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Abstract: The distributions of fragments produced in events involving the multifragmentation of hot 
nuclei are compared with the cluster distributions predicted by a bond percolation model on a 

finite lattice. The nuclear events are generated by a microcanonical Metropolis sampling method. 

This comparison makes it possible within the model to separate the events due to the nuclear 

liquid-gas phase transition from the “hot fission” events. The latter events correspond to a 

phenomenon that is peculiar to the nuclear case and that reflects the role of the long-range Coulomb 

force. Finite-size scaling methods are used to analyze the percolation and nuclear liquid-gas phase 

transitions and to determine the appropriate critical exponents. The influence of the Coulomb 

force on the critical behaviour of the nuclear liquid-gas phase transition is discussed. 

1. Introduction 

The possibility of the occurrence of a liquid-gas transition in the fragmentation 

of hot nuclei has been the subject of several investigations ls4). Theoretical 

studies ‘-11) indicate that infinite chargeless nuclear matter has an equation of state 

very similar to that for an ordinary fluid or Van der Waals gas. Such a fluid is 

characterized by the existence of a liquid to gas phase transition with a critical 

temperature T,. For temperatures T above T, only a single gaseous phase exists 

consisting of single particles and small droplets or clusters. In the nuclear case the 

single particles would be the free nucleons. Below T, two phases can exist: a liquid 

state (equivalent to an infinite cluster or condensate) coexists with its vapor. It has 

thus been argued that if a nucleus (which is the finite nuclear equivalent of the 

infinite liquid condensate) is heated to temperatures = T,, it can undergo a phase 

transition to the gaseous phase. This approach has been put forward as an explana- 

tion for the fragment distributions observed in inclusive high-energy proton-nucleus 

reactions 12) as well as in medium-energy heavy-ion collisions 13). 

However, there is a much more fundamental reason for studying the possible 

liquid-gas transition in nuclei. The usual interest in the study of phase transitions 

comes from the fact that, at the critical point, correlations in systems with short-range 
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interactions are much longer than the range of the forces. Consequently details of 

the interaction are unimportant and the phase transitions are ruled by geometrical 

properties of the system. Various systems fall into few different classes concerning 

their critical behaviour. 

Nuclei are distinct from normal macroscopic systems by the fact that they are 

finite and subjected to the long-range Coulomb force. These two factors lead to a 

substantial modification of the properties of hot nuclei and the associated phase 

transitions 14-18). Near T, the correlation length is not the only relevant length in 

the system and the critical behaviour will be strongly modified. In particular a new 

phenomenon, which we will refer to as hot fission, appears. This reflects the massive 

population of a new region in phase space. 

Another system in which a similar long-range repulsive force may modify the 

critical behaviour is a fast rotating star. Here the abundent occurrence of double 

stars might be related to this opening up of the additional phase space connected 

with fission. Although this stellar problem is interesting and worthy of a serious 

investigation we nevertheless do not pursue it any further beyond noting the possible 

analogy. The present work is restricted to nuclei which, anyway, are much more 

easily accessible experimentally. 

These effects of the long-range force can of course be studied only in finite systems. 

The properties of a phase transition are, however, modified by finite size. Strictly 

speaking, a phase transition is well defined only for an infinite system in that the 

singularities and discontinuities that are associated with such a transition can only 

be observed in the thermodynamic limit. If the system has a finite size then this 

finite size affects the properties of the transition: the singularities become finite and 

the discontinuities are replaced by smooth jumps 19). 

A promising method to overcome this inherent difficulty of the nuclear case has 

been suggested by Campi 2072’ ). It consists of comparing the properties of the 

liquid-gas phase transition in the nuclear case with the properties of percolation on 

finite lattices of a similar size. As the infinite system exists for the percolation 

problem, a comparison between systems of comparable size in the two cases is 

expected to deal, at least partially, with the finite-size problem. 

The effects of the finite size on the properties of percolation or thermal phase 

transitions are rather well studied and are described by various finite-size scaling 

ansatzes and hypotheses 22,23). In addition, an interesting feature of percolation is 

that it is a very simple model of a phase transition depending only on local geometry 

so that any significant deviations of the nuclear case from the properties predicted 

by percolation may be attributed to the role of the long-range Coulomb force. 

In an earlier work 4), hereafter referred to as (I), the fragmentation of hot nuclei 

was studied within the microcanonical metropolis sampling method of Gross et 

al. 24*25) and a comparison was carried out between nuclear fragmentation and the 

cluster distributions obtained within the bond percolation model along the lines 

suggested by Campi 2022’ ). A large number of events were generated in each model 
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(about 2 million events for percolation and 10 million for nuclear fragmentation) 

and these events were analyzed by calculating the conditional moments of the 

fragment (or cluster) size distribution for each event separately and then studying 

the distributions of these moments. 

In particular by studying the correlation between the largest fragment in each 

event and the second moment of the distribution of the remaining fragments it was 

found that there were similarities and differences between the predictions of the 

two models. The correlation in the percolation model showed the typical features 

that reflect the occurrence of a phase transition {see fig. 1 below) in that it consisted 

of two branches: an upper branch with a negative slope that corresponds in the 

average to events with a bond probability p greater than a critical bond probability 

pc and a lower branch with a positive slope that corresponds in the average to events 

with p <pc. The two branches meet at the critical point of the percolation phase 

transition. 

The correlation found for the nuclear case had also such a two-branch feature 

which is believed to reflect the occurrence of the liquid-gas phase transition in 

nuclear matter. In this case, in the average, the upper branch corresponds to events 

with temperature T less than the critical temperature T, and the lower branch 

corresponds to events with T > ‘I,. 
However, the nuclear case was found to have additionally a concentration of hot 

fission events that are rather well-separated from these two branches. These events 

are marked by large values for P and S2 and they reflect the opening-up of additional 

phase space caused by the interplay between the surface energy and the long-range 

Coulomb force that is peculiar to the nuclear case. It must be stressed that these 

hot fission events are quite different from the customary “cold fission” in nuclear 

physics. For one thing, the energy deposited in the hot nucleus that produces such 

events is several hundred MeV. In addition the two big fragments are produced in 

conjunction with a sizeable number of various-sized small fragments. 

Therefore, in order to display the analogy between the liquid-gas phase transition 

in the nuclear case and the percolation phase transition, it is important that the hot 
fission events are excluded from the nuclear results before any analysis is carried out. 
It is however an open question whether this method of simply excluding the hot 

fission events is sufficient to get rid of the effects of the long-range Coulomb force. 

To study this question is one of the main issues of this paper. 

The calculations carried out in (I) were limited in the nuclear case to the study 

of the fragment charge distributions of gold nuclei (Z = 79), and in the percolation 

case to bond percolation on a cubic lattice with 43 sites. In the present work the 

calculations are extended to include systems other than those in (I) both for the 

nuclear case and the percolation case. Finite-size scaling is employed to study the 

critical behaviour in both cases. Since the properties of the percolation phase 

transition are relatively well-understood, the present percolation calculations serve 

also to examine the reliability of the methods to be employed for the nuclear case. 
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This is important since the sizes of the systems involved in the present work are 

much smaller than those usually employed to study finite-size scaling. 

In sect. 2 we summarize the scaling properties of phase transitions that are to be 

used in our analysis. In sect. 3 the results for the percolation case are presented. 

Sect. 4 contains the details and results of the nuclear calculation. We present our 

conclusions in sect. 5. 

2. Scaling properties of critical phenomena 

Critical phenomena, such as the behaviour of percolation and liquid-gas phase 

transitions near their respective critical points, are ususally analyzed in terms of 

scaling hypotheses 26-28). These hypotheses depend on the observation that the 

properties of the phase transition in the critical regime are dominated by a single 

factor which is the correlation length. This is the distance over which two particles 

or sites are correlated. The correlation length becomes very large (i.e. of the order 

of the linear size of the system) near the critical point. For an infinite system it 

actually diverges as 

5(a) = IeI-Y, (1) 

where v is a critical exponent and E is a variable characterizing the state of the 

system. In thermal phase transitions E = T - T, is the deviation from the critical 

temperature while in percolation E = pc-p is the deviation from the threshold 

probability pc. This divergence leads to large fluctuations. In the case of a liquid-gas 

phase transition these fluctuations lead to the phenomenon of critical opalescence 28). 

The dominance of the correlation length implies close similarity between various 

phase transitions at the critical point as the detailed properties of the various systems 

become immaterial and the phase transitions are governed by common geometrical 

features. 

As an example, near the critical point a cluster size distribution of the general form 

n(s, E) = SYj-(&SW) (2) 

is predicted where s is the size of the cluster and T and (T are two critical exponents. 

The Fisher doplet formula 29) is a special case of eq. (2). At the critical point E = 0, 

f(0) = 1 and the cluster distribution follows a power law: 

n(s,O)-s-‘. (3) 

In fact it was the observation 12) that the light fragment distribution measured in 

inclusive high-energy proton-induced reactions followed such a power law that 

triggered the proposal of the existence of a liquid-gas phase transition in finite nuclei. 

Another example that will be of interest in the present work is the size of the 

largest cluster which we denote as P. In the nuclear case the size of a fragment can 

be its mass or its charge while for percolation we choose the size of a cluster to 

mean the number of sites belonging to the cluster, rather than the number of bonds 
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between the sites, in order to make the analogy with the nuclear case more evident. 

The size of the largest cluster is expected to scale with the linear size L of the system 

in the following way *“): 

P( L, E) = L?Y( &L”Y) (4) 

where the critical exponent D is the so-called fractal dimension of the system. The 

value of D at the critical point can be related to the other exponents 26): 

D=l/vo. (5) 

At the critical point H = 1 so that the size P, of the largest cluster at the critical 

point is given by 

PC” LD (6) 

that is, it is proportional to the linear size of the system raised to the power D rather 

than d the euclidean dimension. Away from the critical point the fractal dimension 

can assume different values. For example for percolation D = d for p > pc [ref. ‘“)I. 

For the fragments or clusters produced in each event we can calculate the various 

moments of the cluster size distribution where the kth moment is defined as follows 

Mk = 2n(s)sk, (7) 

where n(s) is the multiplicity of the clusters of size s and the summation is over 

all the clusters produced in the given event except for the largest cluster I? In the 

thermodynamic limit, P corresponds to the infinite percolating cluster in the percola- 

tion case, and to the condensate in the case of a liquid-gas phase transition. 

Assuming a cluster multiplicity of the form given by eq. 2 and replacing the 

summation by an integration we get 26V27); 

Mk L1 IE1(T-l-k)lo. 
(8) 

Since the exponent T satisfies 2 < 7 < 3 the second and higher moments diverge at 

the critical point. In contrast the lower moments MO and M,, which correspond 

respectively to the number of fragments and the total mass, do not diverge. In 

particular the second moment diverges as 

M2=I~$Y, (9) 

where y = (3 - S-)/U. For the nondiverging lower moments care must be taken when 

replacing the sum by an integral. In particular for the first moment M,, a careful 

analysis shows that there is an additional constant term (see e.g. ref. ‘“)). We follow 

the suggestion of Campi *‘) and normalize the higher moments of the cluster size 

distribution for a given event by dividing them by the first moment 

&=M,/M,. (IO) 

Another result that is of interest involves the relative size P/L3 of the largest 

cluster for E < 0 i.e. the percolating cluster (for p > p,) or the liquid-condensate (for 

T < T,). With E sufficiently small we have for E < 0 [refs. 26,27)]: 

P/L3+y, (11) 
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TABLE 1 

The values of the critical exponents for the percolation and 

liquid-gas phase transitions in 3 dimensions. For each case 

only two exponents are independent; the remaining exponents 

can be obtained from them through the scaling relations. The 

value of the fractal dimension is calculated from the relation 

D=l/vo 

Exponent Percolation “) Liquid-gas b, 

P 0.44 0.328 i 0.008 

Y 1.76 1.239 f 0.002 
V 0.88 0.632 f 0.002 

7 2.20 2.209 
CT 0.45 0.638 

D 2.53 2.480 

“) From ref. “). ‘) From ref. 3’). 

where a new critical exponent /? has been introduced (it being understood that the 

proper value of p for the phase transition is that corresponding to the limit L+ CO). 

However, not all the critical exponents are independent of each other as they are 

related by various scaling relations (see e.g. refs. 26*28)). In table 1 the values of the 

various critical exponents of interest to the present work are listed for both percola- 

tion and liquid-gas phase transitions. These are obtained from refs. 30,31). 

For E > 0 there is no percolating cluster or condensate but the size of the typical 

finite cluster is expected to be approximately given by 20): 

s(e) zz &p+y). (12) 

This result follows from the location of the maximum of n(s, E) in eq. (2). 

3. Finite-size scaling and the percolation problem 

We consider percolation on a cubic lattice of linear size L containing L3 sites, 

for L=4 to 10, where all the sites are occupied and bonds are assumed to exist 

between neighbouring sites with bond probability p. Sites that are connected together 

by such bonds are said to belong to the same cluster. It is well known that in such 

a model there exists a critical (or threshold) probability pC such that for p > pC there 

is a large cluster that percolates throughout the lattice from end to end whereas for 

p <pc no such cluster exists and all the sites belong to small clusters (including 

isolated sites, i.e. singlets or clusters of size 1). As L + 00 the phase transition becomes 

sharper and sharper and pc approaches a limiting value which for bond percolation 

on a cubic lattice is pc = 0.2492 [ref. ‘“)I. 

For finite systems the threshold percolation probability is not so sharply defined 

but this is not very important for the present work because we will not use the 

probability p directly in our analysis. Rather we will sample percolation events over 
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a certain probability interval that includes the critical region. A similar situation 

arises in the nuclear case where the critical point is not well defined for a finite 

nucleus. Here we also resort to sampling events over a certain energy distribution 

(energy or temperature being the thermal equivalent of the proability P). Moreover, 

in the theoretically generated nuclear events we have an additional reason to sample 

events from an excitation energy distribution over some suitable energy range. This 

is because in the experimental nuclear situation the excitation energy deposited in 

the fragmenting nuclear system is not unique and we get events that are distributed 

over some energy range that presumably includes the interesting critical region. 

Furthermore we sample percolation events over a rather narrow interval surround- 

ing PC because we are mainly interested in events that are close to criticality and 

that produce a relatively large number of intermediate size clusters. Events with 

P <PC produce mainly singlet clusters that correspond to the noninteresting total 

vaporization situation in the nuclear case. Events with P = 1 produce mainly a single 

cluster that spans almost all the lattice sites. This would correspond to the case in 

which the nucleus stays intact or evaporates a few nucleons which is also of little 

interest. Moreover, it is not sufficient to take a uniform probability distribution in 

an interval containing PC, as this does not produce enough events close to PC to 

achieve statistical convergnce. For P =PC statistical fluctuations are very large and 

in order to achieve a reliable accuracy we have used a probability distribution 

peaked at PC of the form: 

n(P) = (P -P,)(P2-P) , Pl<P<P2 (13) 

with p1 = 0.08, p2 = 0.42 and n(p) = 0 outside this range. 

The results for the case L = 5 are shown in fig. 1 where we plot the logarithm of 

the largest cluster P in each event versus the logarithm of the second moment S2 

of the size distribution of the remaining clusters in the event. The total number of 

events contributing to the plot is one million. The two branches corresponding to 

p -=c pc (lower branch) and p > pc (upper branch) are clearly seen. It is also evident 

that the area where the two branches meet (i.e. the critical region) is very well 

populated in contrast to the case where a uniform probability distribution is used 

as was done in (I). 

It is not however possible from such a plot to locate the critical region in a precise 

and unambiguous manner. In order to be able to do that we calculate S2 the average 

of S, over all events belonging to the same value of In P. The results obtained by 

such averaging are presented by the dots shown in fig. 2 where we plot In P versus 

In z for various cubic lattices with linear dimension L = 4 to 10 sites. The curves 

drawn through the dots are just to guide the eye. The location of the maximum 

value of z is now defined as corresponding to the location of the critical point 

which is a standard way of determining the percolation threshold 32). 

The size of the largest fragment at the critical point PC as determined by the above 

criterion is plotted in fig. 3 versus the linear size of the system in a log-log plot for 
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0.0 110 2’.0 3lo ’ 
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Fig. 1. The logarithm of the size of the largest fragment P produced per event as a function of the 

logarithm of the corresponding second moment S, for bond percolation on a simple cubic lattice of 

linear size L = 5 sites. The plot represents lo6 such events and the size of the character plotted at each 

point is proportional to the number of events belonging to that point (which represents a bin in In P x In S, 

space). 

the various systems that are considered in fig. 2. The error bars in this figure reflect 

the size of the bins to which the values of In P are assigned. The slope of the best 

straight line through the data points is then our estimate of the fractal dimension 

(see eq. (6)). This is found by a least-squares-method fit to be D = 2.51 f 0.08 which 

is in agreement with the result D = 2.53 for L + 00 quoted in table 1 indicating that 

the method utilized here is satisfactory. 

The slopes of the lower branches of the curves in fig. 2 can also be calculated. 

From eqs. (9) and (12) this slave is expected 38) to be 1 + P/-y which for percolation 

in 3 dimensions is equal to 1.25 when the values of the critical exponents given in 

table 1 are used. For comparison the slopes of the straight lines obtained by a 

lest-suares fit to the lower branches of the L = 4 to 10 curves in fig. 1 are found, in 

ascending order of L, to have the values 1.582*0.036, 1.503 kO.029, 1.375 *0.017, 

1.355*0.021, 1.26OkO.007, 1.258*0.014 and 1.242+0.015. This indicates that these 

slopes rapidly approach the value expected in the thermodynamic limit. In calculat- 

ing these slopes we have excluded the points near the bottom of the branch in the 

region where the curves in fig. 2 deviate noticeably from a straight line. These points 

correspond to events that are far removed from the critical region in which eqs. (9) 

and (12) are expected to apply. Furthermore, the lowest couple of points correspond 

to events with low p that come from the lower tail of the distribution in eq. (13) 
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Fig. 2. The logarithm of the largest fragment size P as a function of the togarithm of the corresponding 
average second moment S, for bond percolation on simpie cubic lattices of linear sizes ranging frum 
L = 4 to IO sites. The dots represent the actual calculation results and the curves drawn are just to guide 
the eye. The number next to each curve gives the value of the iinear size L. Note that the In% scale 
given corresponds to the L = 10 curve. The other curves are successively shifted to the left with respect 
to each other by a distance of 0.25. The dashed curve and the dotted--dashed straight line are explained 

in the text. 

and, hence, are not statistically reliable because of the low values of Z7(p) in this 
region. 

Similarly, the upper branches in fig. 2 are also expected j8) from eqs. (9) and (11) 
to be straight lines with a negative slope --P/r = -0.25. In contrast to the lower 
branches, however, the upper branches are appreciably different from being straight 
lines indicating that one must go to larger systems in order to get straight lines 
whose slope can be measured with confidence. Nevertheless, we have measured the 
slope of the dotted-dashed straight line that is a reasonable fit to the L= IO upper 
branch data points and found that its slope is -0.45. 

The dashed curve in fig. 2 is a plot of In P versus AS, where AS, is the standard 
deviation in S, from its average value ;ii;, for the L = 4 case, Plots for other system 
sizes are similar and are not reproduced here. It is seen that AS, peaks at the same 
point (namely, the critical point) as g indicating that at this point the statistical 
fluctuations in S, become very large. This is related to the Fact that the correlation 
length becomes very large near the critical point (see eq. (1)) which leads to large 
fluctuations. In other words these fluctuations are the percolation equivalent of 
critical opalescence seen in a liquid-gas phase transition. The fact that in fig. 2 both 
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InP, 

6.0 ! 

Fig. 3. The logarithm of the largest fragment size at the critical point PC as a function of the logarithm 

of the corresponding linear size L for the various bond percolation systems of the previous figure. 

the average S, and its standard deviation peak at the same value of P is further 

indication of the reliability of our method to determine the critical point. 

One striking feature of fig. 2 is the general similarity between the shapes of the 

curves for the various systems. This is an indication that we should try to test a 

finite size scaling ansatz like eq. (4). By plotting P/LD versus EL”“, the curves for 

the various systems should collapse into one single curve for some appropriate 

values of D and V. Eq. (4) cannot, however, be used directly for our present results 

because, as mentioned earlier, we do not have-any knowledge of E = pC -p for each 

event. 

However, we can use the fact that S2 depends on E as in eq. (9) and try a finite-size 

scaling ansatz of the form 

P(L, &)= LDJ(S,/LO). 

The exponent 0 can be related to the other exponents. By comparing eqs. (4) and 

(14), and making use of eq. (9) we get 

e=y/Y (15) 

so that for percolation 0 = 2.00, where we have used the values of the critical 

exponents from table 1. 

The results for various values of D and 0 are shown in fig. 4. Ignoring, as discussed 

above, the unreliable bottom part of the lower branches, the best results are obtained 
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Fig. 4. Finite-size-scaling analysis of the In P versus in K plots for the various percolation systems 

investigated. For clarity, we do not show the dots representing the actual results of the calculation, but 

we show smooth curves drawn through these dots similar to the curves drawn in fig. 2. (a): D = 2.55, 
B = 1.68; fb): D = 3; f? = 1.68; (c): D = 2.55, e = 1.95. 

for values of D = 2.55 and 6 = 1.68. The value for D is in excellent agreement with 
the values found in the literature (see table 1) and is consistent with the result 
obtained from fig. 3. It is evident that the fractal dimension must be different from 
the euclidean dimension since fig. 4b shows that for D = d = 3 the various curves 
do not overlap. The value of 0 = 1.68 obtained from fig. 4 is somewhat smaller than 
the expected value of f? =2.00 quoted above. This may reflect the fact that the 
systems considered are very small so that higher-order corrections to finite-size 
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sealing may be important. However, it was not attempted in the present work to go 
beyond the lowest-order scaling ansatz. 

4. Finite-size scaling and nuclear fragmentation 

We consider theoretical calculations of statistical decay of equilibrized hot nuclei 
in a microcanonical ensemble. In the method of microcanonical Metropolis Monte 
Carlo sampling we have a powerful mathematical method to simulate and predict 
the statistical decay of hot nuclei in a very realistic model. The statistical model of 
nuclear fragmentation *4X3*34) allows a direct description of the most complicated 
thermodynamic phenomena like phase transitions and critical behaviour from first 
principles (direct calculation of the partition function). In the absence of experi- 
mental data with good statistics, the analysis of the theoretical results is the only 
possiblity at the moment. 

In the present work we have carried out such calculations for 6 different nuclear 
systems. For each system the events are sampled over a certain excitation energy 
range that extends from an initial excitation energy E$ = 200 MeV (100 MeV for 
the 2 smallest systems) to some maximum excitation energy EL that exceeds the 
total binding energy of the ground state of the system by about 50%. This energy 
range is divided into energy intervals of size 200 (or 100) MeV. The sampling is 
microcanonical in that a large number of events is sampled at a fixed total energy 
corresponding to the beginning of each of these intervals. However, in order to save 
computer time, we do not sample each event explicitly and completely. Rather we 
determine only the number and sizes of the fragments in an event, and integrate 
microcanonically over their momenta and all prompt neutrons 24*25), Each sampled 
event is then analyzed separately and the relevant quantities, like the size of the 
largest fragment P and the second moment of the remaining fragments S,, are 
calculated. The contributions of all the events are then put together to produce the 
final correlation between these quantities. 

An important question that arises in this situation is what kind of excitation 
energy dist~bution must be used, In an experimental situation the excitation spec- 
trum is determined by the dynamics of the reaction and the distribution at intermedi- 
ate to high excitation energies is often found to fall off exponentially in a manner 
close to that predicted by the Glauber multiple scattering theory “). There is 
evidence, however, that at still higher energies the excitation energy distribution 
becomes uniform 36337). In fact, such an energy distribution (exponential+ uniform) 
was used in our calculations reported in (I) to calculate the fragmentation of Gold 
nuclei in order to simulate the experimental situation as much as possible. 

Such an excitation energy distribution is, however, not very suitable for our 
present purposes. Since it is peaked at low energies it tends to produce too many 
low-energy evaporation events that are not of interest to the present work. More 
important is that it tends to produce too many hot fission events that appear for 
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excitation energies up to about 800 MeV. Since, as explained earlier, these hot fission 

events are to be separated from the events to which the finite-size-scaling hypotheses 

are to be applied, it is important that as few as possible fission events are produced. 

This is in order not to make the final results very sensitive to the criteria by which 

these fission events are separated. Again this entails that the excitation energy 

spectrum should not be large at the energies at which fission contributes significantly. 

Finally a distribution peaked at low excitation energies does not produce enough 

events in the important critical region to achieve a satisfactory statistical accuracy. 

In order to overcome all these difficulties we use in the present work an excitation 

energy distribution peaked at the middle of the excitation interval: 

The upper limit of the excitation spectrum E& is typically taken about 1.5 times 

the binding energy of the ground state of the system. 

Here it must be stressed that the results should not depend on the particular 

excitation energy distribution used provided that a large number of events is 

generated to achieve statistical convergence in the critical region in which we are 

interested. The use of various distributions merely changes the relative concentration 

of events along the various branches but not the shape of these branches or their 

slopes. The advantage of the distribution described by eq. (16) is that it allows 

adequate statistical reliability in the critical region in a reasonable amount of 

computer time. 

Figs. 5 and 6 show nonaveraged plots of In P versus In S, for the cluster charge 

distributions of ‘97A~ and 232 Th. The Au results are produced from (I) where they 

were calculated with an energy distribution peaked at low energies while the Th 

results were calculated using the excitation energy distribution given by eq. (16) 

with E" changing in steps of 200 MeV from an initial exitation E,* =200 MeV up 

to E & = 2600 MeV. Each figure is generated by about 10 million nuclear fragmenta- 

tion events obtained by microcanonical Metropolis sampling. In both figures we 

see clearly the two branches corresponding to the liquid-gas phase transition and 

the separate concentration of hot fission events in the upper-right corner. This is in 

contrast to the percolation plot given in fig. 1 where the fission events are clearly 

absent. The critical region in the Th case is much better populated and hence more 

statistically reliable than in the Au case as a result of the energy distribution used 

(eq. (16)). The contrast between the two critical regions is actually more than it 

appears in the figures as the critical region in the Au plot was artificially enhanced 

by suppressing the intensity of the other parts. This was done in order to show the 

details of the region where the two branches meet, since the excitation spectrum 

used in (I) for the Au case produced too few events in the critical region. 

In contrast to the Au plot, the Th plot has very few events with very large P 
(evaporation events) or very small P (vaporisation events) as a result of the energy 

distribution (eq. (16)) which was used for this purpose. This leaves the larger part 
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Fig. 5. The logarithm of the largest fragment charge P(=Z,) produced per event as function of the 

logarithm of the corresponding second moment S, for the microcanonical multifragmentation of hot 

19’Au nuclei. The plot represents IO’ such events and the size of the plotted characters has the same 

meaning as in fig. 1. However in order to enhance the details of the plot in the lightly populated critical 

region, the intensity maximum which occurs at the uppermost Ieft point of the plot has been suppressed 

by a factor of 32. 

of the events in the interesting critical region. The fission events that are to be 

removed from the Th calculation lie to the right of the thin continuous zig-zag line 

drawn in fig. 6, as explained below. If these events are excluded, then the remaining 

plot is similar to that obtained in percolation in its shape (see fig. 1) although it 

does have a richer topographical structure than its percolation equivalent. This 

structure reflects the more complicated nature of the nuclear problem in contrast 

to the extremely simple percolation problem which depends only on local geometrical 

properties. 

Despite the fact that the energy distribution of eq, (16) was designed to reduce 

the number of hot fission events, we still have a large number of such events in the 

Th case (fig. 6). This reflects the fact that the fissility of such a heavy nucleus is 

large. An energy distribution peaked at lower energies, as in the experimental 

situation, would have produced many more fission events and would have made 

the problem of removing the fission events more difficult. This would mean, of 

course, that experimental data would be much more difficult to analyze than the 

theoretically generated events treated here. A large number of fission events must 

be removed before getting to the events involved in the liquid-gas phase transition. 
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Fig. 6. The logarithm of the largest fragment charge P(=Z,) produced per event as a function of the 

logarithm of the corresponding second moment S, for the microcanonical multifragmentation of hot 

232Th nuclei. The plot represents lo7 such events and the size of the plotted characters has the same 

meaning as in fig. 1. 

The subtraction of the hot fission events is most easily carried out by considering 

the product Z,Z2 of the largest two fragment charges in each event. It was demon- 

strated in (I) that the hot fission events have the largest values of Z,Z, and form a 

peak that is relatively well separated from the rest of the events. Fig. 7 shows a 

log-log plot of Z,Z, versus S; for the case of 232Th, where Sk is the second moment 

of the fragment charge distribution (eq. (10)) with the largest two fragment charges 

Z, and Z, excluded. The events used to generate this figure are the same as those 

used to generate fig. 6. It is seen that the fission events are separated by a rather 

wide “valley” from the main peak containing the rest of the events and this provides 

a practical way to carry out the removal of the hot fission events. As demonstrated 

in (I), the percolation events populate only the main peak and do not produce an 

additional peak corresponding to the fission events in the nuclear case. 

The removal of the fission events must, however, be done very carefully since 

their contribution to the average value s can be very large. Because of the large 

values of S, for such events, which is due to the fact that the square of Z, is very 

large, the removal of a relatively small number of fission events can appreciably 

modify the value of $. This point is very important because of the width of the 

valley separating the fission events from the rest (see fig. 7) so that it is not apparent 

where the cut must be made. In order to effect the removal of the hot fission events 
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Fig. 7. The logarithm of the product of the largest two fragment charges Z,Z, produced per event as a 

function of the logarithm of the corresponding second moment S; for the microcanonical multifragmenta- 

tion of hot 232Th nuclei. The plot represents the same events as in fig. 6. The size of the plotted characters 

has the same meaning as in fig. 1. 

in a satisfactory manner we have employed additional criteria that must be satisfied. 

One such criterion is that the cut we make must also correspond to a naturally 

occurring “valley” in a plot of P versus S, like that of fig. 6. Another criterion is 

that the cut produce a smooth averaged plot of In P versus In ?& similar to that 

obtained in the percolation case. 

Fig. 8 shows averaged plots In P versus In S2 for the case of Th for several values 

of Z,Z, at which the cuts are made. In this figure each averaged plot is obtained 

by excluding all fission events that have a value of Z,Z, greater than or equal to 

the indicated value and then averaging over all the remaining events having the 

same value of In P to get the value of s. Apart from the subtraction of the fission 

events, this averaging process is the same as that used in the percolation case to 

produce fig. 2. It is seen that if the fission events are not removed the resulting 

averaged plot is very different from that for a percolation problem with a comparable 

lattice size (see fig. 2). Moreover a cut at Z,Z, = 700 produces the smoothest curve 

with a well-rounded critical region. A cut at lower values of .Z,Z, produces a sharp 

corner at the meeting point of the two branches while a cut at higher values of Z,Z, 

produces an elongated corner which differs from that obtained in pecolation. 

Moreover, by examining fig. 6, it is seen that the cut at Z,Z, = 700 corresponds to 

a naturally occurring, though not so deep, valley. The values of 500 and 900 used 



H.R. Jaqaman, D.H.E. Gross / Liquid-gas phase transition 331 

for the cuts in fig. 8 correspond approximately to the lower and upper borders of 

the “valley” that separates the hot fission peak from the remaining events in fig. 7. 

Fig. 9 shows plots of In P versus the logarithm of the corresponding average 

second moment of the charge distribution lng for six different nuclear systems: 

131Xe, 16’Ho, 19’Au, 209Bi, 232Th and 252Es. In each case the hot fission events are 

removed by excluding all events with Z,Z,Z “an optimal value” obtained in the 

manner described above for 232Th. The optimal values of Z,Z, for the systems 

considered here are found, in ascending order of the mass of the system, to be 400, 

500, 550, 600, 700 and 750. For the small systems, 131Xe and 165H~, very few fission 

events are produced or removed. These plots for the nuclear case are to be compared 

with the similar plots in fig. 2 for the percolation case which, it must be remembered, 

covers a larger range of system sizes. 

The slopes of the lower branches of the plots in fig. 9 are found by a least-squares-fit 

to be, in the same order as above, 2.410 f 0.088, 2.504 f 0.111, 2.626 * 0.067, 2.562 f 

0.068,2.573 f 0.074 and 2.281 f 0.092. These values are much larger than the theoreti- 

cally expected value 1 + p/ y = 1.265 for a liquid-gas phase transition as well as the 

values obtained in percolation. This difference is, at least, partially, a reflection of 

the fact that the sizes (i.e. charges) of the nuclear systems investigated are very 

small, 54 s 2 G 99, whereas the value .265 is expected to hold for very large systems. 

However, the slopes obtained for percolation systems of comparable size do not 

show such large deviations. For example from the percolation results of the previous 

section for L = 4 and L = 5, which have 64 and 125 sites, respectively, we got slopes 

ln PI 
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2.0 

I.01 1 I I I 

0.0 0.5 1.0 1.5 2.0 : 
Ins, 

5 

Fig. 8. Plots of the logarithm of the largest fragment charge P(=Z,) produced versus the logarithm of 

the corresponding average second moment K for the microcanonical multifragmentation of hot 232Th 

nuclei. The various plots correspond to different values of Z,Z, used to subtract the fission events. The 

triangles, open circles and squares correspond to excluding fission events with Z,Z, 2 500, 700 and 900, 

respectively. The dots correspond to the case where the fission events are not excluded from the averaging. 

The continuous curves are just to guide the eye. 
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Fig. 9. The logarithm of the largest fragment size P as a function of the logarithm of the corresponding 

average second moment ?$ for 6 different nuclear systems: ‘-“Xe, 16’Ho, ‘97A~, ‘09Bi, 232Th and *“Es 

arranged from left to right in ascending order of the mass of the system. The dots represent the actual 

calculation results and the curves drawn are just to guide the eye. Note that the In S, scale given 

corresponds to the heaviest system 252Es. The other curves are successively shifted to the left with respect 

to each other by a distance of 0.25. 

of 1.582*0.036 and 1.503 iO.029. This indicates that the small size by itself cannot 

be responsible for such a discrepancy. 

One possible reason for this discrepancy is that the Coulomb force modiJies the 

liquid-gas transition itself and that its role is not simply limited to the production 

of the subtracted hot fission events. However, there are sources of error that can 

also contribute to the discrepancy. One such source of error that can affect the value 

of the slope is the way the fission events are removed. Another source of uncertainty 

is whether the slope is to be determined from the few points close to the critical 

point or from the whole lower branch as has been done here so far. In the percolation 

case we have excluded the events far removed from the critical region. In this 

respect, it is interesting to note that near the middle of the lower branch for the 

two largest systems there is a change of slope with the two part of the branch being 

less steep. In fact, if we only consider the top 8 points of the lower branch for the 

heaviest system 252Es the best fit yields a slope of 1.611 f 0.034 which is consistent 

with the values quoted above for the smallest percolation systems. 

In contrast to the slope of the lower branch, the determination of the largest 

fragment at the critical point PC depends on the subtraction of the hot fission events. 
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Whereas in the percolation case it was found adequate to infer the size of PC from 

the plots in fig. 2 by merely reading-off the value of P with the largest value of ri;;, 

more care was necessary in applying the same procedure for the nuclear case as 

the value of PC was found to be quite sensitive to the value of Z,Z, at which the 

subtraction of the fission events is carried out. In order to reduce this sensitivity 

the 7 “data” points closest to the meeting point of the upper and lower branches 

were fit by a polynomial of degree 3 and the location of PC was determined from 

this fit. This procedure was found to reduce the above-mentioned sensitivity to 

within the uncertainty inherent in using finite-size bins for the values of In R 

Comparable results were also obtained with a polynomial of degree 2 (i.e. parabola). 

The inclusion of more points in obtaining the fit would lead to an error in determining 

PC due to the influence on the fit by points far removed from the critical region. 

In fig. 10 we show a log-log plot of the values of PC obtained in the manner 

described in the previous paragraph as a function of the linear size of the correspond- 

ing nuclear system L = 2"3 where 2 is the total charge of that system. The error 

bars in this figure reflect the size of the bins of In P or the uncertainty due to the 

subtraction of the fission events, whichever is larger. The slope of the straight line 

fitting these points should equal the fractal dimension (see eq. (6)). A least-squares 

fit yields D = 2.36 rfr 0.15 which is to be compared with D = 2.480 in table 1. 

The determination of the slope of the upper branch is of course very sensitive to 

the subtraction of the fission events. The slopes corresponding to the optimal value 

of Z,Z, are always larger in magnitude than the theoretically expected value 

--#S/r = -0.265. For example, the slope of the least-square straight-line fit to the 

upper branch of the heaviest system in fig. 9 is found to be -0.873 * 0.036. Again 

b 

4.0 - 

InP, 

2.0’ I I I c 
1.6 1.7 1.8 1.9 

In Z”3 

Fig. 10. The logarithm of the largest fragment size at the critical point PC as a function of the logarithm 

of the corresponding linear size of the system L = 2 “3 for the microcanonical multifragmentation of 

the various n&ear systems of the previous figure. 
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this discrepancy may reflect the very small size of the systems considered as well 

as a possible modification of the properties of the phase transition by the Coulomb 

force. 

A finite-size-scaling analysis of the curves for the 6 nuclear systems according to 

the ansatz given in eq. (14) is shown in fig. 11. The optimal value of 0 is found to 

be 1.35 which is to be compared with the theoretically expected value 8 = 1.96 (see 

eq. (15) and table 1). The difference, as in the case of percolation may be attributable 

to higher-order corrections to finite-size scaling. These corrections are more impor- 

tant here than in the percolation cases because of the much smaller sizes of the 

nuclear systems. This limitation on the nuclear system sizes is of course dictated by 

the peculiarity of the nuclear problem and not by any computational or other 

limitations. In trying to find the optimal value of D it is seen from fig. 11 that there 

is a range of values that produce equally acceptable results. The case with D = 2.10 

may be seen to produce the best result but the case with D = 2.55 is also acceptable. 

Both of these values are comparable to the value obtained from fig. 10. However, 

even the case with 0=3 cannot be rejected off-hand. As a matter of fact, a close 

inspection of the critical region reveals that D = 3 provides better scaling for 4 of 

the systems. One of the remaining systems (252 Es) is inadequately described in the 

three cases. This ambiguity in the value of D is due to the small range of nuclear 

sizes available, in contrast to the percolation case where the sizes considered ranged 
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Fig. 11. Finite-size-scaling analysis of the In P versus In S, plots for the various nuclear systems 

investigated. For clarity, we do not show the dots representing the actual results of the calculation, but 

we show smooth curves drawn through these dots similar to the curves drawn in fig. 9. Each of the three 

sets of curves corresponds to a different value of D as indicated, but they all have the same value of 0 = 1.35. 
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from 64 to 1000 which enabled us to easily distinguish between the various values 

of D. 

The physical meaning of a value of D less than the euclidean dimension d in the 

nuclear case must be examined carefully. It is tempting to interpret D < d [ref. ““)I 

as reflecting the existence of “pre-fragments” that contain many holes inside them 

and that later deexcite to become the detected normal compact fragments. However, 

it must be pointed out that in our microcanonical nuclear fragmentation calculation 

we start from an equilibrium. situation consisting of “normal compact” fragments 

which have a mass that scales as R3 and no reference is made to any “pre-fragments” 

or to the way these fragments are formed. The occurrence of a value of D < d may 

however be another indication of the lingering role of the long-range Coulomb 

force. In addition to being responsible for the hot fission-events, the Coulomb force 

may also modify the properties of the two main branches corresponding to the 

nuclear liquid-gas transition. 

5. Conclusion 

In conclusion we have analyzed the cluster size distributions obtained for systems 

of various sizes in percolation and in nuclear fragmentation. We first applied the 

methods used to the percolation systems where the properties of the relevant phase 

transition are well understood and verified that the methods employed are depend- 

able. These methods essentially depend on finding the correlation between the largest 

cluster or fragment P in each event and the corresponding second moment S, of 

the remaining clusters. Average plots derived from this correlation were then used, 

together with finite-size scaling, to derive values for the fractal dimension D and 

the ratios of the critical exponents p/y and y/v. In the case of percolation the 

systems considered ranged in size from 43 = 64 to lo3 = 1000 sites and the results 

obtained were in good agreement with the asymptotic values currently available in 

the literature. 

In the nuclear case the analysis suffered from two main difficulties. The first 

difficulty concerns the problem of the removal of the hot fission events. This problem 

is very interesting in light of the fact that very little is known, whether expe~mentally 

or theoretically, about the fissility of hot nuclei. The second difficulty arises out of 

the fact that the range of nuclear systems available is very limited so that the 

calculations in this case were limited to systems with total charge in the range 

54 G Z G 99 which is much narrower than the range covered in percolation. Both of 

these difficulties lead to large uncertainties and ambiguities in interpreting the results. 

The plots resulting from the nuclear events, with the hot fission events subtracted, 

tended to have a qualitative similarity with the plots obtained in percolation. This 

similarity indicates that in both cases a phase transition takes place. However, the 

quantitative uncertainties in the results in the nuclear case prevented us from 

definitely identifying the nature of this transition which we believe to be related to 
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the liquid-gas phase transition in nuclear matter. There are indications however that 

the effect of the Coulomb force may not be limited to the production of hot fission 

fragments and that it actually modifies the properties of the liquid-gas phase 

transition so that the procedure of simply excluding the hot fission events followed 

here may not be sufficient. This may be partly responsible for the fact that the slopes 

and critical exponents evaluated for the nuclear case deviate significantly from their 

expected values and from the values for percolation systems of comparable size. 

This interesting and important problem of finite many-body systems deserves more 

theoretical investigation. The associated phenomenon of hot nuclear fission should 

also be worthy of further theoretical and experimental study. 

Finally, it must be emphasized that the presented calculations of statistical nuclear 

fragmentation are carried out within a model that has its limitations. Some of these 

limitations like the assumption of equilibrium multifragmentation are inherent in 

the model, while others reflect certain approximate treatments that can eventually 

be improved. One such approximation that may be important and that is in the 

process of being improved is the treatment of secondary or delayed evaporation of 

charged particles. In the present work, such evaporation is only included in a rough 

wayz5). However, it is not expected that this will appreciably change the present 

results which we hope will provoke better experiments to probe this very interesting 

and far-reaching problem. Such experiments must be sufficiently exclusive to allow 

the determination of the second moment of the fragment size or charge distribution. 

There is no need to measure the momenta or energies of these fragments. 

In a pioneering work Campi 38) was the first to try a sealing analysis of about 

400 events from ref. 36). 

One of the authors (H.R.J) would like to thank the Alexander von Humboldt 

Foundation for financial support and the Hahn-Meitner-Institut for its hospitality. 
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