATCHMORE on the other hand decreased as the pro-
portion of irrelevant ICs increased. The results are given in column 2
of Table 1.

(NearHorn case) The examples in the previous testing have major
nonHorn components. Since one may expect that real-life problems to
be nearHorn '», we performed tests on another suite of problems where
the base component, Sy, is the same as that of Example 2.6 but the
irrelevant components had a more nearHorn structure by having only

a single nonHorn clause:

nH; ={ ti,ki-——-> ji. ti,hi,si-—-->bottom.
ti,ki,ji---> mi;si;hi. ti,ki,mi--->bottom.
si,ji---> ni. mi,hi,ki--->bottom.
ki,mi---> ri. ri,mi,ji--->bottom.
ti,hi--->ri. ji,ri,si--->bottom.
true —-->ti. hi,si,ji--->bottom.
true --->ki. ni,ri--->bottom.
si,hi —--->ri. ni,mi--->bottom.}

We did the testing for several values of i. The clause set is as for the
NonHorn case, but with SbU(U nH;) as FC;. Here too the results were
J<i

in line with our expectations. SATCHMOREBID was able to isolate
the required component for the refutation and therefore maintained
a constant processing time. The performance of SATCHMORE on
the other hand decreased as the proportion of irrelevant ICs increased,
though the absolute times were always less than for the previous case,
reflecting the simpler nature of the irrelevant clause set. The results
are given in column 3 of Table 1.

(Mixed case) We also tested the case when the irrelevant set was
a combination of the two previous cases*’. BC stays as before and
FCy = Sy U ( U (nHj/;; UNHj/5)). As expected, the results

je{2.4,...,2i}

* Since the mixed case involved having a balance of nonHorn and nearHorn clauses, the

numbers given are restricted to half that of the nearHorn case. Other cases are marked
NA (not applicable).



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 27

were intermediate and are given in column 4 of Table 1.

Each ground test problem is balanced in the sense that the numbers of
regular clauses and ICs are almost equal. This and the internal structure of
the test examples explain the differences in run times between SATCHMO and
SATCHMORE. However, the fact that SATCHMOREBID performs well here
is an indication that it will perform well in real-life situations where excessive
numbers of ICs irrelevant to the queries being considered are present such as
when unrelated databases are combined. Of course, it is always possible to
construct examples where relevancy testing as a whole, and forward relevancy
testing in particular, are not needed and they will only add an overhead to the

computation.
84 Comparisons, Conclusions and Future Work

In this paper we presented the SATCHMOREBID approach to query
answering in disjunctive databases. The approach is based on detecting rele-
vant integrity constraints that are needed to answer the given query and having
only them participate in the refutation and no other ICs. This is done through
a forward search for the ICs of the database relevant to the query being pro-
cessed. The detected ICs are promoted to participate in a SATCHMORE-style
computation.

In as far as the effect of ICs on their clause expansion strategy, SATCHMO
and SATCHMORE represent two extremes. SATCHMO is not query or IC sen-
sitive in the sense that its clause expansion is not influenced by the ICs, while
SATCHMORE is equally sensitive to all ICs: its clause expansion process is
driven by ICs independent of their source. SATCHMOREBID on the other
hand is query sensitive. Its expansion is driven by the query negation and only
ICs shown relevant to the refutation. This approach complements the backward
relevancy testing discussed in ' '® and implemented in SATCHMORE ** '®
and avoids the drawback of SATCHMORE resulting from treating all ICs of the
database on parity with the negation of the query.

Testing results of SATCHMOREBID showed substantially improved per-
formance over a certain class of problems in comparison with SATCHMO and
SATCHMORE. This holds for problems with a large number of ICs, and maybe
a large extensional component (facts), such as the result of combining loosely
coupled knowledge bases. Even for problems for which either SATCHMORE
or SATCHMO are efficient, SATCHMOREBID performed well due to the ef-



28 Donald W. LOVELAND and Adnan H. YAHYA

ficiency of the forward relevancy check. By controlling the IC content of the
initial backward chaining component, BCy, one can manipulate the distance be-
tween SATCHMORE and SATCHMOREBID. SATCHMOREBID will simulate
SATCHMORE if all ICs are included in BCy in which case both procedures will
have almost the same performance, as was confirmed by our testing. SATCH-
MOREBID can be viewed as a generalization of SATCHMORE in the sense
that we can achieve SATCHMORE behavior by having all negative clauses of
the database as well as the query negation in BCy.

As is the case for SATCHMORE, SATCHMOREBID is a refutational
procedure rather than a model generator as is SATCHMO. In cases when the
theory is satisfiable it may return only a partial model. Actually, for certain
satisfiable theories the procedure may find no relevant (forward or backward)
clauses and thus perform no clause expansions. SATCHMO on the other hand
will return a model (of the database satisfying the query) if it fails to find a
refutation and reports satisfiability. While for certain applications the model
generation property is desirable, the introduction of relevancy was meant to cut
short many of the computations that are needed for model generation. This
pruning effect is a major source of efficiency of SATCHMOREBID.

The procedure was defined in close connection to SATCHMO and its
extension SATCHMORE. However detecting relevant clauses has a more general
utility and can be incorporated into other procedures, an issue that warrants
pursuing as a topic of further research.

Another issue of interest is to test SATCHMO and its modifications,
including SATCHMOREBID, against randomly generated sets of clauses and

study the behavior of each of these systems for different classes of inputs.

Acknowledgment This research was conducted while the second
author was visiting at the Computer Science Department of Duke University as
a Fulbright Scholar and an AFESD Fellow. The support of the Fulbright and
AFESD programs is highly appreciated.

References

1) F. Bancilhon, Y. Sagiv, and J. Ullman. Magic Sets and Other Strange Ways
to Implement Logic Programs. In Proceedings of the Fifth ACM SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 1-15, 1988.

2) F. Bry and A. Yahya. Minimal Model Generation with Positive Unit Hyper-
Resolution tableaux. Journal of Automated Reasoning,Volume 25, Issue 1, July
2000 pages 35-82.



SATCHMOREBID: SATCHMO(RE) with BIDirectional Relevancy 29

3)

14)

15)

16)

17)

18)
19)

20)

21)

F. Bry. Query Evaluation in Recursive Databases: Bottom-up and Top-down
Reconciled. Data € Knowledge Engineering, pages 289 312, 1990.

C. L. Chang and K. C. Lee. Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York, 1973.

R. Demolombe. An Efficient Strategy for Non-Horn Deductive Databases. The-
oretical Computer Science, 78:245 259, 1991.

T. Eiter and G. Gottlob. Complexity Aspects of Various Semantics for Disjunc-
tive Databases, Proceedings of the Twelfth ACM SIGACT SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS-93), 1993, June, 158-167,
R. Hasegawa, K. Inoue, Y. Ohta and M. Koshimura. NonHorn Magic Sets to
Incorporate Top-down Inference into Bottom-up Theorem Proving. Proceedings
of CADE97 pages 176-190. 1997.

L. He, Y. Chao, Y. Shimajiri, H. Seki and H. Itoh. A-SATCHMORE: SATCH-
MORE with Availability Checking New Generation Computing: 16, 1998, pages
55-T4.

C.A. Johnson. Top-down Deduction in Indefinite Deductive Databases. In
Journees Bases de Donnees Avances, pages 119 138, Toulouse, France, 1993.

J. Lloyd. Foundations of Logic Programming. Second Edition. Springer Verlag,
1987.

J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Pro-
gramming. MIT Press, 1992.

D.W. Loveland. Near-Horn Prolog. In J.-L. Lassez, editor,Proc. of the 4th Int.
Conf. on Logic Programming, pages 456—469.MIT Press, 1987.

D.W. Loveland, D. Reed, and D. Wilson. SATCHMORE: SATCHMO with
RElevancy. J. Automated Reasoning, 14:349 363, July 1995.

R. Manthey and F. Bry. SATCHMO: a Theorem Prover Implemented in Prolog.

In J.L. Lassez, editor, Proc. 9th CADE, pages 456 459, 1988.

Y. Ohta, K. Inoue and R. Hasegawa. On the Relationship Between Non-Horn
Magic Sets and Relevancy Testing. Proceedings of CADE -15, LNAI 421, pages
333-348, 1998.

D. Plaisted. An Efficient Relevance Criterion for Mechanical Theorem Proving.
,LAAAT-1980, pages 79-83, 1980

A. Rajasekar and H. Yusuf. Dwam - A WAM Model Extension for Disjunctive
Logic Programming. Annals of Mathematics and Artifitial Intelligence, 14:275
308, 1995.

R. Ramakrishnan and S. Sudarshan. Top-down vs. Bottom-up Revisited. In
Proceedings of the ISLP’91, 1991.

A. Ramsay. Generating Relevant Models. In Journal of Automated Reasoning,
Vol. 7. 1991. pages 359-368.

M. Stickel. Upside-down Meta-Interpretation of the Model Elimination Theo-
rem Proving Procedure for Deduction and Abduction. J. Automated Reasoning,
13(2):349 363, Oct 1994.

A. Yahya. A Goal-driven Approach to Efficient Query Processing in Disjunc-
tive Deductive Databases. Technical Report PMS-FB-1996-12. Department of
Computer Science, Munich University. July 1996.


https://www.researchgate.net/publication/44790956_SATCHMO_a_theorem_prover_implemented_in_Prolog?el=1_x_8&enrichId=rgreq-5243c96499994b107190c8b696068d5c-XXX&enrichSource=Y292ZXJQYWdlOzIzOTIyOTE7QVM6MzQwOTQ2NDUwNDM2MDk4QDE0NTgyOTkzNzY1ODQ=

30 Donald W. LOVELAND and Adnan H. YAHYA

H # of Irrelevant Blocks | NonHorn | NearHorn Mixed H

0-SATCHMORE 0.03 0.03 NA
0-SATCHMO 0.01 0.01 NA
1-SATCHMORE 0.52 0.15 NA
1-SATCHMO 0.03 0.05 NA
2-SATCHMORE 9.28 0.38 1.52
2-SATCHMO 0.13 0.12 0.23
3-SATCHMORE 45.02 0.82 NA
3-SATCHMO 4.98 0.30 NA
4-SATCHMORE 342.82 1.48 26.18
4-SATCHMO 31.58 0.65 4.45
5-SATCHMORE 2434.17 243 NA
5-SATCHMO 190.73 1.52 NA
6-SATCHMORE oT 3.73 312.88
6-SATCHMO 1114.02 4.05 62.23
7-SATCHMORE oT 5.45 NA
7-SATCHMO oT 8.92 NA
8-SATCHMORE oT 7.62 | 3065.00
8-SATCHMO oT 21.05 797.80
9-SATCHMORE oT 10.17 NA
9-SATCHMO oT 46.90 NA
10-SATCHMORE oT 13.33 | 26022.20
10-SATCHMO oT 104.32 | 9823.69
20-SATCHMORE oT 85.62 oT
20-SATCHMO oT oT oT

Table 1 Timing (in seconds) for SATCHMORE and SATCHMO as compared to the almost
constant SATCHMOREBID time of less than 0.1 seconds.



