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Abstract
We calculate the effect of the inclusion of the centre of mass (CM) motion on
the survival of light nuclear clusters in a vapour of nucleons at very low
densities and moderate temperatures. The Mott transition refers to the dis-
solution of these clusters above a certain vapour density (the Mott density).
The cluster CM motion has so far been included approximately or at fixed CM
momentum in calculations of the Mott density. Often it is neglected altogether
due to technical difficulties. In the present work we include the CM motion
exactly for clusters up to A= 4 and calculate its effect by averaging over all
values of the CM momentum at a given temperature rather than at a fixed
value of the CM momentum. We demonstrate that the inclusion of the CM
momentum shifts the Mott density to higher values. The shift, however,
decreases as the cluster mass increases.

Keywords: low density nuclear vapour, cluster formation, Mott transition,
centre of mass effects

1. Introduction

Nuclear matter is customarily viewed as a collection of interacting nucleons. At very low
densities (less than one tenth of nuclear saturation density) nuclear matter has been often
described as a vapour consisting of widely separated nucleons while at higher densities
nuclear matter is described as a liquid of closely interacting nucleons. Whereas the description
in terms of interacting nucleons has been successful at elucidating the properties of nuclear
matter at high densities, it has been found that the model breaks down at very low densities.
The breakdown of the model is due to the formation of light nuclear clusters at these very low
densities [1, 2]. These light nuclear clusters are essentially the same as ordinary light nuclei
(which exist in vacuum), except that their binding energy and other properties are modified by
the surrounding vapour of nucleons. The properties of these light nuclear clusters should
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approach those of ordinary light nuclei with the same number of protons and neutrons as the
density of the surrounding vapour of nucleons goes to zero. We use the term ‘clusters’ rather
than ‘nuclei’ in order to emphasize the modification of their properties by the surrounding
medium.

The abundance of light clusters in nuclear matter at very low densities and moderate
temperatures has been confirmed by several theoretical and experimental studies [1–7].
However, as the density of nuclear matter increases the properties of the clusters are modified
and their binding energy decreases until they finally dissolve into their constituent nucleons
above a certain critical density (the Mott density) [8]. The decrease in the binding energy of
the clusters is mainly due to the Pauli blocking effect which is caused by the indis-
tinguishability between the nucleons inside the clusters and the free nucleons in the sur-
rounding vapour. This indistinguishability means that the total wavefunction of the system
should be antisymmetric not only under the exchange of any pair of identical ‘internal’
nucleons that constitute the cluster but also under the exchange of an ‘internal’ nucleon with
an identical ‘external’ nucleon from the surrounding vapour. This leads to a reduction of the
binding energy of the nuclear cluster as compared to a free nucleus existing in vacuum.

More recently, the effect of the surrounding medium on the binding energy of light
nuclear clusters has been calculated in a quantum statistical approach [9]. Although the effect
of the cluster’s centre of mass (CM) momentum has been discussed in the first publications
dealing with the Mott transition, e.g. [2], many later calculations have been carried out at zero
total cluster CM momentum because of the difficulties inherent in the inclusion of this
momentum in a many-body theory even in the mean-field approximation [10]. A detailed
investigation of the effect of the CM momentum on the Pauli blocking term has recently been
given by Röpke [11].

In order to estimate the effect of the cluster CM momentum, we propose to use a
medium- independent wavefunction for the cluster and then carry out an exact separation of
the wavefunction of the CM motion from the wavefunction of the internal degrees of freedom
of the ‘internal’ nucleons that constitute the cluster. We then consider a system consisting of
the cluster and a free ‘external’ nucleon in the surrounding medium. The choice of a single
external nucleon is justified by the low density of the medium in which the cluster is
immersed so that the effect of the other external nucleons is simply additive and thus linear in
the density [8, 9]. This of course is a simplification since the change in the cluster’s binding
energy implies a modification of the cluster’s internal wavefunction and leads to a nonlinear
dependence on the density [11]. However, the present work is intended to investigate the shift
in the Mott transition due to the correct inclusion of the CM motion and it is expected that this
shift will not be affected by the nonlinear terms since these depend on the internal wave-
function of the cluster and not the CM momentum. It is hoped that in future work the
nonlinear effects can be included.

The total wavefunction of the system consisting of the cluster and a free ‘external’
nucleon is constructed such that it is antisymmetric under the exchange of this external
nucleon with each of the identical ‘internal’ nucleons. The Pauli blocking energy shift for the
cluster is then evaluated by calculating the change in the expectation value of the Hamiltonian
of the system resulting from the antisymmetrization of the total wavefunction. The calculation
is then repeated with the same wavefunction but with the total CM momentum of the cluster
set to zero. The difference between the two calculations gives the effect of the CM motion of
the cluster on the binding energy of the cluster and hence on the Mott transition. The much
smaller self-energy and Coulomb shifts are usually neglected, see for example [9], however
they are not momentum dependent and so they do not affect the main result of the present
work which is the dependence of the Mott transition on the CM momentum.
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There is an additional difference between the results of the present work and those of
previous calculations that dealt with the effect of the CM momentum on the Mott transition.
The previous calculations usually estimated the shift of the Pauli blocking term at a given CM
momentum. In the present work we obtain the average shift of the Pauli blocking term at a
given temperature T by averaging over all possible values of the CM momentum at that
temperature. The average Pauli blocking shift is calculated by multiplying the shift at a given
CM momentum by the appropriate Fermi–Dirac or Bose–Einstein distribution function
(depending on whether the cluster is a fermion or boson) and then averaging over all CM
momenta assuming the cluster belongs to an ideal gas at temperature T in thermal and
chemical equilibrium with the nucleons in the surrounding vapour. This averaging at a given
temperature is suggested by experimental results which usually refer to a situation where the
momenta of the clusters are not fixed but are dependent on the temperature of the surrounding
vapour (see for example [12]).

2. The Mott transition for the deuteron cluster

The deuteron is the simplest case to consider as the separation of the internal and CM
wavefuctions is straightforward in this two body system. Assuming that the deuteron has a
CM momentum ħ ⃗K and that it is confined inside a cubic box of volume L ,3 where L is much
larger than the size of the cluster, then the spatial wavefunction of the deuteron is given by

ψ ⃗ ⃗ =
⃗ ⃗+ ⃗⎛
⎝⎜

⎞
⎠⎟( )r r

L
g,

1
e (1, 2), (1)d

K
r r

1 2 3/2

i .
2

1 2

where the internal wavefunction = ⃗ − ⃗( )g g r r(1, 2) 1 2 is assumed to be a pure s state. The
small contribution of the d state, typically less than or about 4%, can be safely neglected. The
exact form of g (1, 2) depends on the type of potential used to describe the interaction
between the proton located at ⃗r1 and the neutron located at ⃗r .2 In the present work we take a
simple square well potential.

Assuming, without loss of generality, that the external nucleon is a neutron with position
⃗r3 and momentum ħ ⃗k then the spatial wavefunction of this 3-nucleon system is given by

Φ =
⃗⋅ ⃗+ ⃗

⃗⋅ ⃗
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

L
g(123)

1
(1, 2)e e . (2)

K
r r

k r
3

i
2 i

1 2

3

This wavefunction is however not properly symmetrized and we will need to construct
antisymmetric and symmetric spatial combinations:

Ψ Φ Φ= −N(123) [ (123) (132)], (3)a

Ψ Φ Φ= ′ +N(123) [ (123) (132) ]. (4)s

The normalization constants N and ′N are given by

=
−

′ =
+⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

N
L

N
L

1

2 1 J
and

1

2 1 J
, (5)

2 3 2 3

where

∫=
⃗ − ⃗ ⋅ ⃗

⎛
⎝⎜

⎞
⎠⎟g r rJ ( )e d . (6)

K k ri
2 3

It is found that typically ≪ LJ 2 3 and we can safely set = ′ =N N 1

2
.
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The completely antisymmetric total wave function of the system is then given by

∑Ψ Ψ χ Ψ χ= +
=−

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

(123)
1

4
(123) (2, 3) (123) (2, 3) , (7)

m

tot a

1

1

1 m s 00

where χ (2, 3)1m and χ (2, 3)00 are the 3 triplet and 1 singlet spin states for the two neutrons
occurring, on average, with equal amplitudes. The various amplitudes can have arbitrary
phase factors. However these have no effect on the calculations. The spin state of the proton
does not affect the calculation and is not included in (7).

Note that Ψa and Ψs are, by their very nature, orthogonal to each other and so are the
various spin states. Therefore

Ψ Ψ Ψ Ψ Ψ Ψℋ = ℋ + ℋ3

4

1

4
, (8)tot tot a a s s

where ℋ = ℋ = ℋ(123) (132) is the system’s Hamiltonian which must be symmetric in
the two neutrons 2 and 3. As such

Ψ Ψ Φ Φ Φ Φ
Φ Φ Φ Φ

ℋ = ℋ − ℋ
− ℋ + ℋ

N { (123) (123) (123) (123) (123) (132)

(132) (132) (123) (132) (132) (132) }. (9)

a a
2

Since we are integrating over ⃗r2 and ⃗r3 and ℋ = ℋ(123) (132), we can exchange the
labels of 2 and 3 in the last two terms. It is then easy to see that the second and third terms are
equal and that the first and fourth terms are equal.

Therefore

Ψ Ψ Φ Φ Φ Φℋ = ℋ − ℋN2 { (123) (123) (123) (123) (123) (132) }. (10)a a
2

The expression for Ψ∣ℋ ∣Ψs s is similar but with the − replaced by a +.
Note that the binding energy B of the deuteron in the presence of the third (vapour)

nucleon is defined by

Ψ Ψ Ψ Ψ− = ℋ − ℋB , (11)tot tot tot,un tot,un

where the second term on the right corresponds to the case that the deuteron is unbound inside
the vapour.

The Hamiltonian ℋ(123) can be written as:

 ℋ = − ℏ − ℏ + +h
M m

V r V r(123)
2 2

( ) ( ), (12)R r12

2
2

2
2

13 2312 3

where h12 is the internal Hamiltonian of the deuteron and V is the nucleon–nucleon
interaction. We use a simple spin-dependent square well potential with a depth of 35 MeV
and range 2.05 fm for the triplet interaction V ,t and a depth of 16 MeV and range 2.4 fm for
the singlet interaction Vs [13]. Using equation (12) we get:

∭

∭

Ψ Ψ Ω

Ω

ℋ = − + ℏ + ℏ + +

− +
⃗− ⃗ ⋅ ⃗ − ⃗

⎡⎣
⎛
⎝⎜

⎞
⎠⎟

]

[ ]

B
K

M

k

m

N

L
g r V r V r

N

L
g r V r V r g r

2 2

2
( ) ( ) ( ) d

2
*( )e ( ) ( ) ( )d , (13)( )k K r r

a a 0

2 2 2 2 2

6 12
2

13 23

2

6 12
i

2 13 23 13
2 3

where B0 is the binding energy of an isolated deuteron, the second and third terms are the
kinetic energies of the cluster and the free neutron, the fourth is the interaction of the deuteron
with the free nucleon (the self-energy term) and the last integral is the Pauli blocking term.
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The kinetic energy terms do not contribute to the binding energy. The self-energy term is
almost the same whether the constituents of the deuteron are bound or unbound and so is
negligibly small when we subtract the two terms in equation (11) from each other. The major
contribution to the binding energy of the deuteron then comes from the Pauli blocking term.
The second part of the Pauli blocking term that contains the term ( )V r23 can be shown to be
negligibly small so that we are left with the ( )V r13 term. Noting that the bound nucleons
interact with the free neutron via the triplet interactionVt (with 75% probability) or the singlet
interaction Vs (with 25% probability) we can evaluate the ( )V r13 term

∭ Ω− = − +
⃗− ⃗ ⋅ ⃗ − ⃗ ⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟ [ ]N

L
g r V r g r

N

L
J J J

2
*( )e ( ) ( )d

2
*

3

4

1

4
, (14)( )k K r r2

6 12
i

2 13 13

2

3 2t 2s
2 3

where J is defined in equation (6) and

∫=
⃗− ⃗ ⋅ ⃗

⎛
⎝⎜

⎞
⎠⎟J g r V r r( ) ( )e d , (15)

k K r
2t 13 t 13

i
2 3

13
13

with a similar expression for J2s involving the singlet interaction V .s Note that equation (14)
gives the contribution to the Pauli blocking term coming from the antisymmetric spatial
wavefunctionΨa and so must be multiplied by a weight factor of¾ as in equation (8). There is
a similar contribution coming from the symmetric spatial wavefunction Ψs which has the
opposite sign and with a weight factor of ¼ as in equation (8).

Adding the contribution of all the nucleons in the vapour, assuming that there are n free
nucleons in the volume L3 with number density ρ = n

L3
we get:

ρ ρ ρ

ρ ρ

= + + − +

= + +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥B B J J J J J J

B J J J J

( )
3

4
*

3

4

1

4

1

4
*

3

4

1

4
3

8
*

1

8
* . (16)

0 2t 2s 2t 2s

0 2t 2s

The integrals J, J2t and J2s in equation (16) involve the momenta ⃗K and ⃗k of the deuteron
cluster and the free nucleon as can be seen from equations (6) and (15). After evaluating these

Figure 1. The deuteron binding energy as a function of vapour density at =T 20 MeV.
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integrals, their values must therefore be averaged over all momentum space assuming the
deuteron is part of an ideal Bose gas in thermal and chemical equilibrium with the sur-
rounding ideal Fermi gas of vapour nucleons at a temperature T. Using the nuclear statistical
equilibrium (NSE) model [14, 15] and the chemical potentials for ideal Bose and Fermi gases
[16] these averages can be carried out in a straight forward manner.

The results for various temperatures T are shown in figures 1–3 where we plot the present
results and compare them with the case where the deuteron is assumed to be at rest. The latter
case corresponds to assuming that ⃗ =K 0 throughout the present calculations so that there is
no need to average over the CM momentum of the deuteron. It is seen that neglecting the CM
motion of the deuteron cluster can lead to a significant change in its estimated Mott density.

Figure 2. The deuteron binding energy as a function of vapour density at =T 15 MeV.

Figure 3. The deuteron binding energy as a function of vapour density at =T 10 MeV.
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For example, as can be seen from figure 1, the Mott density at =T 20 MeV is reduced from
about 0.036 −nucleons fm 3 when the CM motion of the cluster is included properly to 0.023

−nucleons fm 3 when the cluster is assumed to be at rest. Also included in these figures are the
results of the calculations of Typel et al [9] which are carried out assuming that the deuteron
is at rest. However a direct comparison with these results is not very meaningful because of
the different methods used in the calculations including the addition of empirical quadratic
terms [9].

3. The Mott transition for the helion cluster

The method used above to calculate the Mott transition in the deuteron can be extended to the
case of the helion (3He) cluster. We use the harmonic oscillator shell model to obtain the
internal spatial wavefunction of an isolated 3He nucleus moving with momentum ħ ⃗K inside a
cubic box of volume L3

ψ β
π

=
β− ⃗− ⃗ + ⃗ − ⃗ + ⃗ − ⃗ ⃗ ⋅ ⃗⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

L
(123)

1

27
e e , (17)

r R r R r R K R
space 1/4 3/2

3
2 i

2

1
2

2
2

3
2

where ⃗r ,1 ⃗r2 and ⃗r3 are the position vectors of the two protons and the neutron respectively and
⃗ = ∑ ⃗=R r /3i i1

3 is the position of the CM of the system. The choice of the origin for the
harmonic oscillator potential at the location of the CM ensures that this wave function does
not include any unphysical oscillatory CM motion. The value of β = −0.696 fm 1 is
determined by fitting the experimental value of the rms radius of the 3He nucleus which is
1.76 fm [8].

Assuming that the external free nucleon is a neutron with position ⃗r4 and momentum ħ ⃗k
and introducing the variables ⃗ = ⃗ − ⃗r r r1 2 and ⃗ = ⃗ − ⃗s r r3 1 then the spatial wavefunction of the
4-nucleon system can be written as

ψ β
π

=
β− + ⃗ + ⃗

⃗ ⋅ ⃗ ⃗⋅ ⃗⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( )

L L
(1234)

1

27
e e

1
e , (18)

r s r
K R k r

space 1/4 3/2

3
2 2

2
3 2 i

3/2
i

2 2 2

4

which clearly shows the separation of the CM motion from the internal motion. We can now
construct a spatial wavefunction Ψ (1234)a for the 4-nucleon system that is antisymmetric in
the two neutrons (nucleons 3 and 4):

Ψ β
π

Φ Φ= −
β ρ− ⃗⋅ ⃗⎛

⎝⎜
⎞
⎠⎟

N

L
(1234)

27
e e [ (34) (43)], (19)

r
K

a 1/4 3

3

4
2
3

i
2 2

where ρ ⃗ = ⃗ + ⃗ ,r r

2
1 2 Φ = ρ− ⃗ − ⃗ ⋅ ⃗ ⃗⋅ ⃗β ⃗

(34) e e e( )r r k ri iK2

3 3
2

3 3 4 and N is a normalization constant.
Similarly we can construct a spatial wavefunction Ψ (1234)s that is symmetric in the two
neutrons by using Φ Φ+[ (34) (43)] instead of Φ Φ−[ (34) (43)] in equation (19) and
replacing the normalization constant N by ′N . As in the case of the deuteron we can safely
set ≅ ′ ≅N N 1

2
.

A total wavefunction that is antisymmetric in the two neutrons (nucleons 3 and 4) is then
given by an expression similar to that in equation (7) for the deuteron case:

∑Ψ Ψ χ Ψ χ= +
=−

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

(1234)
1

4
(1234) (3, 4) (1234) (3, 4) , (20)

m

tot a

1

1

1 m s 00
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which takes into consideration the equal average probabilities of the two neutrons being in the
singlet or one of the triplet states. The two protons (nucleons 1 and 2) are always in a singlet
state and their spin wavefunction is not written explicitly.

For the interaction between the nucleons we will use a simplified form of the Skyrme
interaction [17, 18] consisting of an attractive two-body interaction

δ= − + ⃗ − ⃗σ ( )( )v t x P r r1 , (21)ij i j0 0

and a repulsive three-body interaction

δ δ= ⃗ − ⃗ ⃗ − ⃗( ) ( )v t r r r r . (22)ijk i j j k3

The parameters =t 865 MeV fm0
3 and =t 25152 MeV fm3

6 of the interaction are
obtained by fitting the binding energy (7.718MeV) of an isolated 3He nucleus. Note that
because we are not dealing with an even–even nucleus we cannot replace the three-body
interaction by a density-dependent one [18]. The parameter x0 can be related to the symmetry
energy [18]. In the present work we use the value =x    0.470 used in previous calcula-
tions [16, 19].

The Pauli-blocking term and its effects on the binding energy of a 3He cluster can then be
easily evaluated using the same steps mentioned earlier for the deuteron from equation (7) to
equation (16). The delta functions associated with the zero range of the Skyrme interaction
simplify the calculation. The density-dependence of the binding energy of the cluster due to
the surrounding vapour is then given by:

Figure 4. Helion binding energy as a function of vapour density at =T 20 MeV.
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ρ

β
π

= + − + − +

+ +

β

β

− ⃗ − ⃗

− ⃗ − ⃗

⎜ ⎟

⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎫
⎬⎪
⎭⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

B B t x
x

t

1

2
1

2

1

27

6

7
e

1

8

1

2
e . (23)

K k

K k

0 0 0
0

3

7 3

3

3/2 3

3
4 3

2

2

2

2

As with equation (16) for the deuteron, equation (23) involves the momenta ⃗K and ⃗k of
the cluster and the free nucleons. It must therefore be averaged over all possible values of

Figure 5. Helion binding energy as a function of vapour density at =T 15 MeV.

Figure 6. Helion binding energy as a function of vapour density at =T 10 MeV.
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these momenta assuming the 3He cluster is part of an ideal Fermi gas in thermal and chemical
equilibrium with the surrounding ideal Fermi gas of nucleons at a temperature T. Using the
NSE model [14, 15] and the chemical potentials for ideal Fermi gases [16] these averages can
be carried out in a straight forward manner. The results for various temperatures are shown in
figures 4–6. Also shown in these figures are the results obtained by assuming ⃗ =K 0 which
corresponds to the case when the cluster is assumed to be at rest.

4. The Mott transition for the alpha cluster

The method used above to calculate the Mott transition for the helion cluster can be extended
in a straightforward manner to the case of the alpha (4He) cluster. We extend the harmonic
oscillator shell model wavefunction of equation (17) by adding a fourth nucleon (a neutron)
and using β = 0.714 −fm 1 [20] corresponding to an rms radius of 1.45 fm for an isolated alpha
particle. We also use the Skyrme interaction given by equations (21) and (22) but with the
parameters [20] =t 855 MeV fm0

3 and =t 13250 MeV fm3
6 which reproduce the binding

energy (28.30MeV) of an isolated 4He nucleus.
The final result for the shift in the binding energy is given by:
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This result must be averaged over all momenta ⃗K and ⃗k of the cluster and the free
nucleons assuming the alpha cluster is part of an ideal Bose gas in thermal and chemical
equilibrium with the surrounding ideal Fermi gas of vapour nucleons at a temperature T.
Using the NSE model [14, 15] and the chemical potentials for ideal Bose and Fermi gases

Figure 7. Alpha binding energy as a function of vapour density at =T 20 MeV.
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[16] these averages can be carried out in a straight forward manner. The results at the two
temperatures =T 20 MeV and =T 15 MeV are shown in figures 7 and 8.

5. Discussion and conclusions

The above treatments of the cases of the deuteron, the helion and the alpha show that the
proper inclusion of the CM motion of the clusters has a significant effect on the values of their
Mott densities, especially in the case of the deuteron. The treatment of the triton is very
similar to that of the helion except for the difference in the binding energy of an isolated
triton. The results for the four cases are summarized in tables 1–4.

Table 1. Mott densities ρM for the deuteron at different temperatures obtained in the
present work and the corresponding values ρM* obtained if the cluster is assumed to be
at rest.

T (MeV) ρM (nucleons fm−3) ρM* (nucleons fm−3)

10 0.0121 0.00881
15 0.0222 0.0148
20 0.0359 0.0226

Table 2. Mott densities ρM for the helion at different temperatures obtained in the
present work and the corresponding values ρM* obtained if the cluster is assumed to be
at rest.

T (MeV) ρM (nucleons fm−3) ρM* (nucleons fm−3)

10 0.0099 0.0087
15 0.0122 0.0106
20 0.0141 0.0121

Figure 8. Alpha binding energy as a function of vapour density at =T 15 MeV.
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In conclusion, the correct inclusion of the cluster CM momentum leads to an increase in
the estimated value of the Mott density. Depending on the temperature, the increase in the
case of the deuteron can be in the range of 40–60% while for the helion and triton clusters the
increase is in the range 13–16%. For the alpha the increase is in the range 10–11%. This
indicates that, as expected, the effect of the CM motion tends to get smaller as the mass of the
cluster increases and therefore its neglect can be justified for heavy clusters. A direct com-
parison with other theoretical estimates of the Mott density is however not possible because of
the neglect in the present work of nonlinear and other effects as mentioned previously. The
focus in the present work is not on the value of the Mott density itself but on estimating the
shift or inaccuracy in its value introduced by setting the CM momentum K= 0. We expect that
our conclusions about the effect of the inclusion of the CM motion should hold in general and
that the magnitude of the shift due to the CM momentum is not affected by the nonlinear
terms which depend on the internal wavefunction only. There has been a first attempt at an
experimental determination of the Mott densities in light clusters from the results of heavy ion
collisions [12]. The reported values are close to those predicted by Typel et al [9]. However
the large uncertainties in the extraction of these experimental values from the data make it
impossible to determine if there is or there is not an agreement with our conclusion about the
effect of CM motion. Hopefully future experiments will throw more light on the situation.
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