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Positive Unit Hyperresolution Tableaux and TheirApplication to Minimal Model GenerationFran�cois Bry 1 Adnan Yahya 21 Institut f�ur Informatik, Ludwig-Maximilians-Universit�at M�unchen,Oettingenstra�e 67, D { 80538 M�unchen, Germanyhttp://www.pms.informatik.uni-muenchen.de2 Electrical Engineering Department, Birzeit University, Birzeit,PalestineKeywords: Minimal Model, Model Generation, Tableau, Proof Theory.Abstract. Minimal Herbrand models of sets of �rst-order clauses are use-ful in several areas of computer science, e.g. automated theorem proving,program veri�cation, logic programming, databases, and arti�cial intelli-gence. In most cases, the conventional model generation algorithms areinappropriate because they generate nonminimal Herbrand models and canbe ine�cient. This article describes an approach for generating the minimalHerbrand models of sets of �rst-order clauses. The approach builds uponpositive unit hyperresolution (PUHR) tableaux, that are in general smallerthan conventional tableaux. PUHR tableaux formalize the approach ini-tially introduced with the theorem prover SATCHMO. Two minimal modelgeneration procedures are described. The �rst one expands PUHR tableauxdepth-�rst relying on a complement splitting expansion rule and on a formof backtracking involving constraints. A Prolog implementation, namedMM-SATCHMO, of this procedure is given and its performance on bench-mark suites is reported. The second minimal model generation procedureperforms a breadth-�rst, constrained expansion of PUHR (complement)tableaux. Both procedures are optimal in the sense that each minimal modelis constructed only once, and the construction of nonminimal models is in-terrupted as soon as possible. They are complete in the following sense:The depth-�rst minimal model generation procedure computes all minimalHerbrand models of the considered clauses provided these models are all�nite. The breadth-�rst minimal model generation procedure computes all�nite minimal Herbrand models of the set of clauses under consideration.The proposed procedures are compared with related work in terms of bothprinciples and performance on benchmark problems.1



1 IntroductionGenerating Herbrand models of sets of �rst-order clauses is useful in severalareas of computer science. In automated theorem proving, models can assistin making conjectures, that can be later checked for provability with con-ventional provers. In automated theorem proving and program veri�cation,model generation can also be applied to searching for counter-examples toconjectures. In both application areas, it is worthwhile and helpful to re-strict model generation to minimal models.The generation of minimal models is useful in logic programming anddeductive databases for specifying their declarative semantics [40, 41], insome approaches to query answering [24, 36, 78, 77], for updating databasefacts and views [22, 28, 72, 6, 2], in arti�cial intelligence for solving de-sign synthesis and diagnosis problems [54, 61, 53, 4], and in nonmonotonicreasoning [46, 34, 50, 49] { see also [60, 68]. Arti�cial intelligence produc-tion systems can be seen as minimal model generators for propositional or�rst-order logic Horn clauses.The conventional tableaux methods [66, 25, 73, 74] are however inappro-priate as model generation procedures because they often return redundantor nonminimal models [34, 50, 68, 42]. The a posteriori detection of redun-dant models is tedious and might be time consuming. Moreover, redundantmodels are a source of ine�ciency because they blow up the search space.This article describes two procedures for generating the minimal Herbrandmodels of a set of �rst-order clauses. The proposed procedures are optimalin the sense that each minimal model is generated only once, and nonmini-mal models are rejected as soon as possible, in general before their completeconstruction. Measurements on an implementation in Prolog of one of theprocedures point to the e�ciency of the approach.Both procedures are based on positive unit hyperresolution tableaux (shortPUHR tableaux), a (novel) formalization of an approach �rst introduced withthe theorem prover SATCHMO [44, 45]. PUHR tableaux are ground andpositive, more precisely their nodes consist of sets of ground atoms anddisjunctions of ground atoms. They are expanded by means of only tworules, the positive unit hyperresolution and the splitting (a simple version of� expansion [66, 25]) rules, from range-restricted clauses. Range restrict-edness is a syntactical property required in many applications, e.g. deduc-tive database languages. A transformation of general clauses into range re-stricted clauses is described which is comparable to Skolemization: althoughrequiring an extension of the language, it preserves models in a certain sense.The branching factor, the size of PUHR tableaux, and the size of the nodesof PUHR tableaux are in most cases signi�cantly smaller than those of con-ventional tableaux. Positive unit hyperresolution makes it possible not toblindly instantiate universally quanti�ed variables. Instead, it combines inone step instantiations (or 
 expansions [66, 25]) and splittings (or � ex-2



pansion [66, 25]), thus reducing the depth of PUHR tableaux. Thanks torange-restrictedness full uni�cation is not needed for computing positive unithyperresolvents. \Half-way uni�cation" (or \merging") su�ces.The �rst minimal model generation procedure expands PUHR tableauxdepth-�rst relying on a complement splitting expansion rule and on a formof backtracking involving constraints. The complement splitting rule (intro-duced under this name in [45], called \reduction" in [55] and \folding-down"in [39]) cuts out some branches leading to nonminimal models. BecausePUHR tableaux are ground, complement splitting can be nicely and e�-ciently built into the SATCHMO programs. While discarding many non-minimal models, and preventing the generation of duplicate models, com-plement splitting is not always su�cient to reject all nonminimal models.In order to prune redundant models as soon as possible, a special depth-�rst search strategy with extended backtracking is applied. The resultingdepth-�rst minimal model generation procedure is sound in the sense thatit generates only minimal Herbrand models, and complete in the sense thatit returns all minimal Herbrand models of the input clauses, provided theseminimal models are all �nite. An interesting property is established: If allminimal Herbrand models of a set of clauses are �nite, then they are �nitelymany. A variation, called MM-SATCHMO, of the SATCHMO program isgiven, which implements the depth-�rst minimal model generation proce-dure in Prolog. The previously mentioned property ensures the terminationof this procedure, in case all minimal models are �nite.The second minimal model generation procedure performs a breadth-�rst, possibly constrained expansion of PUHR (complement) tableaux. Itis complete in the sense that it computes in �nite time every �nite minimalHerbrand model of the set of clauses under consideration.The plan of the paper is as follows. Section 2 introduces terminology andnotations, and de�nes range-restricted clauses. In Section 3, PUHR tableauxare introduced, they are compared with refutation methods, and their im-plementation in Prolog { the program SATCHMO { is recalled. Section 4is devoted to model generation using PUHR tableaux. Soundness and com-pleteness results are given and PUHR tableaux are compared with modelgeneration methods. Section 5 de�nes the depth-�rst and breadth-�rst min-imal model generation procedures as modi�ed PUHR tableaux methods. Inthis section, �niteness properties are �rst investigated, complement splittingand its implementation are discussed, a minimal model generation procedurebased on depth-�rst search is de�ned and its implementation in Prolog { theprogram MM-SATCHMO { is given, breadth-�rst minimal model generationis investigated, the proposed minimal model generation procedures are com-pared with related work, and �nally the performance of MM-SATCHMO onbenchmarks is reported. The last Section is a conclusion.A preliminary version of this paper (whithout proofs and whithout Sec-tions 3.2, 4.2, 5.6, 5.7, and 5.8) has been published in the Proceedings of the3



Fifth Workshop on Theorem Proving with Analytic Tableaux and RelatedMethods [12].2 Preliminaries2.1 Terminology and NotationsThroughout the paper usual terminology and notations are used, as in e.g.[66, 25]. When not explicitly otherwise stated, a �rst-order language L isimplicitly assumed. It is also assumed that two special atoms > and ?are available, expressing respectively truth and falsity, i.e. > is satis�ed inevery interpretation, no interpretations satisfy ? . The logical connectives^ and _ are assumed to be right associative, i.e. if � = ^ or � = _, thenL1�L2� : : : �Ln�1�Ln denotes (L1�(L2� : : : �(Ln�1�Ln) : : :)).Every clause C = L1 _ :::_Lk with negative literals f:A1; :::;:Ang andpositive literals fB1; :::; Bmg can be represented by a clause in implicationform: C 0 = A1 ^ :::: ^An ! B1 _ ::: _Bm. A1 ^ :::: ^An is called the bodyof C 0, B1 _ ::: _ Bm its head. If C contains no negative literals, C 0 = > !B1 _ ::: _Bm. If C contains no positive literals, C 0 = A1 ^ :::: ^An ! ?.A uni�er � of a conjunction of atoms (A1 ^ :::: ^An) and a sequence ofatoms (B1; :::; Bn) (possibly with repeated atoms) is de�ned as a substitution� such that Ai� = Bi�, for all i = 1; :::; n. If (A1^ ::::^An) and (B1; :::; Bn)have a uni�er, they are uni�able. Note that, since repetitions in the sequence(B1; :::; Bn) are allowed, a conjunction (A1 ^ :::: ^ An) might be uni�ablewith a sequence containing less than n (distinct) atoms. A uni�er � of(A1 ^ :::: ^ An) and (B1; :::; Bn) is called a most general uni�er (mgu) of(A1 ^ :::: ^An) and (B1; :::; Bn), if for each uni�er � of (A1 ^ :::: ^An) and(B1; :::; Bn), there exists a substitution 
 such that � = �
.An atom A is said to subsume an atom B (a disjunction of atoms B1 _::: _ Bn, resp.) if there exists a substitution � such that A� = B (A� = Bifor some i 2 f1; :::; ng, resp.).An interpretation of L will be denoted as a pair (D;m) where thenonempty set D is the universe (or domain) and m is the mapping inter-preting the symbols and expressions of the language.The universal closure of a clause C is 8x1:::8xnC, where x1; :::; xn arethe variables occurring in C. A clause (resp. a set of clauses) is said tobe satis�ed by an interpretation when the universal closure of the clause(resp. the set of the universal closures of the clauses) is satis�ed by thisinterpretation. A clause (resp. a set of clauses) is said to be satis�able if ithas at least one interpretation in which it is satis�ed. A clause (resp. a set ofclauses) is said to be �nitely satis�able if it is satis�ed by an interpretationwith a �nite domain.A term or formula in which no variables occur is said to be ground. If Ais a set of ground atoms, H(A) denotes the Herbrand interpretation which4



satis�es a ground atom B if and only if B 2 A. In this paper, a Herbrandinterpretation H(A) will be said to be �nitely representable if A is �nite.Note that \�nite representability of Herbrand interpretations" can be foundin the literature, e.g. in [23], with another meaning. Since confusions can beavoided from the context, a set of formulas having a �nitely representableHerbrand model will be said to be �nitely representable. Note that �niterepresentability (of sets of formulas) and �nite satis�ability are two distinctproperties.The subset relationship � over sets of ground atoms induces an order� on Herbrand interpretations: given two sets A1 and A2 of ground atoms,H(A1) � H(A2) if and only if A1 � A2. If S is a set of clauses, � inducesan order on Herbrand models of S. A Herbrand model H(A) of S is saidto be a minimal Herbrand model of S if it is minimal for �, i.e. for everyHerbrand model H(A0) of S, if H(A0) � H(A), then A0 = A.If E is a set of formulas, Atoms(E) denotes the set of atoms (i.e. positiveunit clauses) that are elements of E .Variables are denoted by x and y with or without subscripts, constantsby a, b, c or d, predicate symbols by D, P , Q, and R, and function symbolsby f .In the following, a tree denotes a pair (V;E) such that V is a set { theelements of which are called vertices { and E is binary relation on V { theelements of which are called edges { containing no cycles and with respect towhich V is connected. Vertices(T ) denotes the set of vertices and Edges(T )the set of edges of a tree T . If T1 and T2 are trees, T1[T2 is de�ned as (V;E)with V = Vertices(T1) [ Vertices(T2) and E = Edges(T1) [ Edges(T2).In this paper tableaux methods and minimal model generation proce-dures for sets of �rst-order clauses are de�ned, i.e. it is assumed that exis-tential quanti�cations have been removed through Skolemization.2.2 Range RestrictionDe�nition 1 (Range restricted clause) A clause (resp. a clause in im-plication form) is said to be range restricted if every variable occurring in apositive (resp. head) literal also appears in a negative (resp. body) literal.Clearly, a range restricted clause in implication form is ground if its bodyis ground, e.g. if it is >. Note that clauses considered in many applicationsof minimal model generation { e.g. database view updates [6, 2], databaseschema design [7], abductive reasoning [6, 16, 17], diagnosis [54, 61, 53] { arerange restricted. Also, clauses obtained from many-sorted formulas throughthe standard representation in �rst-order logic [18] are range restricted.A transformation is �rst de�ned, which associates a set RR(S) of rangerestricted clauses in implication form with every set S of clauses in implica-tion form. 5



De�nition 2 (Range restriction transformation) Let L0 be an exten-sion of the language L with a unary predicate D (not belonging to L).For every L-clause C = A1 ^ ::: ^An ! B1 _ ::: _Bm, let RR(C) be thefollowing L0-clause:RR(C) := ( C if C is range restricted;D(x1) ^ ::: ^D(xk) ^A1 ^ ::: ^An ! B1 _ ::: _Bmotherwise,where x1; :::; xk are the variables occurring in the Bis and in none of theAjs.Let S be a set of L-clauses. For a term t distinct from a variable andoccurring in S, let Ct be the L0-clause:Ct := ( D(x1) ^ ::: ^D(xk)! D(t) if the variables x1; :::; xk occur in t;> ! D(t) if no variables occur in t.Let � be the set of nonvariable terms occurring in S. Let S 0 be the followingset of L0-clauses:S 0 := ( fCt j t 2 �g if � contains a constant;fCag [ fCt j t 2 �g otherwise, for some constant a.RR(S) := fRR(C) j C 2 Sg [ S 0 is the range restriction of S.Note that by construction the clauses in RR(S) are range restricted andthat RR(S) is �nite if S is �nite. Strictly speaking, the range restrictiontransformation does not preserve models because it extends the language Lwith the unary predicate D.Example 11. If S = f> ! P (f(x))g, then RR(S) = fD(x) ! P (f(x)) ; > !D(a) ; D(x) ! D(f(x))g where, in the �rst clause, D(x) ^ > is sim-pli�ed into D(x).2. If S = fP (x; y)! P (f(x); y)g, then RR(S) = fP (x; y)! P (f(x); y) ;> ! D(a) ; D(x)! D(f(x))g.Example 1 shows that, if the range restriction transformation is appliedto a set of clauses that are already range restricted, a set of range restrictedclauses is obtained which is not identical with the initial set. Note that theproperties of the PUHR tableaux method and of the minimal model gener-ation procedures given below only require that the method and proceduresare applied to sets S of range restricted clauses but not that S = RR(S).The following theorem shows that the range restriction transformationpreserves models and minimal Herbrand models in a certain sense, similarto the way Skolemization does. 6



Theorem 3 Let S be a set of clauses in a language L with no other functionsymbols than those occurring in S except possibly a constant a. Let RR(S)be the range restriction of S in an extension L0 of L with a unary predicateD.1. If (D;m) is a model (Herbrand model, minimal Herbrand model, resp.)of S and if m0 is the mapping over L0 de�ned as follows:m0(s) := ( m(s) if s 6= D;D if s = D:then (D;m0) is a model (Herbrand model, minimal Herbrand model,resp.) of RR(S).2. If (D;m0) is a model (Herbrand model, minimal Herbrand model, resp.)of RR(S) and if m0jL denotes the restriction of m0 to L, then (D;m0jL)is a model (Herbrand model, minimal Herbrand model, resp.) of S.Proof: Point 1 follows immediately from De�nition 2. For point 2 thenonemptiness of S 0 (cf. De�nition 2) is necessary, because the clausesRR(C) such that RR(C) 6= C are satis�ed over any interpretation mappingthe added unary predicate D to the empty set.This result means that range restrictedness can be seen as just a specialsyntactic form rather than a real restriction { from a theoretical point ofview. For practical purposes, however, range restrictedness does make adi�erence. In the context of PUHR tableaux, the range restriction transfor-mation induces an enumeration of the ground terms, making the 
 expansionrule of conventional tableaux [66, 25] super
uous. Thus, if the procedurespresented in this paper are applied to a set RR(S) obtained from S by thetransformation above, then the newly introduced atoms with predicate Dhave basically the same e�ect as an instantiation, i.e. as the 
 rule, for theclauses of the original set S.When applied in a refutation procedure, instantiation is often a sourceof ine�ciency. Note, however, that this is not the case for model generation.In contrast to refutation, model generation requires instantiation anyway if,like considered in the present paper, Herbrand models are to be representedas sets of ground atoms.De�nition 4 (Positive unit hyperresolvent) Let C = A1 ^ ::: ^ An !E1_ :::_Em be a clause in implication form, B1; :::; Bn be n (not necessarilydistinct) atoms such that (A1 ^ ::: ^ An) uni�es with (B1; :::; Bn). If � is amost general uni�er of (A1^ :::^An) and (B1; :::; Bn), then (E1_ :::_Em)�is a positive unit hyperresolvent of C and B1; :::; Bn.Lemma 5 The positive unit hyperresolvent of a range restricted clause inimplication form and ground atoms is a ground atom or a disjunction ofground atoms. 7



Proof: Immediate.Note that no occur-checks need to be performed for computing the posi-tive unit hyperresolvent of a range restricted clause in implication form andground atoms. Indeed, half-way uni�cation (or matching) su�ces in comput-ing a positive unit hyperresolvent of a range restricted clause in implicationform and of ground atoms.In the next section, positive unit hyperresolution tableaux are de�ned forrange restricted clauses. This is not a signi�cant restriction, for De�nition 2gives a transformation of (�nite) sets of general clauses into (�nite) setsof range-restricted clauses which preserves models and minimal Herbrandmodels in the sense of Theorem 3. Note that this transformation is notnecessary for applying the model generation methods described below, ifthe considered clauses are already range restricted.3 Positive Unit Hyperresolution Tableaux andSATCHMO3.1 Positive Unit Hyperresolution TableauxStarting from the set f>g, the PUHR tableaux method expands a tree {or positive unit hyperresolution (PUHR) tableau { for a set S of rangerestricted clauses in implication form by applying the following expansionrules that are de�ned with respect to S. The nodes of a PUHR tableau aresets of ground atoms or disjunctions of ground atoms.De�nition 6 (PUHR tableaux expansion rules) Let S be a set ofclauses in implication form.� Positive unit hyperresolution (PUHR) rule:B1...BnE�where � is a most general uni�er of the body of a clause(A1 ^ ::: ^An ! E) 2 S and of (B1; :::; Bn).� Splitting rule:E1 _E2E1 E2In the following de�nition, thanks to the range restrictedness of clauses,the splitting rule is applied to ground disjunctions.8



De�nition 7 (PUHR tableaux) Positive unit hyperresolution (PUHR)tableaux for a set S of clauses in implication form are (�nite or in�nite)trees whose nodes are sets of ground atoms and disjunctions of ground atoms.Finite PUHR tableaux for S are inductively de�ned as follows:1. f>g is a positive unit hyperresolution tableau for S.2. If T is a positive unit hyperresolution tableau for S, if L is a leaf ofT such that an application of the PUHR rule (resp. splitting rule) toformulas in L yields a formula E (resp. two formulas E1 and E2) notsubsumed by an atom in L, then the tree T 0 obtained from T by addingthe node L [ fEg (resp. the two nodes L [ fE1g and L [ fE2g) assuccessor(s) to L is a positive unit hyperresolution tableau for S.In�nite PUHR tableaux for S are de�ned as follows: If (Ti)i2N is an in�-nite sequence of �nite PUHR tableaux for S such that for all i 2 N Ti+1results from an application of a PUHR tableau expansion rule to Ti, thenT = Si2N Ti { i.e. the tree T with Vertices(T ) = Si2N Vertices(Ti) andEdges(T ) = Si2N Edges(Ti) { is a PUHR tableau for S.A branch of a positive unit hyperresolution tableau is said to be closed,if it includes a node containing the atom ?. A positive unit hyperresolutiontableau is said to be closed if all its branches are closed. A branch (resp.tableau) which is not closed is said to be open.A positive unit hyperresolution tableau T for S is said to be satis�able ifthe union of S with the nodes of a branch of T is satis�able.If P is a branch or a path from the root to a node N , then [P willdenote the union of the nodes in P. Note that if P is a path from the rootto a node N of a PUHR tableau, then by De�nition 7, N = [P.Convention. If N1 and N2 are the nodes of a PUHR tableau T containingrespectively E1 and E2 and resulting from an application of the splittingrule to E1 _ E2, it is assumed in the sequel that the PUHR tableau T isordered such that N1 is the left sibling of E2. This ordering induces anordering on the branches of a PUHR tableau in the natural way. Note thatthis ordering { of nodes or branches of a PUHR tableau { is independentfrom any strategy under which the PUHR tableau can be built. Expressionssuch as \a node appearing to the left of another node in a PUHR tableau"(cf. Theorem 25) or \the leftmost branch of a PUHR tableau" (cf. Exam-ple 3, Corollary 26, and Example 7) will refer to this ordering, not to anordering induced by a search strategy.Example 2 Figure 1 gives a PUHR tableau for the following set of clausesin implication form: 9
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MMP (f(a)) Q(f(a)) P (b) R(b)? ? ?Figure 1: A PUHR tableau for the set of clauses of Example 2.> ! P (a) _Q(b) P (b)! ?P (x)! P (f(x)) _Q(f(x)) P (f(x))! ?Q(x)! P (x) _R(x) P (x) ^Q(f(x))! ?For the sake of readability, the nodes of the tree of Figure 1 are labeledwith the ground atoms or disjunctions of ground atoms added at these nodes.We recall that by De�nition 7 and Lemma 5 the nodes of a PUHR tableauare sets of ground atoms and disjunctions of ground atoms.Note that sets of clauses for which PUHR tableaux are de�ned may bein�nite. According to De�nition 6 clauses whose heads are ? only contributeto close branches. Since negative formulas do not explicitly occur in PUHRtableaux, closure is simply detected by the presence of ?, which is simplerthan checking for atomic closure [25].De�nition 8 Let S be a set of range-restricted clauses in implication formand A a set of ground atoms and disjunctions of ground atoms. A is saidto be saturated with respect to S for the positive unit hyperresolution andsplitting expansion rules when the following properties hold:1. if (A1^ :::^An ! E) 2 S, B1 2 A, ..., and Bn 2 A, and (A1^ :::^An)and (B1; :::; Bn) are uni�able, then E� 2 A for a most general uni�er� of (A1 ^ ::: ^An) and (B1; :::; Bn).2. If (E1 _E2) 2 A, then E1 2 A or E2 2 A.Note that if B is an open or a closed branch of a PUHR tableau, then [Bis not necessarily saturated. As well, if [B is saturated, then B is neithernecessarily open, nor necessarily closed.Lemma 9 The application of an expansion rule to a satis�able PUHR tableauresults in a satis�able PUHR tableau.10



Proof: If M is a model of a set F of clauses, atoms and disjunctions, and ifE is a positive unit hyperresolvent of elements of F , then M j= E. If M isa model of F and E1 _E2 2 F , then M j= E1 or M j= E2.Theorem 10 (Refutation soundness) Let S be a set of range-restrictedclauses in implication form. If there exists a closed PUHR tableau for S,then S is unsatis�able.Proof: Assume S is satis�able. By Lemma 9 there are no closed PUHRtableaux for S.De�nition 11 A PUHR tableau is said to be fair, if the union of the nodesof each of its open branches is saturated for the expansion rules.Informally, a PUHR tableau is fair if along each of its open branches,each possible application of an expansion rule, which yields an atom or adisjunction of atoms not subsumed by previously generated atoms, is per-formed at least once.If B is a branch of a tableau, then Atoms([B) denotes the set of atoms(i.e. positive unit clauses) that are elements of some nodes in B. In thesequel, Atoms(E) will always be referred to in cases where all atoms in Eare ground. Recall that if Atoms(E) is a set of ground atoms, it characterizesthe Herbrand interpretation H(Atoms(E)).Lemma 12 Let S be a set of range-restricted clauses in implication formand E be a set of ground atoms and disjunctions of ground atoms. If S[E issaturated for the expansion rules with respect to S and if E does not contain?, then H(Atoms(E)) is a model of S.Proof: Immediate.Theorem 13 (Refutation completeness) Let S be a set of range-restrictedclauses in implication form. If S is unsatis�able, then every fair positive unithyperresolution tableau for S is closed.Proof: Let T be an open fair PUHR tableau for S, and B an open branchof T . Since T is fair, then [B is saturated for the expansion rules. ByLemma 12 H(Atoms([B)) is a model of S. Hence S is satis�able.PUHR tableaux are de�ned for sets of range restricted clauses. Com-bined with the PUHR expansion rule of De�nition 6, the range restrictiontransformation induces an enumeration of the ground terms, as observede.g. in [43].
11



3.2 Comparison of PUHR Tableaux With Related Refuta-tion MethodsThe PUHR tableaux are a formalization of the principle of the SATCHMOprograms, one of them is recalled in the next section. Other formalizationsof the SATCHMO approach to theorem proving can be found in [16, 33, 17,12, 3, 37, 11, 71]. A further more or less implicit formalization is subjacent to[43]. In [71, 11], EP Tableaux are proposed that generalize PUHR Tableauxto nonclausal formulas with \restricted quanti�cation". PUHR and hypertableaux [3, 37] are more in the \tableaux style" (cf. [66, 25, 73, 74]) thanthe formalizations [16, 33, 17]. PUHR tableaux are simpler than hypertableaux [3] in which negative literals resolved away during hyperresolutionyield closed branches. PUHR and hyper tableaux [3] are closely related tothe positive tableaux of [30] that are de�ned for ground or propositionallogic clauses.In [3], a refutation method �a la SATCHMO is described, that does notrequire clauses to be range-restricted. Variables occurring in more thanone positive literal of a clause are instantiated using the 
 rule of standardtableaux methods [66, 25]. Variables occurring in at most one positive lit-eral do not have to be instantiated, since splitting disjunctions in whichsuch unbound variables occur does not compromise refutation correctness.As pointed out in [3], this optimization is particularly interesting, becauseit applies to Horn clauses that frequently appear in applications. Note how-ever, that this optimization is not applicable to model generation if, asassumed in the present paper, Herbrand models are to be represented bythe ground atoms they satisfy.In [3], it is proposed to achieve fairness by iterative deepening on themaximal depth of terms occurring in the generated clause instances. Thisseems more convenient than the (iterative deepening based) backtrackingof free variable tableaux [25, 5]. However, it is debatable whether it is notpreferable to achieve fairness by \level saturation" as described in [44, 45]and below in Section 3.3.Note also the interesting optimization called \level cut" suggested in [3],which can be applied to most tableaux methods used for refutation. The\level cut" optimization consists in discarding branchings if one of thebranching subtrees can be closed without using the branching assumption.This optimization is not applicable to model generation if, as it is assumedhere, Herbrand models are to be represented by all the ground atoms theysatisfy.The data structure \model tree" described in [41] is related to PUHRtableaux as follows: The tree consisting of the (open) branches correspond-ing to minimal models of a PUHR tableau induces { by node relabeling andchain compacting { a model tree. However, model trees are de�ned only forground clauses. 12



satisfiable :- findall(Clause, violated_instance(Clause), Set),not (Set = []), !, satisfy_all(Set), satisfiable.satisfiable.violated_instance(B ---> H) :- (B ---> H), B, not H.satisfy_all([]).satisfy_all([_B ---> H | Tail]) :- H, !, satisfy_all(Tail).satisfy_all([_B ---> H | Tail]) :- satisfy(H), satisfy_all(Tail).satisfy(E) :- component(Atom, E), not (Atom = false), assume(Atom).component(Atom, (Atom ; _Rest)).component(Atom, (_ ; Rest)) :- !, component(Atom, Rest).component(Atom, Atom).assume(Atom) :- asserta(Atom).assume(Atom) :- once(retract(Atom)), fail.Figure 2: The fair SATCHMO program.In [44, 45], where SATCHMO was �rst presented, it is described in termsof positive unit hyperresolution and splitting and not as a tableaux method.This presentation has been retained by most authors referring to SATCHMOor extensions of it, e.g. [60, 26, 67, 43, 31, 38]. In fact, SATCHMO has beenconceived as a tableaux method, as early publications [9, 8] on this projectreport. This is because enhancing a tableaux method with resolution wasa new idea and because tableaux methods were considered ine�cient thatthis view is not explicitly mentioned in [44, 45].3.3 Implementation in PrologThe Prolog program of Figure 2 expands fair PUHR tableaux for sets ofrange-restricted clauses in implication form under a depth-�rst search strat-egy. The tableaux expanded by this program are strict [25] and subsumption-free. Strictness means that no application of an expansion rule is performedmore than once to given clauses, atoms, or disjunctions. Subsumption-freeness means that only ground disjunctions that are not subsumed bypreviously generated atoms or disjunctions can be split.Backtracking over satisfiable returns Herbrand models H(M). Theground atoms of M are inserted into the Prolog database by the predicateassume. On backtracking, they are removed. A clause A1 ^ ::: ^ An !B1 _ ::: _Bm is represented in the Prolog database asA1, ..., An ---> B1 ; ... ; Bm,where ---> is declared as an in�x binary predicate. ? is represented asfalse, > as the built-in predicate true, which is always satis�ed.13



Fairness is ensured by the call to the all-solutions built-in predicatefindall. The predicate component on backtracking successively returnsthe atoms of a disjunction. The predicate satisfy on backtracking suc-cessively returns the components of a disjunction that are not subsumedby atoms previously inserted into the Prolog database. For each groundinstance _B ---> H of a clause returned by the callfindall(Clause, violated_instance(Clause), Set)the predicate satisfy_all selects an atom in the head H and asserts it inthe Prolog database. On backtracking, the di�erent ways to satisfy the headH of each ground instance _B ---> H returned by the call to findall areconsidered.The program of Figure 2, called fair SATCHMO, as well as variationsof it have been �rst published in [44, 45]. In these articles, the programsare explained in more detail and performance on benchmark examples isreported.It is worth pointing out that satisfy_all is a simple and straightfor-ward implementation which, in some cases, has drawbacks. Consider forexample the following Prolog representations R1 and R2 of the same set ofclauses: R1: R2:true ---> p(a) true ---> p(b) ; p(a)true ---> p(b) ; p(a) true ---> p(a)Applied to R1, the call tofindall(Clause, violated_instance(Clause), Set),instantiates the variable Set with the list:[(true ---> p(a)), (true ---> p(b) ; p(a))]Then the call to satisfy_all �rst asserts p(a) into the Prolog databaseso as to satisfy the head of true ---> p(a). Since now p(b) ; p(a) issatis�ed, no further actions are taken, as speci�ed by the second clause ofsatisfy_all. If in contrast R2 is considered, the call tofindall(Clause, violated_instance(Clause), Set)binds the variable Set to the list:[(true ---> p(b) ; p(a)), (true ---> p(a))]
14



The call to satisfy_all now satis�es �rst p(b) ; p(a), then p(a). Thatis p(b) is �rst asserted, then p(a). On backtracking, p(a) only is asserted.Such a behaviour depending on the order of the clauses in Prolog can beavoided with a more sophisticated implementation of satisfy_all whichsatis�es the considered set of heads of ground clauses by a minimal set ofatoms. Since such a re�ned implementation of satisfy_all is not neededfor the purpose of this report, it is not given here.4 Model Generation With PUHR Tableaux4.1 Soundness and Completeness ResultsIn the previous section, PUHR tableaux were considered from the angle ofrefutation. In this section, their properties with respect to model generationare investigated.Theorem 14 (Model soundness) Let S be a satis�able set of range-restricted clauses in implication form and T a fair PUHR tableau for S.If B is an open branch of T , then H(Atoms([B)) is a model of S.Proof: Fairness ensures saturation with respect to the expansion rules. The-orem 14 follows from Lemma 12.Theorem 15 Let S be a satis�able set of range-restricted clauses in impli-cation form, T be a PUHR tableau for S, and M a set of ground atoms. IfH(M) is a model of S, then there exists an open branch B of T such thatAtoms([B) �M.Proof: Let B be the set of branches B of T such that Atoms([B) 6� M. IfB is empty, the result is established. Assume that B 6= ;. By the axiomof choice, for each B 2 B there exists AB 2 Atoms([B) n M. Let S 0 =S [ fAB ! ? : B 2 Bg. By de�nition of S 0, since no AB is in M, H(M)is also a model of S 0. Furthermore T can be extended into a positive unithyperresolution tableau T 0 for S 0 by adding ? to the successor nodes ofthose nodes of T that contain some AB. Let B0 denote such an extension ofthe branch B in T 0. By construction, if B 2 B, then B0 is a closed branchof T 0. By Theorem 10, since H(M) is a model of S 0 and T 0 is positive unithyperresolution tableau for S 0, T 0 has an open branch, say B0. Since B0 isopen, it is no branch B0 of T 0 extending a branch B of T such that B 2 B.Since all clauses of S, whose heads are ?, are also in S 0, B0 is also an openbranch of T . Since B0 62 B, by de�nition of B, Atoms([B0) �M.Corollary 16 (Minimal model completeness) Let S be a satis�able setof range-restricted clauses in implication form, T be a fair positive unithyperresolution tableau for S, and M a set of ground atoms. If H(M) is a15
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MMP (a) P (d)Figure 3: A PUHR tableau for Example 3 with nonminimal and duplicatemodels.minimal model of S, then there is a branch B of T such that Atoms([B) =M.Proof: By Theorem 15, there is a branch B of T such that Atoms([B) �M.Since T is fair, by Theorem 14 H(Atoms([B)) is a model of S. Since H(M)is a minimal model of S, Atoms([B) =M.The following example demonstrates that a plain PUHR tableau cangenerate both, nonminimal and duplicate models.Example 3 Let S be the following set of clauses:> ! P (a) _ P (b) P (a)! P (b) _ P (d)> ! P (a) _ P (c) P (b)! P (a) _ P (d)Figure 3 is a PUHR tableau for S. The minimal model H(fP (a); P (b)g)of S is generated twice, at the leftmost branch and at the third branchfrom the left of the PUHR tableau. The fourth branch from the left ofthe PUHR tableau generates the nonminimal model H(fP (a); P (b); P (c)g).Note that the PUHR tableau returns among others all minimal models ofS, i.e. H(fP (a); P (b)g), H(fP (a); P (d)g), and H(fP (b); P (c); P (d)g).Corollary 16 is established, though in a di�erent context, in [16, 17] andmentioned without proof in [36]. Since f>g is a PUHR tableau for everyset S of clauses, fairness is clearly necessary in Corollary 16, although notin Theorem 15. A further interesting example is as follows.Example 4 With the set of clausesS = f> ! P (a); P (x)! P (f(x)) _ P (b); P (a)! P (b)g16



consistently expanding on the second clause will not allow the generation ofthe (only) minimal model H(fP (a); P (b)g) of S.4.2 Comparison With Other Model Generation MethodsAs a model generation method, the PUHR tableaux method can be com-pared with model generators for given cardinalities. Possibly, one of the�rst such generator of models has been described in [35]. Nowadays, amongthe best known generators of �nite models of (or up to) a given cardinalityare FINDER [65] and SEM [79]. Their strength lies in a sophisticated verye�cient implementation of the exhaustive search for models up to a givencardinality. The models generated by these methods are not necessarilyminimal in the sense of the present paper. Moreover, they require to specifythe cardinality of the universe. With PUHR tableaux, this is not necessary.For ground clauses, the Davis-Putnam procedure [15] can be used as amodel generator. A signi�cant di�erence between PUHR tableaux and thetrees expanded by the Davis-Putnam procedure is the PUHR rule which,also for ground clauses, gives a preference to positive atoms and expandsthe search space according to the implications. For applications such as e.g.query answering [24, 36, 78, 77], database fact and view updates [22, 28, 72,6, 2], design synthesis and diagnosis [54, 61, 53, 4], this \positive preference"is a useful feature.In [13, 70, 23, 52] tableaux methods are described that generate �niterepresentations { in another sense than that considered in the present paper{ for (possibly in�nite) models. The method presented in [52] extracts mod-els of possibly in�nite tableaux branches by means of equational constraints.The methods [70, 23] make use of resolution and therefore are much moree�cient than approaches based on the � rule of classical tableaux methods.The method described in [70] applies only to the monadic Ackermann class.Like PUHR tableaux the method of [23] is based on positive hyperresolutionbut avoids splitting. In some cases this method builds �nite representationsof in�nite models.In [11, 71] an extension of the PUHR tableaux method is described whichis complete for both, unsatis�ability and �nite satis�ability. Completenessfor �nite satis�ability is achieved by generating models with minimal uni-verses. This notion of \model minimality", which can be called \domain" or\universe minimality", is di�erent and complementary to that investigatedin the present article. For many applications { such as those addressed in[54, 61, 53, 6, 7, 20, 51, 2] { both notions of minimality, on the one hand do-main minimality, on the other hand minimality of the set of satis�ed groundatoms, are needed.In [34, 42] a tableaux method is de�ned for �rst-order logic formulaswhich generates models with minimal universes by relying on so-called ghostsubtableaux. Ghost subtableaux correspond to the extended 9 or � rule17



of [11, 71]. Note, however, that the \universe minimality" of [34, 42] doesnot fully coincide with that of [11, 71]. In the implementation describedin [42] the blind instantiation of the 
 rule is controlled by giving a limit onthe number of 
 expansions for each 
 formula.Thus, the methods described in [34, 42, 11, 71] rely on an extended �rule { also called �* rule { for processing existentially quanti�ed variables.The approach investigated in the present paper in contrast relies on Skolem-ization.Most forward chaining { also called bottom up { query answering meth-ods for disjunctive databases, e.g. [57, 59, 77] can be seen as model gen-erators similar to the PUHR tableaux methods. Like the PUHR tableauxmethod, these methods require the clauses to be range restricted and in-stantiate all variables. In [58, 32, 76], methods are proposed that, relying onforward chaining query answering methods for disjunctive databases, imple-ment backwards chaining through an extension of the Magic Sets rewritingtechnique. These methods too can be seen as a tableaux method.5 Minimal Model GenerationBy Corollary 16 fair PUHR tableaux generate all minimal models. However,they often also generate duplicate and/or nonminimal models, as e.g. in Ex-ample 3 above. A naive approach to minimal model generation consists in�rst expanding (fair) PUHR tableaux, and later pruning them from redun-dant branches. In this section a more e�cient approach is described whichconsists in a depth-�rst expansion of PUHR tableaux combined with an ex-tended backtracking which prunes the search space from redundant branchesas soon as possible. Under certain �niteness conditions, this depth-�rst min-imal model generation procedure is complete. However, it is inappropriate ifsome minimal models are in�nite. The generation of minimal models basedon breadth-�rst expansion of (fair) PUHR tableaux is also discussed.5.1 Finiteness PropertiesRecall that a Herbrand interpretation H(A) is called �nitely representableif the set A of ground atoms it satis�es is �nite.Theorem 17 Let S be a set of formulas. If S has a �nitely representableHerbrand model it also has a �nite model.Proof: Let (D;m) be a �nitely representable Herbrand model of S, and Abe the set of ground atoms that are satis�ed in (D;m). A �nite model of Sis built by identifying the elements of the universe D over which no termsoccurring in A are mapped. Formally, let � be the equivalence relation overD de�ned by: d1 � d2 if and only if d1 = d2 or for all R(t1; :::; tn) 2 A and18



for all i = 1; :::; n, m(ti) 6= d1 and m(ti) 6= d2. Let f be the mapping of anelement of D to its equivalence class for � in D= �. Let D0 = D= � andm0 = f �m. Since A is �nite, D= � is �nite. By de�nition of D0 and m0,a ground atom is satis�ed in (D0;m0) if and only if it is satis�ed in (D;m).Since (D;m) j= S, it follows that (D0;m0) j= S.The following result relates the �niteness of the set of minimal models tothe �nite representability of the minimal models. Let us call �nitary a setof clauses, whose minimal Herbrand models are all �nitely representable.Theorem 18 Let S be a set of clauses. If S is �nitary, then S has �nitelymany minimal Herbrand models.Proof: Let F be the set of �nitely representable minimal Herbrand modelsof S. Assume F is in�nite. If A is a �nite set of atoms fA1; :::; Akg, letNeg(A) denote the (singleton) set of clauses fA1 ^ :::^Ak ! ?g. For every�nite subset F of F , let SF = S[SfNeg(A) : H(A) 2 Fg. By the axiom ofchoice, for every �nite subset F of F there exists a minimal Herbrand modelH(MF ) of S such that H(MF ) 2 F nF . Since all Herbrand models of Sin F are minimal and since H(MF ) =2 F , H(MF ) is a model of Neg(A) forevery H(A) 2 F . Therefore, H(MF ) is a model of SF . By the compactnesstheorem, S 0 = SfSF : F � F and F �nite g is satis�able. Since S 0 a set ofclauses, it has a Herbrand model, and therefore also some minimal Herbrandmodel H(M). By de�nition of S 0, H(M) =2 F. Therefore M is in�nite.Conjectures. Although �nite representability is a stronger property than�nite satis�ability, we conjecture that it is semi-decidable like �nite satis�-ability. We also conjecture that the �nitary property is semi-decidable.Let S be a set of clauses whose minimal Herbrand models are all �nitelyrepresentable. By Theorem 18 a PUHR tableau for S pruned from thosebranches corresponding to nonminimal models is �nite.In applications, the �nite representability of the minimal Herbrand mod-els is often implicitly assumed. This is the case in particular of disjunctivedatabases [41] and of some forms of nonmonotonic reasoning [61, 34, 53, 60,46, 49]. Thus, Theorem 18 is particularly interesting. Note that mentions ofTheorems 17 and 18 or of similar results could not be found in the literature.5.2 Complement SplittingIf C = A1_ :::_An is an atom or a disjunction of atoms, let Neg(C) denotethe �nite set of clauses in implication form Neg(C) := fA1 ! ?; :::; An !?g.
19



De�nition 19 (Complement splitting rule)E1 _E2E1 E2Neg(E2)The complement splitting rule is referred to under this name in [45]. Itwas inspired from the Davis-Putnam procedure [15] and from the \com-plement searching" technique of [56]. Other authors came to the sameidea: Complement splitting is called \reduction" in [55] and \folding-down"in [39].Like the splitting rule, the complement splitting rule is applied in thefollowing de�nitions to ground disjunctions. Tableaux expanded with thepositive unit hyperresolution and the complement splitting rules are de�nedinductively, similarly as in De�nition 7. Let us call such tableaux PUHRcomplement tableaux. Note that nodes of PUHR complement tableaux aresets of ground atoms, disjunctions of ground atoms, and ground implicationsof the form A! ?.De�nition 20 (PUHR complement tableaux) Positive unit hyperres-olution (PUHR) complement tableaux for a set S of clauses in implicationform are (�nite or in�nite) trees whose nodes are sets of ground atoms,disjunctions of ground atoms, and ground implications of the form A! ?.Finite PUHR complement tableaux for S are inductively de�ned as follows:1. f>g is a positive unit hyperresolution complement tableau for S.2. If T is a positive unit hyperresolution complement tableau for S, if Lis a leaf of T such that an application of the PUHR rule (resp. comple-ment splitting rule) to formulas in L yields a formula E (resp. two setsof formulas fE1; Neg(E2)g and fE2g), then the tree T 0 obtained fromT by adding the node L[fEg (resp. the two nodes L[fE1; Neg(E2)gand L [ fE2g) as successor(s) to L is a positive unit hyperresolutioncomplement tableau for S.In�nite PUHR complement tableaux for S are de�ned as follows: If (Ti)i2Nis an in�nite sequence of �nite PUHR complement tableaux for S such thatfor all i 2 N Ti+1 results from an application of the PUHR or complementsplitting rule to Ti, then T = Si2N Ti is a PUHR complement tableau for S.Convention. The same convention is made for PUHR complement tableauxas for PUHR tableaux: If N1 and N2 are the nodes of a PUHR tableau Tcontaining respectively fE1; Neg(E2)g and fE2g and resulting from an ap-plication of the complement splitting rule to E1_E2, the PUHR complementtableau T is ordered such that N1 is the left sibling of E2. This ordering20



induces an ordering on the branches of a PUHR complement tableau whichis independent from strategies under which the PUHR complement tableaucan be built.Note the following similarity between PUHR complement tableaux andthe method proposed in [48]: For the leftmost open branch of a PUHRcomplement tableau, the condition expressed by complement splitting isequivalent to that expressed by the \groundedness test" of [48] (cf. alsoSection 5.7).For PUHR complement tableaux, closedness and openness of branchesand tableaux are de�ned like in De�nition 7: A branch of a PUHR comple-ment tableau is said to be closed, if it includes a node containing the atom?. A PUHR complement tableau is said to be closed if all its branches areclosed. A branch (resp. PUHR complement tableau) which is not closed issaid to be open.De�nition 21 Let S be a set of range-restricted clauses in implication formand A a set of ground atoms, disjunctions, and clauses in implication form.A is said to be saturated with respect to S for the positive unit hyperresolutionand the complement splitting expansion rules when the following propertieshold:� if (A1^ :::^An ! E) 2 S, B1 2 A; :::; Bn 2 A, and (A1^ :::^An) and(B1; :::; Bn) are uni�able, then E� 2 A for some most general uni�er� of (A1 ^ ::: ^An) and (B1; :::; Bn).� If (E1 _E2) 2 A, then fE1g [Neg(E2) � A, or E2 2 A.Note that if A is saturated with respect to S for the positive unit hy-perresolution and the complement splitting expansion rules, then it is alsosaturated for the positive unit hyperresolution and the splitting expansionrules.Model soundness for PUHR complement tableaux follows from Theo-rem 14.Lemma 22 Let S be a set of clauses and A1; :::; An(n � 1) be ground atoms.1. If M is a minimal Herbrand model of S such that M 6j= A1 ^ ::: ^An,then M is a minimal Herbrand model of S [ fA1 ^ ::: ^An ! ?g.2. If M is a minimal Herbrand model of S [ fA1 ^ ::: ^ An ! ?g, thenM is also a minimal Herbrand model of S.Proof: 1. Let H(M) be a nonminimal model of S [ fA1 ^ ::: ^ An ! ?g.There existsM1 �M such thatH(M1) is a model of S[fA1^:::^An ! ?g.Hence, H(M) is not a minimal model of S.21



2. Assume that (?) H(M) is a minimal Herbrand model of S [ fA1 ^::: ^ An ! ?g. If H(M) is no minimal Herbrand model of S then thereis M1 � M such that H(M1) is a model of S. Since H(M) 6j= Ai forsome i = 1; :::; n and since M1 � M, H(M1) 6j= Ai. H(M1) is therefore aHerbrand model of S[fA1^ :::^An ! ?g. This contradicts the minimalityof H(M) assumed with (?).Lemma 23 Let E be a set of clauses in implication form, ground atoms anddisjunctions of ground atoms, E1 _E2 2 E be a ground clause, and M be aset of ground atoms. H(M) is a minimal model of E if and only if1. either it is a minimal model of E [ fE1g [Neg(E2)2. or it is a minimal model of E [ fE2g and for all M1 �M, H(M1) isnot a minimal model of E [Neg(E2).Proof: Let H(M) be a minimal model of E . If H(M) does not satisfy E2,then H(M) is a model of E [fE2 ! ?g. By Lemma 22, H(M) is a minimalmodel of E [Neg(E2). If H(M) satis�es E2 it is a model of E [ fE2g. If itis not a minimal model of E [ fE2g, then there exists M1 � M such thatH(M1) is a model of E [ fE2g, hence of E , contradicting the hypothesisthat H(M) is a minimal model of E . By Lemma 22, if H(M) is a minimalmodel of E [Neg(E2), then it is also a minimal model of E . Let H(M) bea minimal model of E [ fE2g. If H(M) is not a minimal model of E , thenthere exists M1 � M such that H(M1) is a minimal model of E . SinceH(M) is a minimal model of E [ fE2g, H(M1) does not satisfy E2. SinceE1_E2 in E , H(M1) satis�es E1 . Therefore, H(M1) satis�es E[fE2 ! ?g,i.e. there exists M2 � M1 � M, such that H(M2) is a minimal model ofE [Neg(E2).For PUHR complement tableaux, fairness is de�ned similarly to fairnessof PUHR tableaux: A PUHR complement tableau is said to be fair, if theunion of the nodes of each of its open branches is saturated for the positiveunit hyperresolution and complement splitting expansion rules.Theorem 24 (Minimal model completeness of complement ta-bleaux) Let S be a satis�able set of range-restricted clauses in implicationform, T be a fair PUHR complement tableau for S, and M a set of groundatoms. If H(M) is a minimal model of S, then there is a branch B of Tsuch that Atoms([B) =M.Proof: Follows from Corollary 16 since by de�nition every PUHR comple-ment tableau for a set S can be constructed from a PUHR (noncomplement)tableau by adding ? to some of its nodes, and from Lemma 23 which ba-sically states that minimal models are preserved by complement splitting.22
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cs_satisfiable :- findall(Clause, violated_instance(Clause), Set),not (Set = []), !, cs_satisfy_all(Set), cs_satisfiable.cs_satisfiable.cs_satisfy_all([]).cs_satisfy_all([_B ---> H | Tail]) :- H, !, cs_satisfy_all(Tail).cs_satisfy_all([_B ---> H | Tail]) :- cs_satisfy(H), cs_satisfy_all(Tail).cs_satisfy(E) :- cs_component(Atom, Suffix, E), not (Atom = false),assume(Atom), assume_neg(Suffix).cs_component(Atom, Suffix, (Atom ; Suffix)).cs_component(Atom, Suffix, (_Atom ; Rest)) :- !,cs_component(Atom, Suffix, Rest).cs_component(Atom, false, Atom).assume_neg(false) :- !.assume_neg(E) :- assume(E ---> false).The procedures assume and violated_instance are de�ned like in fair SATCHMO (cf.Figure 2). Figure 5: The CS-SATCHMO programCorollary 26 Let S be a satis�able set of range-restricted clauses in impli-cation form, T be a fair PUHR complement tableau for S and B0; :::;Bi; :::a left-to-right enumeration of the open branches of T .1. H(Atoms([B0)) is a minimal model of S.2. If i 6= j, then Atoms([Bi) 6= Atoms([Bj)Proof: 1. Since B0 is the leftmost branch of T , by Lemma 25 H(Atoms(B0))is a minimal model of S.2. Follows directly from Lemma 25.5.3 Implementation of Complement SplittingComplement splitting can be built into SATCHMO by replacing the pro-cedure satisfy by the cs_satisfy given in Figure 5. cs_component re-turns not only the atoms of a disjunction, like component does, but alsothe rest of the disjunction on the right hand side of the returned atom(false if this right hand side is empty). This implementation, which wecall CS-SATCHMO, departs slightly from De�nition 19 since it representsNeg(A1 _ ::: _ An) as A1 _ ::: _ An ! ? instead of fA1 ! ?; :::; An ! ?g.Since the Ai are ground, the two representations are equivalent.
24



5.4 Constrained Depth-First Search for Minimal Model Gen-erationBy Corollary 26 the �rst model returned from a depth-�rst-left-�rst traver-sal of a PUHR complement tableau is minimal, and by Lemma 25 no modelsare �-larger than subsequently returned models. In order to prune PUHRcomplement tableaux from nonminimal models, it therefore su�ces to con-strain any model under construction not to be �-larger than any previouslyreturned model. This is easily achieved by adding to the set of clauses aconstraint Neg(fA1; ::::; Ang) = fA1 ^ ::: ^ An ! ?g once a (�nite) modelH(fA1; ::::; Ang) has been constructed. In the following, such constraintsare called \model constraints".De�nition 27 (Depth-�rst minimal model generation procedure)Let S be a set of range restricted clauses in implication form. Applying thedepth-�rst minimal model generation procedure to S consists in a depth-�rst-left-�rst construction of a fair PUHR complement tableau for S such that Sis augmented with Neg(M) after each computation of a model H(M) of S.As pointed out in Section 5.2, complement splitting has similarities withthe \groundedness test" of [48]. This test can discard nonminimal mod-els without relying on constraints Neg(M) for each previously constructedminimal model H(M). The price for this are on the one hand repeatedcomputations of a test more complex than those performed by the depth-�rst minimal model generation procedure, on the other hand that repeatedgenerations of the same minimal model are not precluded.Note that, by De�nitions 7 and 19, if S1 and S2 are sets of range-restricted clauses in implication form such that S1 � S2 and all clausesin S2 n S1 are of the form A1 ^ :::^An ! ?, then every PUHR complementtableau for S2 can be obtained from a PUHR complement tableau for S1 byadding ? to some nodes. Conversely, every PUHR complement tableau forS1 can be obtained from a PUHR complement tableau for S2 by discarding? from some nodes.Recall that a set of clauses is �nitary if its minimal Herbrand modelsH(M) are all �nitely representable, i.e. such that M is �nite.Lemma 28 Let S be a �nitary and �nite set of range-restricted clauses inimplication form, and T be a PUHR complement tableau for S.If t is a node in T , let B0; :::;Bnt be branches of T to the left of t suchthat H(Atoms([B0)); :::;H(Atoms([Bnt)) are minimal models of S.Let Tt be the PUHR complement tableau for S[Neg([B0)[:::[Neg([Bnt)corresponding to T . If B is a branch of T , let Bt denote the correspondingbranch in Tt and conversely.Bt is open in Tt if and only if B is open in T and Atoms([Bi) 6�Atoms([Bt), for all i = 0; :::; nt. 25



Proof: Assume that B is an open branch of T andAtoms([Bi) 6� Atoms([B),for all i = 0; :::; nt. For all i = 0; :::; nt there exists an atom Ai 2 [B suchthat Ai 2 [B n [Bi. Therefore, H(Atoms([B)) j= Neg([Bi). Hence Bt isopen in Tt.Assume that Bt is an open branch of Tt. If Atoms([Bi) 6� Atoms([B),for all i = 0; :::; nt, then ? 62 [B. Hence B is open in T .Theorem 29 (Soundness and completeness of the depth-�rst mini-mal model generation procedure) Let S be a �nite set of range-restrictedclauses in implication form. If S is �nitary, then applied on S, the depth-�rst minimal model generation procedure terminates, returns all minimalmodels of S (i.e. it is complete), does not return any nonminimal model ofS (i.e. it is sound), and does not return any minimal model more than once.Proof: Let S be a �nitary and �nite set of range restricted clauses in impli-cation form.Soundness: By Corollary 26 the �rst model returned by the procedure is aminimal model of S. Assume that the �rst n models H(M0); :::;H(Mn�1)returned by the procedure are minimal models of S. Let T be the tableauexpanded so far. After returning the �rst nmodels, the procedure backtracksto a node t of T , such that the branches corresponding to previously returnedmodels are to the left of t. The (n+1)-th model returned by the procedurecorresponds to the �rst open branch of a tableau Tt for S [Neg(M0)[ :::[Neg(Mn�1). By Lemma 28, this model is not �-larger than any previouslyreturned model. By Corollary 26 it is a minimal model of S [Neg(M0) [::: [Neg(Mn�1). Hence, by Lemma 22 it is a minimal model of S as well.By induction, all models returned are minimal models of S.Completeness: For any two minimal models H(M1) and H(M2) of S,M1 6� M2 and M2 6� M1. Therefore, H(M1) j= Neg(M2) and H(M2) j=Neg(M1). Consequently, no branches corresponding to a minimal modelH(M) of S with M 62 fM0; :::;Mng of a PUHR complement tableau forS can be closed in a tableau for S [ Neg(M0) [ ::: [ Neg(Mn), for someminimal models H(M0); :::; H(Mn) of S. From Theorem 24, it follows thatthe procedure returns all minimal models. From Lemma 28, it follows thatno minimal models are generated more than once.Termination: Since S is �nitary, it has by Theorem 18 �nitely many minimalmodels. Since the procedure returns all and only minimal models of S,and since no minimal models are generated more than once, the procedureterminates.The following example shows how the depth-�rst minimal model gener-ation procedure generates only minimal models and does not return dupli-cates.Example 6 Figure 6 gives the search spaces of the depth-�rst minimalmodel generation procedure for the set of clauses of Examples 3 and 5, i.e.:26
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minimal_model :- mm(true).mm(_) :- false, !, fail.mm(C1) :- findall(Clause, violated_instance(Clause), Set),not (Set = []), !, mm_satisfy_all(Set, C1, C2), mm(C2).mm(C) :- asserta(C ---> false).mm_satisfy_all([], C, C).mm_satisfy_all([_B ---> H | Tail], C1, C3) :- H, !,mm_satisfy_all(Tail, C1, C3).mm_satisfy_all([_B ---> H | Tail], C1, C3) :- mm_satisfy(H, A),and_merge(A, C1, C2), mm_satisfy_all(Tail, C2, C3).mm_satisfy(E, Atom) :- cs_component(Atom, Suffix, E), assume(Atom),assume_neg(Suffix).and_merge(Atom, true, Atom) :- !.and_merge(Atom, Conj, (Atom, Conj)).The procedures assume and violated_instance are de�ned like in SATCHMO (cf. Fig-ure 2). The procedures assume_neg, and cs_component are de�ned like in CS-SATCHMO(cf. Figure 5). Figure 7: The MM-SATCHMO program.The argument of the procedure mm is the body of the constraint underconstruction. This data structure is redundant, for the model under con-struction is also represented in the Prolog database. This redundancy canbe easily removed, at the cost of a less readable program. A more serioussource of ine�ciency lies in the way how violated clauses are detected: thelast inserted atoms are not used for an incremental detection. Althoughquite simple, an incremental evaluation requires longer and more compli-cated programs. An incremental clause evaluation turns out to be especiallybene�cial for the constrained search.5.6 Breadth-First Minimal Model GenerationIf some minimal model M of the set S of clauses under consideration isin�nite, then the depth-�rst minimal model generation procedure fails togenerate those �nite minimal models that were not constructed before M.In this Section, it is shown how this can be avoided with a breadth-�rstexpansion of PUHR tableaux. To this aim, revised de�nitions of PUHRtableaux and PUHR complement tableaux are convenient.
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De�nition 30 (PUHR splitting and PUHR complement splittingrules) Let S be a set of clauses in implication form.� PUHR splitting rule:B1...BnE1� � � � Em�� PUHR complement splitting rule: B1...BnE1� ... Ei� ... Em�Neg(E2� _ ::: _Em�) Neg(Ei+1� _ ::: _Em�)In both rules, � denotes a most general uni�er of the body of a clause(A1 ^ ::: ^An ! E1 _ ::: _Ei _ ::: _Em) 2 S and of (B1; :::; Bn).De�nition 30 gives rise to revised de�nitions of PUHR tableaux and ofPUHR complement tableaux similar to De�nition 7 and De�nition 20:De�nition 31 (Revised PUHR (complement) tableaux) PUHR (com-plement) tableaux for a set S of clauses in implication form are (�nite orin�nite) trees whose nodes are sets of ground atoms, disjunctions of groundatoms and ground implications of the form A ! ?, resp. Finite revisedPUHR complement tableaux for S are inductively de�ned as follows:1. f>g is a revised PUHR (complement) tableau for S.2. If T is a revised PUHR (complement) tableau for S, if L is a leaf ofT such that an application of the PUHR (complement) splitting ruleto formulas in L yields m sets of formulas S1; :::; Sm, then the tree T 0obtained from T by adding the m nodes L[S1; :::; L[S2 as successorsto L is a revised PUHR (complement) tableaux for S.In�nite revised PUHR (complement) tableaux for S are de�ned as follows: If(Ti)i2N is an in�nite sequence of �nite revised PUHR (complement) tableauxfor S such that for all i 2 N Ti+1 results from an application of the PUHR(complement) splitting rule to Ti, then T = Si2N Ti is a revised PUHR(complement) tableau for S. 29
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Herbrand model H(M) returned during a breadth-�rst expansion of a re-vised PUHR (complement) tableau T for S necessarily corresponds to anopen branch B of T with minimal length. Therefore, there are no Herbrandmodels H(N ) of S such that N �M, i.e. H(M) is minimal.2. Let fM1; :::;Mng be the set of minimal models generated so far during abreadth-�rst expansion of a fair revised PUHR (complement) tableau. LetH(M) be the model returned next. H(M) is a minimal model if for no(previously or subsequently) returned model H(N ), N � M . By hypothe-sis, this holds if H(N ) is a model returned by the procedure before H(M),i.e. if N = Mi for some i 2 f1; :::; ng. Let H(N ) be a model returnedby the procedure after H(M). Since an atom is introduced at each nodeof a revised PUHR (complement) tableau and since the procedure expandstableaux breadth-�rst, necessarily jN j � jMj. Hence, N 6� M.Note that while in the previous sections the formalization of PUHRtableaux in terms of two expansion rules gives rise to a simpler treatment, theformalization in terms of revised PUHR tableaux is much more convenientfor Point 1 of Theorem 32.Since the �rst model generated during a breadth-�rst expansion of a re-vised PUHR (complement) tableau is minimal, adding the same \model con-straints" as in the depth-�rst procedure prevents the generation of nonmin-imal as well as of duplicate minimal models without a�ecting the soundnessand completeness properties of model generation. The result is a minimalmodel generation procedure capable of dealing with sets of clauses havingin�nite minimal models.De�nition 33 (Breadth-�rst minimal model generation procedure)Let S be a set of range restricted clauses in implication form. Applying thebreadth-�rst minimal model generation procedure to S consists in a breadth-�rst construction of a fair revised PUHR tableau or of a fair revised PUHRcomplement tableau for S such that S is augmented with Neg(M) after eachcomputation of a model H(M) of S.Note that, in contrast to the depth-�rst minimal model generation pro-cedure, the breadth-�rst minimal model generation procedure does not haveto rely on complement splitting. However, relying on complement splittingin the breadth-�rst minimal model generation procedure guarantees that noduplicate models are produced, that the \leftmost model" is minimal andthat no models can be subsumed by another \on its right".Since in�nite models necessarily are \generated" last, the breadth-�rstminimal model generation procedure will eventually return all the �niteminimal models of the considered set of clauses. A branch correspondingto a nonminimal in�nite model H(M1) is abandoned as soon as a �niteminimal model H(M) is produced such that M is a subset of the alreadycomputed part of M1, as the following example illustrates.31
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tableau, the condition expressed by complement splitting is equivalent tothe \groundedness test" (??). Note that while complement splitting is syn-tactically de�ned, the \groundedness test" is a model theoretic condition.This might make it less immediate to check than complement splitting. Asopposed to the combination of complement splitting and \model constraints"proposed here, the \groundedness test" does not preclude repeated genera-tions of the same minimal model. Because it relies on \model constraints",i.e. a form of memoization, the depth-�rst minimal model generation has,according to [48], an \exponential worst-case space complexity". In con-trast, the method described in [48] is said there to have a \polynomial spacecomplexity". A comparison of the run times of MM-SATCHMO with thosereported in [48] is given below in Section 5.8: Both minimal model genera-tion procedures achieve a comparable e�ciency. It is a debatable question,which of the two approaches is preferable in practice. As it is often the case,the trade-o� is between time and space: The one method saves computationtime by storing results of previous computations, the other method relies onadditional computations for avoiding any storage. For some applications, amethod with restricted storage is needed. For others, storing minimal mod-els might be preferable, e.g. if the minimal models have to be comparedor further processed. Comparisons of minimal models are needed e.g. forcomparing semantics of logic programs and deductive databases [40, 41],for comparing semantics of nonmonotonic reasoning [46, 68], for comparinganswers to queries [24, 36, 78, 77], for choosing database (fact or view) up-dates [22, 28, 72, 6, 2], and for comparing alternative solutions to design anddiagnosis problems [54, 61, 53, 4].In [50], \minimal entailment" for propositional logic is investigated. Aformula B is \minimaly entailed" by a formula A, if no minimal modelsof A falsify B. It is proposed in [50] to establish this property using twospecial tableaux methods. The �rst one, the \Algorithm TABLEAU forA `T B" [50, p. 107], is a tableaux method for signed, free syntax proposi-tional logic formulas. Nonminimal models are detected at step 4 of the algo-rithm, i.e. after each expansion of a branch, by a comparison of the atomsin this branch with the previously generated models. A further test, at step6 of the algorithm, is necessary for discarding so-called ignorable branchescontaining meaningless combinations of signed literals. The second tableauxmethod proposed with De�nition 9 [50, p. 110] is an improvement of thepreviously mentioned algorithm for those cases where A is a set of (propo-sitional logic) clauses, and B is a single (propositional logic) clause. Theimprovement basically consists in simpler expansion rules for the restrictedsyntax and, more importantly, in the addition of positive unit resolution(through Rule R3 [50, p. 110]). Referring to the �rst method, the authorof [50] writes: \we regard it mainly as a theoretical tool". Techniques suchas the \groundedness test" of [48] or complement splitting that speed upthe abandonment of branches corresponding to nonminimal or redundant33



models are not considered in [50]. Moreover, it is questionable whetherconsidering signed formulas does not introduce an overhead compared withtableaux methods for unsigned formulas [66, 25, 73, 74, 27].Some deductive database query answering methods can be used for gen-erating minimal models. The system DisLog [63, 64] implements severalquery answering methods for disjunctive databases [41]. Its forward chain-ing procedure can be used as a minimal model generator similar to thebreadth-�rst minimal model generation of Section 5.6, although withoutspecial treatment of negative clauses, i.e. clauses all literals of which arenegative. Moreover, DisLog proceeds by �rst generating (possibly nonmini-mal) models, then test for minimality. It therefore explores in general moreinterpretations than the approaches presented here and in [50, 21, 48]. Theapproach of [78] to constructing so-called \ordered minimal model trees" canas well be applied to generate minimal Herbrand models. This approach ishowever restricted to ground disjunctive deductive databases. This restric-tion makes it possible to simplify the considered clauses at every assignmentof a truth value to an atom. It also demands that a �xed order, albeit notnecessarily known in advance, for atom expansion be de�ned to achieve theuniqueness of the constructed tree under the given ordering.Most semantics proposed for nonmonotonic reasoning { cf. e.g. [46, 68]{ rely more or less explicitly on notions of model minimality. Thus, meth-ods like e.g. [14, 47] for computing models according to such semantics can,with more or less adaptations, be applied to computing minimal Herbrandmodels in the sense of this paper. However, most such methods do notfully address the issues investigated here. Indeed, as explained e.g. in [68,Section 5, p. 251], they have to cope with notions such as \default" or\negation as failure" that are not relevant to the generation of minimalHerbrand models of sets of �rst-order clauses. Many of them, like e.g. themethod described in [14], are only applicable to normal logic programs, i.e.they cannot cope with non-Horn clauses. The method of [14] is in additionrestricted to ground clauses and makes use of this restriction like [78] forsimplifying the considered clauses at every assignment of a truth value toan atom. Minimal model generators can be adapted to computing seman-tics for nonmonotonic reasoning, as shown e.g. in [49]. Note that mostinvestigations of nonmonotonic reasoning, such as [68], are proof-theoreticin nature and neither rely on, nor specify algorithms for the generation ofminimal models. In this respect, the article [50] is an exception: Although itis devoted to minimal entailment, it de�nes, as already mentioned, minimalmodel generation algorithms for propositional logic.In [34, 42] an approach to \model minimization" is investigated. In fact,both articles [34, 42] are devoted to generating models with minimal uni-verses, not to generating minimal Herbrand models in the sense consideredhere. The issue of \universe" or \domain minimization", also investigatedin [10, 33, 68, 11, 71], is interesting, for two reasons. On the one hand, meth-34



ods for universe minimization give rise to algorithms that are complete forboth, unsatis�ability and �nite satis�ability [11, 71]. On the other hand, theissue has practical applications, e.g. to designing database schemas [9, 7].In [34, Section 9, p. 11] a modi�cation of the tableaux method proposedthere is sketched, so as to \minimize predicate extensions", i.e. to generateminimal Herbrand models in the sense considered in the present paper. Thismodi�cation, which does not seem to be fully worked out, is basically in thespirit of complement splitting and of the constrained search as well as of the\groundedness test" of [48].5.8 Experiments with MM-SATCHMOIn this Section, the performance of MM-SATCHMO on four benchmarksuites, called A, B, D and F , are reported. Each suite includes 24 examples,each example consists of 5 to more than 100 000 clauses, each clause has upto 10 literals. The number of minimal models of an example ranges from 1to 100 000.The run times reported below have been obtained with MM-SATCHMOrun under ECLiPSe Prolog Version 3.5.1 [19] on a Hewlett Packard Unix(HP-UX 10.20) Workstation HP Visualise C 160 (PA-8000 processor at 160MHz, 192 MB RAM). Note that ECLiPSe Version 3.5.1 uses 32 bit wordsinstead of 64 bit words as possible on a HP Visualise C 160.ECLiPSe was started anew for each problem, thus avoiding any speedup or overhead resulting from a previously constructed symbol table or un-collected garbage. The reported CPU times were obtained using the timecommand of ECLiPSe.The programs and benchmark suites referred to in this section are avail-able at:http://www.pms.informatik.uni-muenchen.de/software/MM-SATCHMO/Worst-case Examples: The A Benchmark Suite. For nonnegativeintegers n and m, A(n;m) denotes the set of n clauses of length m de�nedby: A(n;m) := f true ---> a_i_1 ; ... ; a_i_m j i = 1; : : : ; n gApplied on A(n;m), SATCHMO computes mn models by selecting an atoma_i_j for each i 2 f1; : : : ; ng. Since a_i_j 6= a_h_k for (i, j) 6= (h, k),all models returned by SATCHMO are pairwise distinct and each of themis a minimal model of A(n;m). Thus, for these examples, the additionsMM-SATCHMO makes to SATCHMO have no e�ects. Therefore, examplesof the A suite can be seen as worst-case examples for MM-SATCHMO.The run times of MM-SATCHMO on the examples of the A suite aregiven by Table 1. 35



m 3 4 5 6 7 8 9 10n3 0.01 0.02 0.05 0.11 0.22 0.40 0.72 1.224 0.03 0.15 0.60 2.08 7.48 22.57 58.34 134.765 0.15 1.44 13.74 85.05 413.62 1 445.91 4 782.78 13 317.30Table 1: CPU times in seconds for computing all minimal models ofA(n;m).Already for small n and m, computing all minimal models of A(n;m)involves a tremendous potential search space. For computing the 54 = 625minimal models of A(4; 5), truth value assignments for 4 � 5 = 20 propo-sitional variables, i.e. 220 = 1 048 576 assignments, are possible. For com-puting the 105 minimal models of A(5; 10), truth value assignments for 50propositional variables, i.e. 250 = 1 125 899 906 842 624 (more than 1million billions) assignments are possible. Of course, the search space ac-tually expanded by MM-SATCHMO is signi�cantly smaller: As soon asMM-SATCHMO assigns the value \true" to an a_i_j, it implicitly assignsthe value \false" to all a_i_k such that k 2 f1; : : : ;mg n f j g.More informative than the overall time needed for computing all minimalmodels is the average time per minimal model. For example, if generatingall minimal models of A(5; 10) takes as much as 3 hours 42 minutes, each ofthe 100 000 minimal models of this example is computed on average in lessthan one and a half tenth of a second.m 3 4 5 6 7 8 9 10n3 0.37 0.31 0.40 0.51 0.64 0.78 0.99 1.224 0.37 0.58 0.96 1.60 3.12 5.51 8.90 13.485 0.62 1.41 4.40 10.94 24.61 44.12 81.00 133.17Table 2: Average CPU times in 10�3 seconds for computing one minimalmodel of A(n;m).The (n;m) entry t2(n;m) of Table 2 is de�ned by t2(n;m) = t1(n;m)mn � 103where t1(n;m) denotes the (n;m) entry of Table 1.Tables 1 and 2 suggest that t1(n;m) = O(m2n) and t2(n;m) = O(mn).This can be con�rmed as follows. In order to avoid a repeated generationof already returned models, MM-SATCHMO relies on adding \constraints",i.e. clauses with false as head, during complement splitting and after aminimal model is generated. We remind of the name of \model constraints"{ cf. Section 5.4 { for those constraints introduced after the generation ofminimal models . During the generation of all minimal models of A(n;m)cA(n;m) = mn�1Xk=0 k = (mn � 1)�mn2 = O(m2n)36



evaluations of \model constraints" take place since no such constraints arepresent when the �rst minimal model is returned, and exactly k � 1 suchconstraints are present when the k-th minimal model is generated. Thus, itis reasonable to assume that t1(n;m) = O(m2n). It follows that t2(n;m) =O(mn) since, by de�nition, t2(n;m) = t1(n;m)mn � 103.Note that, since complement splitting introduces further constraints,more than 100 000 constraints are involved in the generation of all mod-els of A(5; 10).The Price of Constraints: The B Benchmark Suite. The large num-ber of constraints is a source of ine�ciency, because at each cycle of the mainprocedure of MM-SATCHMO, all constraints are evaluated. In order to es-timate the cost of this evaluation, the B benchmark suite is now considered.For nonnegative integers n and m, B(n;m) denotes the set of clausesA(n;m) augmented with the mn � 1 model constraints that exclude allminimal models of A(n;m) except the last one returned by MM-SATCHMO:B(n;m) := C(n;m;mn) [A(n;m)where C(n;m; k) := f false :- Mj j j = 1; : : : ; k � 1 gand Mj denotes the conjunction of the atoms representing the j-th minimalmodel of A(n;m) returned by MM-SATCHMO. Clearly, B(n;m) has exactlyone minimal model. Note that B(n;m) consists of n+mn � 1 clauses, e.g.B(4; 5) consists of 628, B(5; 10) of 100 004 clauses.Following a basic optimization mentioned in [45], a model constraint isexpressed as a Prolog clause false :- Mj instead of Mj ---> false. Iffalse is derivable, this optimization avoids asserting false in the Prologdatabase just before retracting it while backtracking.By de�nition of B(n;m), generating the one minimal model of B(n;m)with MM-SATCHMO amounts to generating all minimal model of A(n;m)with MM-SATCHMO. While the constraints are progressively introducedduring the generation of all models of A(n;m), they are present from thebeginning during the construction of the �rst (and only) model of B(n;m).Comparing Table 1 with Table 3 below shows how this presence a�ects therun times.m 3 4 5 6 7 8 9 10n3 0.01 0.01 0.03 0.08 0.16 0.32 0.60 1.064 0.02 0.10 0.49 2.07 7.95 24.81 66.35 162.205 0.10 1.29 14.93 102.43 451.75 1 799.27 5 737.51 15 398.20Table 3: CPU times in seconds for computing the �rst (and only) minimalmodel of B(n;m).37



In order to estimate the overhead introduced by the model constraints, onehas to consider the number of times such constraints are evaluated. Asalready observed, for A(n;m) this number iscA(n;m) = mn�1Xk=0 kFor B(n;m), it iscB(n;m) =  mn�1Xk=0 k!+mn � 1 = cA(n;m) +mn � 1for the following reasons. The set C(n;m;mn) of model constraints ofB(n;m) was generated by running MM-SATCHMO on A(n;m) and themodel constraints were stored using asserta in the order of their genera-tion. Thus, a Prolog call to false evaluates the model constraints in thereverse order of their generation. While computing the single model ofB(n;m), all the mn�1 model constraints in B(n;m) are evaluated after the�rst interpretation is generated. The bodies of all these constraints but thelast one evaluate to \false". After the k-th (2 � k � mn � 1) interpretationis constructed, only mn�k model constraints need to be evaluated, becausethe body of the (mn � k)-th model constraint evaluates to \true", thus de-riving the atom false. When the (mn)-th interpretation, i.e. the singlemodel of B(n;m), is generated, all the mn� 1 model constraints in B(n;m)are evaluated once again, the body of all of them evaluating to \false".Table 4 gives, for those values of n andm for which the estimations makesense, the overall times spent for one evaluation of the clauses in C(n;m;mn)during the computation of the single model of B(n;m), i.e. the times spentfor one evaluation of all model constraints generated during the computationof all models of A(n;m).m 5 6 7 8 9 10n4 - - 0.48 2.25 8.00 27.405 1.19 17.42 38.15 353.23 954.81 2 080.10Table 4: CPU times in seconds spent for one evaluation of all clauses inC(n;m;mn) during the computation of the �rst (and only) minimal modelof B(n;m).The (n;m) entry t4(n;m) of Table 4 is de�ned by t4(n;m) = t3(n;m) �t1(n;m), where ti(n;m) denotes the (n;m) entry of Table i. In Table 4 aswell as in other tables, the sign - expresses meaningless data or times belowthe measure threshold of the operating system.Table 5 gives the average times for evaluating one model constraint dur-ing the computation of the �rst (and only) minimal model of B(n;m).38



m 5 6 7 8 9 10n4 - - 0.20 0.55 1.22 2.745 0.38 2.24 2.27 10.78 16.17 20.81Table 5: Average CPU times in 10�3 seconds for evaluating one clause inC(n;m;mn) during the computation of the �rst (and only) minimal modelof B(n;m) .The (n;m) entry t5(n;m) of Table 5 is de�ned by:t5(n;m) = t3(n;m)� t1(n;m)cB(n;m)� cA(n;m) � 103 = t3(n;m)� t1(n;m)mn � 1 � 103where ti(n;m) denotes the (n;m) entry of Table i.Comparing Table 1 and Table 4 shows that the time needed for oneevaluation of the model constraints is much less than the time needed forthe rest of the computation.Admittedly, the B benchmark suite might be less meaningful for mini-mal model generators that, unlike MM-SATCHMO, do not rely on modelconstraints.Niemel�a's Scheme: The D Benchmark Suite. In [48] an approachto minimal model generation is described and two examples are considered.The D benchmark suite is a generalization of these examples. For nonneg-ative integers n, m, and k:D(n;m; k) := E(n;m; k) [A(n;m)where E(n;m; k) := k[j=1f a_i+1_j :- a_i_j j i = 1; : : : ; n� 1 gThe clauses E(n;m; k) can be seen as k \chains" of implications betweenliterals. These chains express { simple { dependencies between literals, thusconveying { in a rather simple manner { the often more complex literal de-pendencies present in most practical applications. Arguably, the D bench-mark suite is better an approximation of \real life applications" than the Asuite.Following an already mentioned optimization, the clauses in E(n;m; k)are expressed using :- instead of --->. As discussed in [45], this does nota�ect the correctness and completeness of the method, since the consideredclauses are Horn clauses and their head atoms are not involved in recursioncycles.The chains considerably reduce the search space, as Tables 6 to 11 show.39



m 3 4 5 6 7 8 9 10n3 - 0.01 0.03 0.10 0.15 0.31 0.58 1.024 0.02 0.10 0.39 1.34 4.42 14.26 40.86 98.745 0.07 0.63 5.19 42.13 229.14 928.12 3 165.38 8 819.52Table 6: CPU times in seconds for computing all minimal models ofD(n;m; 1).Proposition 34 The number d(n;m; k) of minimal models of D(n;m; k)(1 � k � m) is given by the equations:d(1;m; k) = md(n+ 1;m; k) = k + ((m� k)� d(n;m; k))Proof: SATCHMO and MM-SATCHMO clearly generate m minimal modelsfrom a single positive clause of lengthm, thus d(1;m; k) = m. Consider nowthe set of clauses D(n+1;m; k) = E(n+1;m; k)[A(n+1;m) and the \�rst"clause true ---> a_1_1 ; a_1_2 ; : : : ; a_1_m of A(n + 1;m). 1. If oneof the a_1_j for j = 1; : : : ; k is assigned the truth value \true", so are theatoms a_h_j for h = 2; : : : ; n and j = 1; : : : ; k also assigned the value \true"because of the k \implication chains" in E(n+1;m; k), and the remaining nclauses of A(n+1;m) are all satis�ed. Therefore, there are exactly k minimalmodels ofD(n+1;m; k) such that one of the a_1_j for j= 1; : : : ; k is true. 2.If now for some j = k+1; : : : ;m, a_1_j is true, there are exactly d(n;m; k)minimal models of the remaining clauses in D(n+ 1;m; k). Since a_h_l 6=a_p_q for (h, l) 6= (p, q), each of these minimal models results in a minimalmodel of D(n + 1;m; k) when extended with the assignment of \true" toa_1_j. 3. Thus, d(n+ 1;m; k) = k + ((m� k)� d(n;m; k)).Table 7 gives the average times needed for computing one minimal modelof D(n;m; 1).m 3 4 5 6 7 8 9 10n3 - 0.24 0.35 0.64 0.58 0.77 0.99 1.244 0.65 0.83 1.14 1.72 2.84 5.09 8.73 13.385 1.11 1.73 3.80 10.79 24.56 47.33 84.52 132.76Table 7: Average CPU times in 10�3 seconds for computing one minimalmodel of D(n;m; 1).The (n;m) entry t7(n;m) of Table 7 is de�ned by t7(n;m) = t6(n;m)d(n;m;1) � 103where t6(n;m) denotes the (n;m) entry of Table 6.Tables 8 to 11 give the overall and average times per minimal model forD(n;m; bm2 c) and D(n;m;m�1). Tables 9 and 11 are obtained from Tables8 and 10, respectively, like Table 7 is computed from Table 6 by consideringthe relevant values of d(n;m; k). 40



m 3 4 5 6 7 8 9 10n3 - 0.02 0.04 0.06 0.12 0.18 0.33 0.454 0.02 0.06 0.23 0.47 1.42 2.41 6.90 10.705 0.07 0.29 1.84 4.38 28.98 57.45 315.45 542.96Table 8: CPU times in seconds for computing all minimal models ofD(n;m; bm2 c).m 3 4 5 6 7 8 9 10n3 - 0.71 0.62 0.62 0.69 0.78 0.89 0.984 0.65 0.73 0.89 1.00 1.37 1.50 2.36 2.615 1.11 1.19 1.80 1.87 4.66 5.13 13.48 14.71Table 9: Average CPU times in 10�3 seconds for computing one minimalmodel of D(n;m; bm2 c).m 3 4 5 6 7 8 9 10n3 - 0.01 0.02 0.04 0.07 0.11 0.16 0.234 0.02 0.06 0.13 0.27 0.49 0.86 1.43 2.235 0.05 0.28 0.63 1.59 3.51 7.09 13.14 22.88Table 10: CPU times in seconds for computing all minimal models ofD(n;m;m� 1).m 3 4 5 6 7 8 9 10n3 - 0.62 0.80 1.11 1.43 1.72 1.97 2.304 1.18 1.39 1.46 1.68 1.85 2.11 2.41 2.695 1.52 2.26 1.83 2.02 2.25 2.52 2.80 3.10Table 11: Average CPU times in 10�3 seconds for computing one minimalmodel of D(n;m;m� 1).The run times for the D suite are signi�cantly smaller than for the Asuite. Moreover, the average times signi�cantly decrease when the numberof \implication chains" increases, showing that MM-SATCHMO well prop-agates truth values assignments through (\chains" of) implications. Ar-guably, this is a signi�cant factor of e�ciency. Since Niemel�a's schemeis a good approximation of \real life examples" the performance of MM-SATCHMO on these examples gives support to the claim, that this rathersimple implementation is su�cient for many practical applications.A Strengthening of Niemel�a's Scheme: The F Benchmark Suite.Like the B suite strengthens the A suite by adding model constraints,Niemel�a's scheme (or D suite) suite can be strengthened into the F suite asfollows: 41



F (n;m; k) := C(n;m;mn)[D(n;m; k) = C(n;m;mn)[E(n;m; k)[A(n;m)m 3 4 5 6 7 8 9 10n3 - 0.02 0.03 0.08 0.17 0.33 0.61 1.144 0.02 0.11 0.50 2.19 8.81 26.46 67.39 154.715 0.12 1.40 16.60 100.38 462.95 1 688.92 5 704.90 15 242.60Table 12: CPU times in seconds for computing all minimal models ofF (n;m; 1).m 3 4 5 6 7 8 9 10n3 - 0.01 0.03 0.07 0.15 0.28 0.52 0.844 0.02 0.09 0.43 1.55 6.70 17.80 49.20 99.845 0.12 0.97 12.69 60.84 303.68 989.93 3 585.84 8 608.44Table 13: CPU times in seconds for computing all minimal models ofF (n;m; bm2 c).m 3 4 5 6 7 8 9 10n3 - 0.01 0.03 0.06 0.10 0.19 0.31 0.504 0.02 0.07 0.24 0.94 3.53 9.69 23.17 50.035 0.08 0.59 6.06 32.30 134.27 482.85 1 498.11 4 202.49Table 14: CPU times in seconds for computing all minimal models ofF (n;m;m� 1).The comparison of Table 12, 13 and 14 with Table 6, 8, and 10 respec-tively con�rms the observation made with the B suite: Even in presenceof a huge number of constraints good run times are achieved. This fur-ther supports the claim that MM-SATCHMO, in spite of its simplicity, is aconvenient minimal model generator for many applications.Optimization Potential. Like SATCHMO, MM-SATCHMO emphasizesa principle, not implementation aspects. In implementing SATCHMO andMM-SATCHMO, no attention has been paid to e�ciency. The reported runtimes are therefore noticeable.In [69, 29] it is shown how natural optimizations dramatically improvethe e�ciency of SATCHMO. These optimizations consist in (1) computingviolated clause instances incrementally, so as to avoid useless repeated com-putations, (2) specializing the SATCHMO meta-interpreter with respect tothe considered set of clauses, so as to avoid the meta-interpretation overhead{ a technique called \compilation" in [69, 29] {, (3) a more e�cient imple-mentation of complement-splitting, (4) a more e�cient search strategy forensuring fairness, and (5) enhancing the representation language { e.g. withdisjunctions in clause bodies. In some cases, gains in e�ciency of severalorders of magnitudes can be achieved with these techniques.42



All these techniques are applicable to MM-SATCHMO, too. The moree�cient implementation of complement splitting is especially promising. Incontrast, the model constraints upon which MM-SATCHMO relies for avoid-ing a repeated generation of minimal models do not seem easily amenableto the optimization and compilation techniques investigated in [69, 29].Nonetheless, these techniques are promising for MM-SACHTMO, since, asobserved with the A suite (cf. Tables 1 and 4), the time spent for one eval-uation of all model constraints is much smaller than the time needed for therest of the computation.First-order Logic vs. Propositional Logic. The examples consideredabove are all propositional logic examples. For three reasons, examples with�rst-order variables have not been retained. First, the techniques applied bythe approach considered here for restricting the model generation to minimalmodels do not depend on variables. Second, considering propositional logicexamples makes it possible to compare the run times with that of other min-imal model generators that do not handle variables. Finally, most problemscan be naturally expressed both, without and with �rst-order variables, andwith MM-SATCHMO the representations with variables often yield betterrun times than the propositional logic representation.The last claim is conveniently illustrated by the following example. B(n;m) = C(n;m;mn) [ A(n;m) includes 99 999 clause in C(n;m;mn) of theform false :- Mj where Mj is the Prolog conjunction of the atoms truein one of the �rst 99 999 minimal models of A(n;m) returned by MM-SATCHMO. With variables, A(5; 10) is conveniently and naturally repre-sented by the �ve facts index(1) ; : : : ; index(5) and the clause:index(J) ---> a_1(J) ; a_2(J) ; : : : ; a_10(J)With this representation, it is natural to replace the 99 999 clauses ofC(n;m;mn) by the following 9 clauses:false :- a_1(J)false :- a_2(J)...false :- a_9(J)Indeed, in every minimal model of A(5; 10) except the last one returned byMM-SATCHMO, a_i(j) is true for some i 2 f1; : : : ; 5g and j 2 f1; : : : ; 9g.For generating the single minimal model of the propositional logic repre-sentation of B(5; 10), MM-SATCHMO takes 15 398.20 seconds (CPU time){ cf. Table 3 { with clauses for false declared dynamic and the loadingtimes not considered. With the �rst-order representation of the same exam-ple given above, MM-SATCHMO needs only 27.89 seconds (CPU time) forthe same task. Admittedly, this example is an extreme case. In general, thespeed up obtainable by changing the representation is less considerable.43



Comparison of Performances. Up to a renaming of the propositionalvariables, D(4; 5; 1) is identical with the example � [ Sa of [48]. Thatarticle reports a run time of \less than 2 seconds" for generating all minimalmodels of this example with an implementation in ECLiPSe Prolog run \ona SUN Sparc 4" workstation. For the same task, MM-SATCHMO needs0.39 seconds (cf. Table 6). A second run time reported in [48] is \lessthan 0.5 seconds" for generating all minimal models of an example denoted� [ Sa [ Sb [ Sc [ Sd which, up to a variable renaming, corresponds toD(4; 5; 4). For the same task, MM-SATCHMO needs 0.13 seconds (cf. Table10). Obviously, the method described in [48] and MM-SATCHMO achievecomparable e�ciencies on these examples.In [48] the implementation [21] of a method described in [47] is mentionedwithout detailed comparisons, because this \implementation was not ableto handle very large examples" like � [ Sa or � [ Sa [ Sb [ Sc [ Sd. Under\large", not only the number of clauses, but also the number of minimalmodels is meant. Obviously, the system presented in [21] could not run thebenchmark examples considered here, some of which having up to 100 000clauses, others up to 100 000 minimal models.A comparison with the performances of DisLog [63, 64], of [50], of [78], orof [14] would not really make sense, because these approaches have not beenprimarily developed for an e�cient generation of minimal Herbrand models.Note that the system DisLog [63, 64] cannot cope with large numbers ofminimal models, as considered in this section, and that run times of thealgorithms described in the other papers are not available.6 ConclusionIn this article, positive unit hyperresolution (PUHR) tableaux are de�nedand their properties investigated. PUHR tableaux formalize the approachto theorem proving of [44, 45]. Then, PUHR tableaux are applied to speci-fying two procedures for computing the minimal Herbrand models of sets ofrange restricted clauses. The �rst minimal model generation procedure per-forms a depth-�rst expansion of PUHR (complement) tableaux relying on aform of backtracking involving constraints. The second minimal model gen-eration procedure performs a breadth-�rst, constrained expansion of PUHR(complement) tableaux. Both procedures are optimal in the sense that eachminimal model is constructed only once, and the construction of nonmini-mal models is interrupted as soon as possible. They are sound and completein the following sense: The depth-�rst minimal model generation procedurecomputes all minimal Herbrand models of the considered clauses providedthese models are all �nite. The breadth-�rst minimal model generation pro-cedure computes all �nite minimal Herbrand models of the set of clausesunder consideration. 44



A compact implementation in Prolog of the depth-�rst minimal modelgeneration procedure in the form of a short Prolog program called MM-SATCHMO is also presented. Its e�ciency on extensive benchmarks is re-ported. The prototype is able to deal with sets of clauses with a very largenumber of minimal models. Its performances are comparable to the best re-ported in the literature [48]. MM-SATCHMO has a considerable potentialfor optimizations like discussed in [69, 29].As tableaux methods, the proposed approaches enjoy a good degree ofe�ciency stemming from restricted search spaces, limited applications ofexpansion rules and the use of matching (without occur-check) rather thanfull uni�cation. The proposed approaches expand ground tableaux. Sinceit makes instantiation necessary, this might be considered as a source ofine�ciency in a refutation procedure. However, if Herbrand models are tobe characterized as sets of ground atoms, as it is considered in this paper,this objection does not apply to a model generation procedure.As model generation procedures, the approaches to minimal model gen-eration proposed in this paper compare well with those reported in the liter-ature, many of which generate nonminimal models [66, 35, 44, 25, 45, 34, 26,24, 36, 5, 67, 73, 74, 39, 42, 43, 30, 23, 3, 37, 69, 31, 1, 29, 52, 27, 11]. Com-pared with approaches based on \blind" model construction then testing forminimality{ as e.g. the methods reported in [24, 63, 64] { the approachesproposed here avoid nonminimal model generation altogether. The con-struction of nonminimal models is aborted as soon as possible, in generalbefore they are fully developed. Also, the methods proposed in this pa-per are applicable to �rst-order clauses and not con�ned to propositional orground clauses as the algorithms reported in [24, 78, 48]. Note, however,that most of the techniques increasing the e�ciency for propositional orground clauses proposed in e.g. [78, 48] can be incorporated into the algo-rithms described here. Moreover, the approaches proposed here require noorder to be placed on the sequence in which individual atoms are expanded,although, if needed, such an order can be incorporated without substantialchanges to the algorithm [78].Among the limitations of the procedures described in this paper aretheir applicability only to range restricted and so-called �nitary sets of �rst-order clauses. However, range restrictedness is not much of a constraint,because a model preserving transformation of general clauses into rangerestricted ones was given. Moreover, most database and arti�cial intelligenceapplications naturally yield range-restricted speci�cations. Arguably, muchof real-life tasks enjoy the �niteness properties needed for the applicability ofthe depth-�rst minimal model generation procedure. For those applicationswith in�nite minimal models, the breadth-�rst minimal model generationprocedure can be applied for an exhaustive construction of all �nite minimalmodels. 45
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