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Abstract

In this thesis we will study the qualitative behavior of some difference equations, and
we will support our results by numerical discussion using MATLAB 6.5. Our concentration
is on invariant intervals, periodic solutions, semicycle analysis, and the global asymptotic
stability of all positive solutions of these equations.

We mainly study the positive solutions of the following two difference equations:
The first difference equation is

BTy + YTp_i

=0,1.2. .. 1
Bz, + Cxpy_i & T (1)

Tpy1 = Al‘n +

where the initial conditions x_g,---,x_1,xq are arbitrary positive real numbers and the

coefficients A, 8,~, B, C' are positive constants, while k is a positive integer number.

The second difference equation is

DTy + Tn—k

n=012 .. (2)
q—i_xnfk

Tn4+1 = Axn +

where the initial conditions z_g,---,x_1,xo are arbitrary positive real numbers and the

coefficients A, p, g are positive constants, while k is a positive integer number.

vil



viii



Introduction

The function f(x) = 2z is a rule that assigns to each number z a number twice
as large. This is a simple mathematical model. We might imagine that = denotes the
population of bacteria in a laboratory culture and that f(z) denotes the population one
hour later. Then the rule expresses the fact that the population doubles every hour. If
the culture has an initial population of 10,000 bacteria, then after one hour there will
be f(10,000) = 20,000 bacteria, after two hours there will be f(f(10,000)) = 40,000
bacteria, and so on.

A dynamical system consists of a set of possible states, together with a rule that
determines the present state in terms of past states. In the previous paragraph, we
discussed a simple dynamical system whose states are population levels, that change with
time under the rule z,, = f(z,_1) = 2x,_1. Here the variable n stands for time, and z,
designates the population at time n. We will require that the rule be deterministic, which
means that we can determine the present state (population, for example) uniquely from
the past states.

We will emphasize two types of dynamical systems. If the rule is applied at discrete
times, it is called a discrete-time dynamical system (Map). A discrete-time system
takes the current state as input and updates the situation by producing a new state as
output. By the state of the system, we mean whatever information is needed so that the
rule may be applied. In the first example above, the state is the population size. The rule
replaces the current population with the population one hour later.

The other important type of dynamical system is essentially the limit of discrete
systems with smaller and smaller updating times. The governing rule in that case becomes
a set of differential equations, and the term continuous-time dynamical system is
sometimes used.

This thesis includes two main parts: The first one is a background about dynamical
systems, and the second part deals with some discrete-time dynamical system (difference
equations). Part one includes chapters 1, 2 and 3, whereas part two includes chapters 4
and 5.

Chapter 1 gives an introduction to dynamical systems, while Chapter 2 is a primary
chapter because it gives all preliminary results which are used in the thesis, it deals

with the stability and linearized stability, semi-cycle analysis, criterion for the asymptotic

ix



stability, and the global asymptotic stability. Chapter 3 gives an idea about linear and
nonlinear dynamical systems.

In chapter 4 we study the qualitative behavior of the solutions of the difference equation

Bn + YTy
Tpy1 = Axy, + ——m——— n=20,1,2,.. 3
n+1 n an + anfk 9 ) ( )
where the initial conditions x_y, ---, x_1, xo are arbitrary positive real numbers and the

coefficients A, 3, v, B, C are positive constants, while k is a positive integer number.
Our concentration is on invariant intervals, semicycle analysis, and the global asymp-
totic stability of all positive solutions of Eq.(3).
E.M.E Zayed et al.[16] have investigated the global stability of Eq.(3), but their results
are not accurate, and our aim is to correct these results.

Chapter 5 discusses the difference equation

Ty + LTy
Tyt = Az, 4 P T Intk 01,2, . (4)
q + Tn—k
where the initial conditions x_y, ---, x_1, xo are arbitrary positive real numbers and the

coefficients A, p, ¢ are positive constants, while £ is a positive integer number.
At the end of Chapters 4 and 5 we give numerical discussion using MATLAB 6.5 which

supports our theoretical results, and the codes are included in the thesis.



Chapter 1

An Introduction to Dynamical

Systems

1.1 What is a dynamical system?

A dynamical system is a function which is doing the same thing over and over again,
it predicts what you are going to do next. Mathematically a dynamical system has two
parts: a state vector which describes exactly the state of some real or hypothetical
system, and a function (i.e., a rule) which tells us, given the current state, what the

state of the system will be in the next instant of time.

1.1.1 State Vectors

Dynamical systems can be described by numbers. For example, a ball tossed straight
up can be described using two numbers: its height h above the ground and its (upward)
velocity v. The pair of numbers (h,v) is a vector which completely describes the state of

the ball and hence is called the state vector of the system, and we present it as:

]

It may be possible to describe the state of a system by a single number. For example,
consider a bank account opened with $100 at 6% interest compounded annually. The
state of this system at any instant in time can be described by a single number: the

balance in the account. In this case, the state vector has just one component.

1



On the other hand, some dynamical systems require many numbers to describe them.
For example, a dynamical system modeling global weather might have millions of variables
accounting for temperature, pressure, wind speed, etc. at points all around the world.
Although extremely complex, the state of the system is simply a list of numbers as a

vector.

1.1.2 The next instant: discrete time

The second part of a dynamical system is a rule which tells us how the system changes
over time. In other words, if we are given the current state of the system, the rule tells
us the state of the system in the next instant. In the case of the bank account described
above, the next instant will be one year later, since interest is paid only annually; time is
discrete, it is easy to write down the rule which takes us from the state of the system at

one instant to the state of the system in the next instant:
z(k + 1) = 1.06x(k)
z(0) =z = 100

The state of the bank account in all future years can now be computed. We see that
z(1) = 1.06x(0) = 1.06 x 100 = 106, and then z(2) = 1.062(1) = 1.06 x 106, and so

z(k) = (1.06)% x 100
or more generally,
x(k) = (1.06)% x xq

A larger context
Let us put this example into a broader context which is applicable to all discrete time

dynamical systems. We have a state vector x € R™ and a function f : R" — R"” for which

v(k+1) = f(x(k))

Once we are given that z(0) = o and that x(k+1) = f(x(k)), we can compute all values

of z(k), as follows:



w(k) = fle(k =1)) = f(f(--- (f(20))---))

where in the last line we have f applied k times to xy, and is written as

ktimes

1.1.3 The next instant: continuous time

Many systems are better described with time progressing smoothly. Consider our

earlier example of a ball thrown straight up. Its instantaneous status is given by its state

[

However, it does not make sense to ask what its state will be in the next instant of time,

vector

there is no next instant since time advances continuously. We reflect this differently by
using the letter ¢ (rather than k) to denote time.

If the ball has (upward) velocity v, then we know that ¢ = //(t) = v(t) and

‘fl—: = v'(t) = —g. The change in the system can thus be described by

o) Lo L)1
V() 001 v —g

using that

we have

' = f(x) (1.1)



where f(x) = Ax + b,

A:

01
0 0

0
b:
[—g

Indeed, Eq.(1.1) is the form for all continuous time dynamical systems. A continuous

and

time dynamical system has a state vector z(t) € R™ and we are given a function
f:R" — R™ which specifies how quickly each component of z(t) is changing.
Returning to the example at hand, suppose the ball starts at height hg and with

hq
o =
Vo

h(t) = ho + Uot — %th

upward velocity vy, i.e.,

We claim that the equations

and
v(t) = vy — gt

describe the motion of the ball, and this can be verified easily.

1.2 What we want; what we can get

The notion of a dynamical system can be useful in modeling many different kinds of
phenomena. Once we have created a model, we would like to use it to make predictions.
Given a dynamical system either of the discrete form z(k + 1) = f(x(k)) or of the con-
tinuous sort ' = f(z), and an initial value g, we would very much like to know the
value of z(k) [or, x(t)] for all values of k [or ¢]. In some rare instances, this is possible.
For example, when f is a linear function. Unfortunately, it is all too common that the
dynamical system in which we are interested does not yield an analytic solution, so one
option is using numerical methods. However, we can also determine the qualitative nature

of the solution which we will focus on in this thesis.



Chapter 2

Preliminary Results

2.1 Introduction

In this chapter we present some definitions and state some known results which will
be useful in the subsequent chapters. For further details and additional references see [1],
3], [4], [7] and [8].

2.2 Definitions of Stability and Linearized Stability

Definition 1 (/6]): A difference equation of order (k + 1) is an equation of the form

Tp+1 :f(xnaxn—lv"'amn—k> 7n:O71727"' (21>

where f is a continuous function which maps some set J**1 in to J. The set J is usually
an interval of real numbers, or a union of intervals, but it may even be a discrete set such
as the set of integers Z ={---,—1,0,1,---}.

A solution of Eq.(2.1) is a sequence {z,}22 , which satisfies Eq.(2.1) for all n > 0. If

we prescribe a set of (k + 1) initial conditions
Tk Tok41, ", %0 € J
then

1 = f(xOfolu T ;ﬂﬁfk)



T2 = f(xlwro’ e 7xfk+1>

and so the solution {z,}> , of Eq.(2.1) exists for all n > —k and is uniquely determined

by the initial conditions.

Definition 2 [1//: A point T is called an equilibrium point of Eq.(2.1) if

E:f(jaja"'w%)

That is, x, = T for n >k is a solution of Eq.(2.1), or equivalently, T is a fized point of

f.

Definition 3 ([14]): Let & be an equilibrium point of Eq.(2.1) and assume that I is some

interval of real numbers.

(a)

(b)

The equilibrium T of Eq.(2.1) is called locally stable (or stable) if for every e > 0,
there exists 0 > 0 such that if x_p, -+, x_1,29 € I and

|$_k—f|+"‘+|$_1—f|+|$o—f|<(5
then
|z, — Z| < € for alln > —k.

Figure(2.1) shows a stable equilibrium point of a difference equation of the first order.

The equilibrium T of Eq.(2.1) is called locally asymptotically stable (or asymp-
totically stable) if it is stable and if there exist v > 0 such that if x_j, -+, x_1,20 € [

and
T_p—Z| 4+ -+ — T+ |xg—T| <0
then
lim, oo T, = T

Figure(2.2) shows an asymptotically stable equilibrium point of a difference equation
of the first order.



o 1 2 3 4 5 6 7 8 9 10 n

Figure 2.1: Stable equilibrium point z* of a first order difference equation

(¢) The equilibrium T of Eq.(2.1) is called a global attractor if for everyx_y, -, xq € I,

we have
lim,, yoo T, =T

(d) The equilibrium T of Eq.(2.1) is called a globally asymptotically stable (or globally
stable) if it is stable and is a global attractor. Figure(2.3) shows a globally stable

equilibrium point of a first order difference equation.

(e) The equilibrium T of Eq.(2.1) is called unstable if it is not stable. Figure(2.4) shows

an unstable equilibrium point of a first order difference equation.

(f) The equilibrium T of Eq.(2.1) is called a repeller (or a source) if there exist r > 0

such that if x_p,---,x_1,x0 € I and
lz_p —Z|+ -+ |xy —Z|+|zo—Z| <7
then there exists N > 1 such that
ey — 2| >r

Clearly, a repeller is an unstable equilibrium point.



+n
%(0) L\.\--\.'—‘——L—._-__.__s‘%.
X"
) (0} r,/,‘—r—*—.—.—_*’_‘.
XN

1 2 3 4 5 6 7 8 8 10

=

Figure 2.2: Asymptotically stable equilibrium point z* of a first order difference equation

" x(n)

x,(0) 1 2 3 4 5 6 7 8 9 10 n

Figure 2.3: Globally asymptotically stable equilibrium point x* of a first order difference

equation



n

Figure 2.4: Unstable equilibrium point x* of a first order difference equation

Suppose f is continuously differentiable in some open neighborhood of z. Let

pi=3L(z,2,- 1) fori=0,1, - k

denote the partial derivative of f(ug,uq, -, ug) with respect to u; evaluated at the equi-
librium point z of Eq.(2.1)
Then the equation

Zn+1 = Po”n +pi1zp—1+ -+ PrZn—k n = 07 17 e (22)

is called the linearized equation of Eq.(2.1) about the equilibrium point Z, and the char-

acteristic equation of Eq.(2.1) about the equilibrium point Z is:
AR p0>\k — =P A—pr =0 (2.3)

Now we will give a primary theorem which is applicable to the difference equation of

the following form which is a special case of Eq.(2.1).

Tni1 = [(Tn, Tn_rk) n=012,.. (2.4)
Let
po = aa—qf;(f,f)
and



9Ff /- —
pr = 5-(z,7)

The linearized equation of Eq.(2.4) about the equilibrium point Z is
Zn41 = PoZn + P12n—k- (25)

Theorem 2.2.1 (/16])
Assume that po,p1 € R and k € {1,2,---}. Then

|pol + [p1] <1 (2.6)

is a sufficient condition for the asymptotic stability of the difference equation (2.4). Sup-

pose in addition that one of the following two cases holds:
1. k is an odd integer and p; > 0.
2. k is an even integer and popy > 0.
Then (2.6) is also a necessary condition for the asymptotic stability of Eq.(2.4).

The following well-known result, called the Linearized Stability Theorem, is very useful

in determining the local stability character of the equilibrium point  of Eq.(2.1).

Theorem 2.2.2 (/6])
Suppose f is a continuously differentiable function defined on some open neighborhood of

Z. Then the following statements are true:

1. If all the roots of Eq.(2.3) have absolute value less than one, then the equilibrium
point T of Eq.(2.1) is locally asymptotically stable.

2. If at least one of the roots of Fq.(2.3) has absolute value greater than one, then the
equilibrium point T of Eq.(2.1) is unstable.

3. If all the roots of Eq.(2.3) have absolute value greater than one, then the equilibrium
point T of Eq.(2.1) is a source.

The equilibrium point z of Eq.(2.1) is called hyperbolic if no root of Eq.(2.3) has
absolute value equal to one. If there exists a root of Eq.(2.3) with absolute value equal

to one, then z is called non-hyperbolic.

10



The equilibrium point Z of Eq.(2.1) is called a sink if every root of Eq.(2.3) has absolute
value less than one. Thus a sink is locally asymptotically stable, but the converse need
not be true.

The equilibrium point = of Eq.(2.1) is called a saddle point equilibrium point if it is
hyperbolic, and if in addition, there exists a root of Eq.(2.3) with absolute value less than
one and another root of Eq.(2.3) with absolute value greater than one. In particular,

a saddle point equilibrium point is unstable.
A solution {z,,}°2 , of Eq.(2.1) is called periodic with period p (or a period p solution)

if there exists an integer p > 1 such that
Tpip = Tn Vn > —k (2.7)

We say that the solution is periodic with prime period p if p is the smallest positive

integer for which Eq.(2.7) holds. In this case a p-tuple

(-I'nJrl; Tp+42,° " 7$n+p)

of any p consecutive values of the solution is called a p-cycle of Eq.(2.1).
A solution {z,}>2 , of Eq.(2.1) is called eventually periodic with period p if there
exists an integer N > —Fk such that {z,}>° y is periodic with period p ; that is

Tnyp = Tn Vn > N

The orbit of x under f is the set of points {xz, f(z), f?(x),---}. The starting point z
for the orbit is called the initial value of the orbit. For example, the orbit of z = 0.01
under the function g(z) = 22(1 — z) is {0.01,0.0198,0.0388, - - -}

2.3 Semi-cycle Analysis

Assume that Z is an equilibrium point of Eq.(2.1), and let {z,}3 , be a solu-
tion of Eq.(2.1). A positive semi-cycle of {z,}5° , consists of "a string” of terms

{zy, 141, -, 2} all greater than or equal to Z, with [ > —k and m < co such that
either l=—k or Il>—k and 2,1 <Z
and

either m or m< oo and T,y <

I
g

11



A negative semi-cycle of {z,,}°° , consists of "a string” of terms {x;, xj41,- -+, Tm}

all less than z, with [ > —k and m < oo such that
either l=—k or Il>—-k and ;1> Z
and

either m=00 Or m<oo and X, >

A solution {x,}22 , of Eq.(2.1) is called non-oscillatory about Z if there exists N > —k

such that either

T, > foralln > N
or
T, <X foralln > N

Otherwise, {z,}22 _, of Eq.(2.1) is called oscillatory about z.
A solution {z,}22 , of Eq.(2.1) is called strictly oscillatory about Z if for every
N > —Fk there exists m,n > N such that x,, < Z and z,, > .

We say that a positive solution {z,}>2 , of Eq.(2.1) persists (or is persistent) if there

exists a positive constant m such that

m < x, for all n > —k

Eq.(2.1) is said to be permanent if there exist positive real numbers m and M such that

for every solution {z,}°° , of Eq.(2.1) there exists an integer N > —k (which depends

upon the initial conditions x_j, k41, -+, Z_1, Tg) such that

m<z, <M foralln > N

2.4 Criterion for the Asymptotic Stability

In this section we give a simple but powerful criterion for the asymptotic stability of

equilibrium points. The following theorem is our main tool in this section.

12



Theorem 2.4.1 (/}])

Let T be an equilibrium point of the difference equation
z(n+1) = f(z(n)) (2.8)
where f is continuously differentiable at . The following statements then hold:
(i) If | f'(Z)| < 1, then T is asymptotically stable.
(i) If |f'(Z)| > 1, then T is unstable.
Remark: In the literature of dynamical systems, the equilibrium point 7 is said to be

hyperbolic if | f'(Z)| # 1.

Observe that Theorem (2.4.1) does not address the non-hyperbolic case where | f'(Z)| = 1.
Further analysis is needed here to determine the stability of the equilibrium point . Our

first discussion will address the case where f'(7) = 1.

Theorem 2.4.2 ([4])
Suppose that for an equilibrium point T of (2.8), f'(T) = 1. The following statements then
hold:

1. If f"(Z) # 0, then T is unstable.
2. If f"(z) =0, and f"(T) > 0, then T is unstable.
3. If f"(z) =0, and f"(T) < 0, then T is asymptotically stable.

Now we will investigate the case f'(Z) = —1. But before doing so, we need to introduce

the notion of the Schwarzian derivative of a function f:

Sf(@) =t = 3057

Note that if f/(Z) = —1, then

Sf@) =—f"(@ - 3(f'@)*

13



Theorem 2.4.3 [//
Suppose that for an equilibrium point T of (2.8), f'(T) = —1. The following statements
then hold:

1. If Sf(T) <0, then T is asymptotically stable.

2. If Sf(T) > 0, then T is unstable.

2.5 Global Asymptotic Stability

Unfortunately when we need to establish the global attractivity of the positive equi-
librium of a difference equation, we face the problem that there are not enough results in
the literature to cover all various cases. In this section we mention the primary theorems

in investigating the global stability of the positive equilibrium of Eq.(2.4).

Theorem 2.5.1 ([10])

Let [a,b] be an interval of real numbers and assume that
[ la,b] x [a, b] — [a, b]
s a continuous function satisfying the following properties:

(a) f(x,y) is non-decreasing in x € [a,b] for each y € [a,b], and f(x,y) is non-increasing

iny € [a,b] for each x € [a,b].
(b) If (m, M) € [a,b] X [a,b] is a solution of the system
f(m, M) =m and  f(M,m)=M
then m = M.

Then Eq.(2.4) has a unique equilibrium T € |a,b] and every solution of Eq.(2.4) converges

tox.

Theorem 2.5.2 (/10])

Let [a,b] be an interval of real numbers and assume that
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[ la, b x [a, b] — [a, 0]
s a continuous function satisfying the following properties:

(a) f(x,y) is non-increasing in x € [a,b] for each y € [a,b], and f(z,y) is non-decreasing

iny € a,b] for each x € [a,b].
(b) The difference equation Eq.(2.4) has no solutions of prime period two in |a,b].

Then Eq.(2.4) has a unique equilibrium T € [a,b] and every solution of Eq.(2.4) converges

to .

Theorem 2.5.3 ([10])

Let [a,b] be an interval of real numbers and assume that
f:a,b] X [a,b] — |a, b

s a continuous function satisfying the following properties:

(a) f(z,y) is non-increasing in each of its arguments.

(b) If (m, M) € [a,b] X [a,b] is a solution of the system
f(m,m)=M and  f(M,M)=m

then m = M.

Then Eq.(2.4) has a unique equilibrium T € |a,b] and every solution of Eq.(2.4) converges

to T.

Theorem 2.5.4 ([10])

Let [a,b] be an interval of real numbers and assume that
f:a,b] x [a,b] — |a, b
1s a continuous function satisfying the following properties:

(a) f(x,y) is non-decreasing in each of its arqguments.
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(b) The equation
f(z,x) = x has a unique positive solution.

Then Eq.(2.4) has a unique equilibrium T € |a,b] and every solution of Eq.(2.4) converges

to T.

Theorem 2.5.5 ([10])

Let I C [0,00) be some interval and assume that f € C[I x I, (0,00)] satisfies the following

conditions:
(i) f(x,y) is non-decreasing in each of its arguments.

(ii) Eq.(2.4) has a unique positive point T € I and the function f(x,z) satisfies the

negative feedback condition:
(x —Z)(f(z,x) —2) <0 for every xel—{T}
Then every positive solution of Eq.(2.4) with initial conditions in I converges to T.

The following result extends Theorems (2.5.1), (2.5.3) and (2.5.4) to be applicable
to Eq.(2.1).

Theorem 2.5.6 (/6])

Let F : [a, b]**1 — [a, b] be a continuous function, where k is a positive integer, and where
[a,b] is an interval of real numbers and consider the difference equation (2.1). Suppose

that F' satisfies the following conditions:

(i) For each integer i with 1 < i < k + 1, the function F(z1, 22, -+, 2k41) 1S weakly

monotonic in z; for fived z1, 2o, -+, Zi_1, Zit1, 5 Zkil-

(i) If (m, M) is a solution of the system

m:F(ml,mg,---,mkH) and M:F(Ml,MQ,"',Mk+1)

16



then m = M, where for each i =1,2,--- k+ 1, we set

{ m if F non-decreasing in z;
m; =

M if F non-increasing in z;

and
M — { M if F non-decreasing in z;

m if F non-increasing in z;

Then there exists exactly one equilibrium point T of the difference equation (2.1), and

every solution of Eq.(2.1) converges to T.

17



Chapter 3

Linear and Nonlinear Dynamical

Systems

3.1 Linear Dynamical Systems

In Chapter 1 we introduced discrete time dynamical system which has the form
z(k + 1) = f(z(k)). The function f : R® — R"™ might be quite simple or terribly
complicated.

In this chapter we study dynamical systems in which the function f is particularly
nice: we assume f is linear. We begin with the case when f is a function of one variable
(i.e.,f(x) = ax+b), where a and b are constants, then we deal with the general case when
f is a function of several variables (i.e.,f(x) = Ax + b ), where A is an n X n matrix and

b is a fixed n-vector.

3.1.1 One dimension

We begin by considering the discrete time dynamical systems in which f(x) = ax + b,

r(k+1)=ax(k)+b

We discuss this case first analytically (by equations) and then geometrically (with
graphs).

18



Analytical Discussion

1. Ifb=0

z(k+ 1) = ax(k).

It is very clear that for any k& we have simply that x(k) = a*x.

(a) If la| < 1, then a* — 0 as k — oo and so x(k) — 0.

(b) If |a| > 1, then a* — oo as k — co. Thus unless zy = 0, we have x(k) — co.

(c) If l[a| = 1
(i) If a = 1, then we have just that z(0) = z(1) = z(2) = z(3) = - -+, i.e,
x(k) = xg
(ii) If @ = —1, then z(0) = —z(1) = z(2) = —x(3) = ---, that is, z(k)

alternates between zg and —xg forever.

2. 1t b0
x(k+1) =azx(k) +b.

We notice that:

2(0) = o,

z(1) = ax(0) + b = axo + b,

2(2) = ax(1) + b = alaxy + b) + b = a®x¢ + ab + b,

2(3) = ax(2) + b = a(a’vg + ab + b) + b = a®zy + a®b + ab + b,

2(4) = ax(3) + b = a(a®zg + a®b + ab + b) + b = a*zy + a®b + a*b + ab + b.

We conclude that
w(k) ="z + (" + a7+ Fa+1)b (3.1)

We can simplify Eq.(3.1) by noticing that
NI SR |

is a geometric series which equals




provided that a # 1. If a = 1, the series a*~! +a*"2 4 .- + a + 1 simply equals k.

Thus
z(k) = aFzg + (%)b when a # 1;
xo+ kb when a=1.

Now we will find the equilibrium point Z such that f(z) =z
flz)=ax+0b

T=ar+b

(1—a)z =0

b
l1—a

T =
Depending on the values of x(k) which is given above we will analyze the behavior of

solution as k — oo for the cases |a| < 1, |a| > 1, and |a| = 1.

1. If |a] < 1,

then a* — 0 as kK — oo, and so

z(k) = afxo + (a
a

and so
(k) —» L =z as k — oo

Thus T is a stable or an attractive fixed point of the dynamical system because the

system is attracted to it.

2. If |a] > 1,

then a* — oo as k — oo

k
-1
z(k) = a*zo + ((Z

(i) If zo = 7, then z(k) = & =z for all time.
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(i) If 2o # 12, then |z(k)| — oo as k — oo
3. |a] = 1.

(a) If a = 1, then x(k) = zo + kb, and so if b # 0, then |z(k)| — oo, but if (b = 0),

then x(k) = o regardless of the value of .

(b) If a = —1, then

z(0) = zo

x(1)=—x0+0b

x(2) = —(—x0+b) +b=1x
z(3) =—x0+0b

z(4) =z

Thus z(k) oscillates between two values, zo and b — zo. But if xy = b — xy, i.e.,
rg=0/2=0/(1—(—1)) =z, then z(k) = Z.

Graphical Discussion

Before we start in the geometrical discussion, we will introduce some important con-

cepts.

The first concept is that:

The equilibrium point is the z-coordinate of the point where the graph of f intersects the

diagonal line y = x. For example, there are three equilibrium points for the equation
z(n+1) =23(n)

To find these equilibrium points, we let f(Z) = Z, and solve for . Hence, there are three

equilibrium points: {—1,0,1}, and this can be shown graphically as in Fig.(3.1).

The second concept is that:

The Stair Step (Cobweb) Diagram is an important graphical method for analyzing the
stability of equilibrium points. Since z(n + 1) = f(x(n)), we may draw a graph of f in
the (x(n),z(n+ 1)) plane. Then, given z(0) = x(, we pinpoint the value z(1) by drawing

a vertical line through x( so that it also intersects the graph of f at (xg,z(1)). Next, draw
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Figure 3.1: Fixed points of f(z) = z°.

a horizontal line from (zy, x(1)) to meet the diagonal line y = z at the point (x(1),z(1))
A vertical line drawn from the point (z(1),2(1)) will meet the graph of f at the point

(z(1),2(2)). Continuing this process, one may find z(n) for all n > 0.
Now, let us revisit systems of the form z(k + 1) = ax(k) + b from a geometric point

of view. Graphs will make clear why |a| < 1 causes the iterations to converge to Z, while

|a| > 1 causes the iterates to explode.

L. Ja] <1

(a) f0<a<1
Figure (3.2) illustrates what happens when we iterate y = f(z) = az + b

with 0 < a < 1. We chose z(0) larger than T = t. It is easy to see that the
values x(0), z(1), z(2), etc. get smaller and travel toward z. The same is true

if we chose z(0) <

(b If -1<a<0
Figure (3.3) illustrates what happens when we iterate y = f(z) = ax + b

with —1 < a < 0. The line slopes downward, but not very steeply. We start
with x(0) a good bit to the right of . Observe that (1) is to the left of z,

but not nearly as far. Successive iterations take us to alternate sides of z, but

getting closer and closer, and ultimately converging to z.

22



() ?

xly

Figure 3.2: Iterating f(z) = az + b with 0 <a < 1

i

3} xiZ) {0} x

Figure 3.3: Iterating f(z) = az + b with —1 < a < 0.

23



iy [ x(2) xid)

il =3

Figure 3.4: Iterating f(z) = ax + b with a > 1.
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Figure 3.5: Iterating f(z) = ax + b with a < —1.
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2. |a| >

1

()

3. |a] =

Ifa>1

Figure (3.4) illustrates what happens when we iterate y = f(z) = az + b
with @ > 1. The line slopes steeply upward. We start z(0) just slightly greater
than . Observe that x(1) is now to the right of x(0), and then x(2) is farther
right, etc. The successive iterates are going to oo. If we chose x(0) < Z, then

the iterates would move to —oo.

Ifa< -1

In Figure (3.5) we have a < —1; hence the line y = f(z) = ax + b is sloped
steeply downward. We begin with (0) just to the right of Z. Observe that
z(1) < T but at a greater distance from Z than z(0). Next, z(2) is to the
right of Z, x(3) is to the left, etc. with each at increasing distance from z and

diverging to oo.

(a)

Ifa=1
Figure (3.6) illustrates what happens when we iterate y = f(z) = lz + b
with b # 0. We see that each iteration moves the point z(k) a step to the right

and heads to oo.

Ifa=-1

Finally, Figure (3.7) considers the case f(x) = —1z + b. The starting value
x(0) is taken to be to the left of . Next, x(1) is to the right of z and then z(2)
is back at exactly the same location as z(0). In this manner, z(0), x(2), z(4),

etc. all have the same value (denoted by z(even) in the figure), and, likewise,

(1) = x(3) = z(5) = - - - (denoted by x(odd)).
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Figure 3.6: Iterating f(z) = ax + b with a = 1 and b # 0.
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Figure 3.7: Iterating f(z) = az + b with a = —1.
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3.1.2 Two (and more) dimensions

In this section we consider discrete linear systems in several variables. The systems, of
course, have the form z(k+1) = f(x(k)). The state vector x is no longer a single number
but rather is a vector with n components (i.e., x € R"). The function f(z) = Az + b,

where A is an n x n matrix, and b € R" is a (constant) vector, and so we will deal with

the system
z(k+1)=Ax(k)+0b z(0) = .
1. Ifb=0
x(k+1) = Az (k).
Simply
z(1) = Az(0) = Axg
z(2) = Az(1) = A%z,
z(3) = Ax(2) = A3z,
Thus

z(k) = Akzy.
We assume that A is diagonalizable, and that it has n linearly independent

eigenvectors vy, - - -, v, with associated eigenvalues A, - - -, \,,. Let A be the diagonal

matrix with diagonal entries A\i, ---, A,,, and let S be the n x n matrix whose i*?

column is v;. Thus we may write A = SAS™!. So
AF = (SAS™H(SASTH)(SAS™L) -+ (SASY)
AF = SA(STIS)A(STLS)A(SLS) - -+ (STLS)AS
Thus
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Now i
M 00 0 Moo 0
0 A O 0 0 X 0 0
AF=1 0 0 X 0| =| 0 0 Xt 0
0 0 0 An | | 0 0 0 AE

Thus to understand the behavior of A* we need to understand the behavior of
the AJ’s. If \; is a real number, then A; — 0 if [A;| < 1, and A} explodes if | ;| > 1.
However, the eigenvalues of A might be complex numbers, and then we need to
know how )\;? behaves for complex );. We write A; in its polar form: \; = r;e®.
Thus

. 0 if r<1;
R e
oo if r>1.
Now we will return to our system
z(k+1) = Ax(k) From which we found x(k) = Ak

Case 1: If all the eigenvalues of A have absolute values less than 1, then A* tends

to the zero matrix as £ — oo. Thus
x(k) = AFzg — 0.

Case 2: If some eigenvalues of A have absolute values greater than 1, then entries
in A* will diverge to oo.

We have assumed that the eigenvectors vy, - - -, v, are linearly independent, but we
know that any family of n linearly independent vectors in R™ forms a basis, hence
every vector (zo in particular) can be written uniquely as a linear combination of

the v;’s. Thus
z(0) = xg = c1v1 + Vg + -+ + U,
Multiply both sides by A

28



(1) = Az(0) = 1 Avy + coAvg + -+ - + ¢, Av,
But we have Av; = \;v;, so
(1) = A1 + vy + -+ - F AUy
In the same way we conclude that
x(k) = c; Moy + e svg + - + e Fu,

Now, if [N\;| > 1, then |A¥| — oo as k — oo. Hence, unless ¢; = 0, we have

|z(k)| — oo.

Case 3: If some eigenvalues have absolute value equal to 1, and the rest have abso-
lute value less than 1.

We again have
z(k) = i foy + o svg + - + e M F o,

The terms involving \;’s with absolute value less than 1 disappear, but the other

components neither vanish nor explode.

CIEb£0

The form of the system is:
x(k+1)=Ax(k)+b
Let us compute the iterates z(0), z(1), z(2), etc.
x(0) = xg
z(1) = Az(0) + b= Axo+ b
r(2) = Az(1) + b= A%xo + Ab+ b
z(3) = Ax(2) + b= A3z + A0+ Ab+ D
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r(4) = Az(3) + b = Ao + A3b + A%+ Ab+ b
So
z(k) = Afxg + (A1 + AR2 o+ A4+ DD
To simplify this, observe that
(AL AR2 o A (T — A) =1 — AP
Given that I — A is invertible, we have
x(k) = AFzo + (I — AF) (I — A)~tb.

Case 1: If the absolute values of A’s eigenvalues are all less than 1 (hence I — A is
invertible), then A* tends to the zero matrix, hence (k) — Z = (I — A)~!b. This
is a generalization of one-dimensional Z which is ;- = (1 —a)~'b.

Case 2: If some eigenvalues have absolute values bigger than 1, then A* blows up,

and for most zq we have |z(k)| — oc.
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3.2 Nonlinear Dynamical Systems

The general form for discrete dynamical systems is

2k +1) = f(a(k))

We have examined the case when f is linear. Now we begin our study of more general

systems in which f can be any function that is differentiable with continuous derivative.

3.2.1 Fixed points

Depending on the definition of the fixed points, finding a fixed point of the system
z(k +1) = f(z(k)) means solving the equation x = f(z). For example, suppose the

system is

_ | @a(R)? + wa(k)

We may write this as z(k + 1) = f(z(k)), where

L)

To find a point & with the property that & = f(z), we solve

w+v

u+v—2

u=1u?+v
v=u+v—2.

Therefore, the fixed point of the system is

3.2.2 Stability

Not all fixed points are the same. We call some stable and others unstable. We begin
by illustrating these concepts with an example

Let
w(k+1) = f(x(k)) = [z(k)]*.
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Stable Marginally Stable Unstable

Figure 3.8: Kinds of fixed points.

The system has two fixed points: 0 and 1. First, let us start with a number which is close

to 0, say 0.1. If we iterate 22, we see
0.1 — 0.01 — 0.0001 > 0.0000001 +> - - -.

Thus if z¢ is near 0, then x(k) — 0 as k — oo. For this reason 0 is a stable fixed point.

Now we will examine the other fixed pointl. If we take a number near 1, say 1.1,

we see
1.1 — 1.21 — 1.4641 — 2.1436 — 4.5950 — 21.1138 — 445.7916 > - - -.
Clearly, z(k) — oco. If we take zo = 0.9, we see
0.9 — 0.81 — 0.6561 — 0.4305 — 0.1853 — 0.0343 — 0.0012 > - - -.

Clearly z(k) — 0. In any case, starting points near (but not equal to) 1 tend to iterate
away from 1. We call 1 an unstable fixed point of the system.

Figure(3.8) illustrates the kinds of the fixed points. The fixed point is stable if
all trajectories which begin near T remain near, and converge to . The fixed point is
marginally stable (neutral) if the trajectories which begin near Z stay nearby but never
converge to z. Finally, the fixed point is unstable if there are trajectories which start

near  and move far away from z.
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Chapter 4

Qualitative behavior of the difference

Brn+yTy,_
Bxp+Czy g

equation z, 1 = Ax, +

Introduction

In this chapter we will study some qualitative behavior of the solutions of the difference

equation g
Ty + VTn—k
Tpy1 = Azp+ ————— ,n=20,1,2,.. 4.1
il " Bz, + Czpy (4.1)
where the initial conditions x_y, - -+, _1, x¢ are arbitrary positive real numbers and the

coefficients A, 3, v, B, C are positive constants, while k is a positive integer number.

Our concentration is on invariant intervals, semicycle analysis, and the global asymp-
totic stability of all positive solutions of Eq.(4.1).

E.M.E Zayed et al.[16] have studied Eq.(4.1), in this chapter we will give further results
and correct some wrong ones, the special case of Eq.(4.1) when A = 0 and k = 1 has been
studied in [10]. In [14] M.Saleh et al. have studied the global stability of Eq.(4.1) when
A =0 and k is a positive integer. A more general recursive sequence of the form

BTy + YTk

=0.1.2. ... 4.2
Bz, + Cxp_p b T (42)

Tpy1 = A.an + Bx,_ +

has been studied in [17].
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4.1 Change of variables

The change of variables x,, = Zy,, which was used in [16], reduces Eq.(4.1) to the
difference equation

DYn + Yn—k

,n=20,1,2,... (4.3)
QYn + Yn—k

Yn+1 = Ayn +
where p = 2 and ¢ = € with p, g € (0,00), y_x, --- y1, 9o € (0,00).
Lets verify this.

Since
ly
co"

Ty =

e
Tpy1 = ayn—O—l

Ty = ly
n—k O n—k
Substitute in the equation
BTn + YTn—k
Tpyr = Axy + ———
i Bz, + Cx, %
SO 82 .,
Y i CYn + Yo Yn—k
“Ynt1 = A=y + S C:y
C C BEyn + Chyn—«
and so .
V= LAy, + & (BYn + VYot
comt ¢ Z(Bya + Cyny)

multiply both sides by %, SO

BYn + VYn—k
Ynt1 =AYn+ 5——
< Yn + VYn—k

divide the numerator and the dominator of the fraction on the righthand side by -,

we get:
B
~Yn + Yn—k
Ynt1 = Ayn + ;—
Eyn + Yn—k
The substitution: p = %, q= g reduces the above equation to
n + n—
yn+1:Ayn+py —y i ,n:0,1,2,...
qYn + Yn—k

34



To avoid a degenerate situation we’ll assume that: p # q.

Next we investigate the equilibrium points of Eq.(4.3) where the parameters p, ¢ and
the initial conditions y_g, - -+, y_1, Yo are arbitrary positive real numbers, while k£ is a
positive integer number.

The equilibrium points of Eq.(4.3) are the positive solutions of:

Py +y

= Ay +——
qy +y

Nl

SO
p+1 )

??:ﬂ(A+m

but

SO
p+1

b4 (q+1)§_0
pt+l
(¢+ 1)y
p+1

g+ 1)(1—A)

and so if 0 < A < 1, then the only positive equilibrium point is:

1A=

a

p+1
(¢+1)(1—4)

I
—~

.

e~
~—

y

4.2 Linearization

In this section we derive the linearized equation of Eq.(4.3) and prove the result which
is included in [16]. To this end, we introduce a continuous function F' : (0,00)? — (0, 00)

which is defined by:

puo + Uy
F(ug,uy) = Aug +
( 0 1) 0 qup + U1
now
OF A (quo + w1)p — (puo + u1)g
8uo (QUO + U1)2
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oF (a7 +9)p— (py +7)q

Bup P9 =4 (47 + )
or ylg+ Dp—gylp+1)q
6.9)=4 72(q + 1)2

8u0
divide the numerator and the dominator of the fraction in the righthand side by 7 ”since

y # 07, now we have:
(¢+p—(p+1)g

OF
— (5,9)=A
auO(y,y) + Hq 1)

or qQp+p—pqg—q
—(y, :A_|_
Fug 0+ HaT 1)

OF _
@9 =A+-L—9_

Ao y(q+1)?
_ 1
but ¥ = iy
SO oF
_ pP—9q
_(y7 y) =A + 1
Oug a4+ 17
oF pP—q
8_u0(y’ V) = A+ o
T—A
hence OF ( \( )
_ b—q -
Also
OF  (quo+wuy) X 1 — (pug+up) x 1

8u1 - (quo -+ U1)2

OF  quo+uy — pug — uy

8’&1 (quo -+ U1)2
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OF (g —plug

Our  (quo + up)?

hence _
or - (g—p)y

our Y T (gt )2

or - (¢—p)y

Ouy vy (q+1)%y?

divide the numerator and the dominator by ¥
or _ . (qg—p)

ou Y T (g 12y

substitute:
j= p+1
(g+1)(1—A)
SO
OF i) = (a—p)
Ous (0+ 1) ha=n
6_F<7 7) _ (q _p)
Ouy 777 (eD(e+D)
-4
hence
oF . 5) = (—p)(1-4) -(p-9d-4) —
duy (¢g+1)(p+1) (g+1D)(p+1)

Then the linearized equation of Eq.(4.3) about ¥ is:

Yn+1 — PoYn — P1Yn—k = 0

where pg, p1 are given by (4.5) and (4.6)
Let y, = A", 50 ypy1 = A" and y,_p = A"°F
substitute in (4.7):
AT — oA — p AR =0
divide both sides by A"~
N X — o =0

This equation is called the characteristic equation.
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4.3 Local stability
In this section, we investigate the local stability of the positive solutions of Eq.(4.3).

Theorem 4.3.1 (/16])

(a) Assume that 0 <p—q < 3(p+1)(g+1) and 0 < A < 1, then the positive equilibrium
point § of Eq.(4.3) is locally asymptotically stable.

(b) Assume that p < q, 0 < A < 1 and A > %, then condition (2.6) is the

necessary and sufficient condition for the asymptotic stability of the positive solutions.

Proof:
First we prove part (a) of Theorem (4.3.1)

(p—q)(1—A)
(p+1)(g+1)

lpo| + |p1] = |A +

2(p—q)(1 — A)
(p+1)(g+1)

Ap+D(g+1)+2(p—q)(1-A)
(p+1)(g+1)

From assumption

(0= a) < 50+ Da+1)

Lol 11| = Ap+ D@+ 1) +2p—g)(1-4) A+ 1+ +2x5(p+ g+ 1)1 -4)
e (p+1)(g+1) (p+1)(g+1)
hence

(p+Dg+1)
[P0l + lp1| < TESCESY =1
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|pol + [pa] <1

so g is locally asymptotically stable according to Theorem (2.2.1).

Now we will prove part (b) of Theorem (4.3.1).

_ r—q-4),  P-9d-4)
|m%HmL4A+<p+D@+lﬂ+| (-+U@+1ﬂ
_M_M—M( A) (r—q)(1—-A)

From assumption

SO

also
p<q — (P—-q¢<0 ——-(p—-q) >0

SO

lpo| + |p1] = A — — -
p+1

ool + || = A <1

so condition (2.6) is a sufficient condition for the asymptotic stability of the positive
solutions of Eq.(4.3).

If k£ is an odd integer

We have:

—(p—q)(1 - A)
(p+1(g+1)

p1 =
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so condition (2.6) is the necessary and sufficient condition for the asymptotic stability of
the positive solutions.

If k£ is an even integer

We have:

pop1 = (A +

_ Ap-q-A) ((p —q)(1 - A>)2
(p+1D(g+1)
Using the assumption that:

(q—p)(1—A)
TS CES)
We get
_Alg-p( -4 [((p—9(1-A4A) ?
M T g ) (<p+1><q+1>>
>(q—p)(1—z4)X(q—p)(l—A)_((p—q)(l—A))2
(p+De+1)  (+1)(¢+1) (p+1(g+1)
" -V (- A\
p°'01>(<p+ <q+1>) <<p+1 q+1>> -
Consequently,

pop1 >0

. so condition (2.6) is the necessary and sufficient condition for the asymptotic stability

of the positive solutions.

Thus the proof of Theorem (4.3.1) is now finished.

4.4 Periodic solutions

In this section we give necessary and sufficient conditions for Eq.(4.3) to have prime
period-two solutions. Some results are included in [16], and others are correction of other

results in [16].
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Theorem 4.4.1 (a) If p > q, then Eq.(4.3) has no positive solutions of prime period

two.
(b) If k is an even integer, then Eq.(4.3) has no positive solutions of prime period two.

(c) If k is an odd integer, then Eq.(4.3) has prime period two solutions

...7¢’¢7¢7¢7...

if the following condition is valid:
(p—1D(g—1(A+1) < —4(¢A+p)

where p < 1 and q > 1 while the values of ¢ and 1 are the (positive and distinct)

solutions of the quadratic equation

o (1=p)t (@A+p)d—-p  _
(@A+1)  (¢—D(A+1)(gA+1)?

Remark: Notice that the previous condition is not the one which is assumed in [16]
(p=Dlg = D(A+1) > —4(¢A+p)

and we will prove that our condition is the right one.

Proof:
First of all, we prove part (a) in the case p > ¢. Assume for the sake of contradiction that

there exists distinctive positive real numbers ¢ and v such that

e ¢7¢: ¢7¢,...

is a prime period two solution of Eq.(4.3).

If k£ is odd, then y, 11 = y,_k, so from Eq.(4.3) we have

¢:A¢+Zzﬁj (4.8)
and
¢=A¢+§Ziz (4.9)
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From (4.8)
o= AW+ 0) + (Y +9)
@+ o

SO
Plqy + @) = AY(q + @) + (p¥ + ¢)
Thus
qoY + ¢* = Aq)® + Ao+ pp + ¢ (4.10)
From (4.9)
V(gp + ) = Ad(qd + ¥) + pd +
50

qoY + V% = Aqd® + Avo + pé + ¥ (4.11)
By subtracting (4.11) from (4.10) we get

¢ = = Aq(v* — ¢*) +p( — @) + (6 — ¥)

(@ =V)(@+ ) =Aq() — )V + &) + p(¥ — &) + (o — ¥)
Divide both sides by (¢ — ¢) since we know that ¢ and ¢ are distinct. Thus

—(p+v) =AY+ ) +p—1

l—p=(+¢)(Ag+1)

SO
1—-p

AT (4.12)

6+ =

while by adding (4.10) to (4.11) we get

2000 + ¢* + ¥ = Aq(* + 6°) + 2406 = p(v + ¢) + (¢ + )

(2q — 24) ¢ = (¢A = 1)(¢* + %) + (p + 1) (¢ + )
Add 2(qgA — 1)¢ to both sides

2(q — A+ qA—1)o0 = (A — 1)(¢" + ¢* + 200) + (p+ 1) (¢ + ¥)

2(g = A+qA-1)o = (A - 1)@ +9)° + (p+1)(¢+¥) (4.13)
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Substitute (4.12) in (4.13)

2(q— A+qA—1)¢ = (gA— 1) (ql—p )2+(p+1) (q1_p)

Multiply the last term by Egﬁig

(@A-1)(1-p)* (A+p)(1-p)(¢A+1)
(ad+1)? (gA+ 1)

2(g— A+ qA— 1)y =

(¢A—=1)(1=p)* + (1 = p*)(gA+ 1)
(¢A +1)2

2(q— A+ qA— 1)y =

(@A~ )L = 2+ 1) + (gA+ 1 - paA )

2qg— A+ qA -1y = 2

2(g — A+ qA— 1Y = o

A —2pgA+p’qA—14+2p —p* +qA+1 - p’gA —p?
(¢A + 1)

2(q— A+ qA— 1)y =

2qA — 2pgA + 2p — 2p?
20— A+qA— 1)y = (qA+1)2p p

2(qA — pgA +p — p?)
(qA+1)?

20qg—A+qA—1)gnp =

(qA — pgA+p — p?)
(qA+1)?

(g— A+ qA—1)dp =

gA(1 —p) +p(1 —p)

(7
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(1 —p)(gA +p)

SO
(1—p)(gA+p)
= 4.14
W A PA DD 1
we know that ¢ and v are positive real numbers, so ¢ is positive.
Thus there are two probabilities:
(1-p)(gA+p) >0 and (¢gA+1)*(A+1)(g—1)>0 (4.15)
or
(1—p)(gA+p) <0 and (gA+1)*(A+1)(g—1)<0 (4.16)

we know that
(qA+p) >0, (gA+1)? and (A+1)>0
From (4.15)
(g—1)>0 —- ¢g>1 and (1-p)>0 — p<l1

but from assumption p > ¢, so p > ¢ > 1 and consequently p > 1 which is a contradiction.
Thus (4.15) is not acceptable.

From (4.16)

(1 —p) <0 and we know that ¢ + ¢ = (;A;fl

since (1 —p) < 0, we conclude that (¢ + 1) < 0 which contradicts our assumption that ¢
and 1) are positive real numbers.

Thus (4.16) is not acceptable.

The proof of part (a) is now finished in the case that k is odd, the case when k is

even is part(b) of the theorem.
We now start proving part (b) of the theorem.

For the sake of contradiction we assume that there exists a prime period two solution

of Eq.(4.3)
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',¢;¢;¢;’¢7'“

where ¢ and v are distinct positive real numbers.

If k is even, then y,, = y,_, from Eq.(4.3) it follows that:

Y+ p+1

o=AY+ P A¢+EIT (4.17)
and e .
+ p+

v =A¢+ o ¢+EIT (4.18)

subtract Eq.(4.18) from Eq.(18)
o= =AW —¢) = —Alp — )

so we conclude that A = —1 and here is the contradiction.
The proof of part (b) is now finished.
It remains to prove part (¢) of the theorem

Assume that Eq.(4.3) has prime period two solution

.7¢7¢7¢7w7...

where ¢ and v are distinct positive real numbers.
If k£ is odd, then v, 1 = yp_&-
We will use (4.12) and (4.14) which we found in the proof of part (1)

— P
ptv= A+1
ip = (1-p)(gA+p)
(A+1)*(A+1)(¢—1)
Now consider the quadratic equation
»  (1-p) (gA+p)(1—p)

TAr ) T o DA DAL 1)

so ¢ and v are the positive and distinct solutions of the above quadratic equation, and

we get

(1-p) + \/ _ _ 4¢A+p)(1-p)
(qA+1) qA+1 (g—1)(A+1)(gA+1)?
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(1-p) 1 4(qA+p)(1—p)
(gA+1) T gA+i \/(1 —D)* — YA

4(qA+p)(1 1)
(1-p :F\/l_ )? — —1)(A+)
2(qA + 1)

_(A-=p)F0
-~ 2(gA+ 1)

- , 4qA+p)(1-p)
5‘\/“‘” T DA+

SO

where

Thus, we deduce that

A(gA+p)(1—p)

(¢—1)(A+1)

4(gA+p)(1 —p)
(¢—1)(A+1)

(1-p)* - >0

(1—p)*>

From assumption p < 1,s01—p >0

Now divide both sides of the inequality by (1 — p)

4(qA +p)
(¢—1)(A+1)

(1-p)(g—1)(A+1)>4(qgA +p)
(p—1(g—1)(A+1) < —4(¢A+p)

(1—-p)>

The proof is now complete.

4.5 Invariant intervals

In this section we will find the invariant intervals which were not identified in [16].

Theorem 4.5.1 Suppose thatp > q, 0 < A <1, A%(p+p?) +q < p, and assume that for
some N >0

YN—k+1,"" " YN-1, YN € [A +1,5(A+ 1)]

then

€ A+1,§(A+1)},f0ralln>N
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> Ay
QYn + Yn—k " QYn F Ynr
SO

Yn+1 Z Ayn + 1

but we know that for some N >0, A+1 < yy < §(A+1), SO
Yni1 > Ayp +1>AA+ 1) +1=A2+A+1

Ypp1 > A2+ A+1>A+1

Thus
YnJrl 2 A + 1

Now assume
pr +y

qr +y

Ynt1 = f(z,y) = Az +

f(z,y) is increasing in « for each fixed y, and decreasing in y for each fixed x, since:

of _ 4 lezty)xp—(prty) xq
Oz (qz +y)?

ﬁ_A+qxp+yp—pxq—qy

ox (g + y)?

since p > ¢ we have

3f_AJr y(p —q)

o~ T a7
and
Of _(gz+y) x1—(pr+y) x1
dy (qz +y)?
but p > ¢, so

B, — pr — _
of _qxty—pr—y _ (¢=pz _,

oy  (qr+y)? (gz + y)?

Return to our equation:

Ynt1 = f(Yn,> Yn—t)
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f (Y, Yn—r) is increasing in y, for each fixed y,,_x, and f(yn, yn_x) is decreasing in y, g

for each fixed y,,.
We know that for some N >0, A+1<yy < §(A +1)

SO

Yn+1 = f(yna yn—k) S f (g(A + 1)a yn—k)

Yn+1 < f (g(A+ 1)7ynk) < f (g(A—i_ 1)7A+ 1)

IS

PA+1)+(A+1)
BA+1)+ (A+1)

Yni1 < Ag(A+ 1) +

SSAES]
—

LS

J(A+1)
J(A+1)
(5 +1)
P4 1)

p2
p Ap (B+1

np1 < AP= 4+ — 4 2
Ynt1 > p p %_'_1

(

A
o1 < L 4 422 4 -
q q

<

but from our assumption:

A2(p+p*)+q<p

Ap+ A%pP +q<p
Add p? to both sides of the inequality.
Ap+ Ap* +q+p* <p+p’
Ap(L+p) +q+p* <p+p’
Divide both sides by ¢(p + 1)

A?p(1+p) +q+p° _ p+p’
qlp+1) q(p+1)
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q qlp+1)

A2 q+p?

— q -_—
q T q(p+1) < q

Now return to (4.19)

Ap Y (% 1) Ap
Yn S — + A -+ S -
Ty ¢ (H+1)7~ ¢
SO
p
Yn+1 S _(A + 1)
q
The proof is complete.
Theorem 4.5.2 Suppose that
c<p<q Ag>q-p, A <A-—q+p, 0<A<I,
Assume that for some N >0
YN—k+1," " YN-1, YN € [é;ﬁ]
then
Un € [%,ﬁ}, foralln > N
Proof:

First of all ﬁ > %, since from the assumption

Aq

Ag>qg—p — p—

> 1, since (¢ —p) >0

SO

=
|-
3
| =



and since p < g we have

n + Yn— n + Yn—
Ynss = Ay, + BT nck gy, Bn T Ynk

QW+ Yok O QUn + Yk
n —"_ n—
Ynt1 SAyn+M=Ayn+l
qYn + Yn—k

But we assumed that for some N > 0, é <yn < q%p, SO

yn—HSAyn—'—lSAX +1
q—p
and
2
Yn+1 S -+ 1
q—p
we assumed that A2 < A —q+p, so
Atg-p< A
Divide both sides of the inequality by ¢ — p
A? — A
+q—p <
q—p q—p
A? A
+1<—
q—p q—p
Return to (4.20)
A? A
Ynt1 < +1<—
q—p
SO
A
Yni1 S ——
qQ—Pp
Now assume
pr+y
w1 = f(x,y) = Ax +
Yns1 = f(2,y) @+

f(z,y) is increasing in y for each fixed x, since

of (gr+y)x1—(pr+y)x1 (¢—p

dy (qr +y)? (qz + y)?

but, in general, f(x,y) does not behave monotonically in z for fixed y and this is

(4.20)

a mistake in [16], because they said in the proof of Thm.(6.2) that ”the function
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F(z,y) is decreasing in x for each fixed y, and increasing in y for each fixed z”.

Now we will clarify this:

8f_A (qx +y) xp—(pr+y) xq
—— =A+
ox (gx + y)?

af Ny qrp + yp — prq — qY
ox (qz +y)?

of _ 4, yp—4d

oz~ (qz+y)?
but p < ¢q, so
ylp - C])2 <0
(qrv +)
L. If |A] > |(qf+yQ)2 = (qiqu))z, then 2L is positive.
2. If |A] < |(qf+yq)2 = (q;qu;)z, then 2L 5- is negative.

Under our assumptions f(x,y) is increasing in z for each fixed y since y < ﬁ, and r > %

as we will clarify now

ylg—p) < A (4.21)
and
xq>1 (4.22)
From (4.21) and (4.22) we have
)

This is true since xq > 1

Also, since xq + y > xq we conclude that

A>y(q—p)
Tq+y

but we know that (xq+ y)*> > zq+y > zq > 1 so

A y(qg—p) - y(q—p)2
rq+y  (rq+y)
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Consequently,
y(q —p)
(zq +y)?

Thus under our assumptions f(z,y) is increasing in both arguments.

Return to

pr+y
w1 = f(z,y) = Ax +
Yni1 = f(2,y) 0T+

Fay) > f (éy) - ) G é)

f(x,ybf(l,l) :AX1+ZX_

q q

1 (p+1)x?t
flz,y) > Ax vl T
A (p+1 p+1
f@w)2—+& ) )
g (¢+1) " (¢+1)
but since we assumed that
1
p>-
q
we have
pg > 1
Add (q) to both sides to get
pg+q>1+gq

Divide both sides by (1 + q)
@+Dq>1+q
14¢ I+gq
@+Uq>1
1+gq

Divide both sides by (q)

—~
—_

p+1)
I+gq

V
I

+
L)

~—~

substitute in (4.23)

o

p+1
(¢+1)

~—

flz,y) > >

|

Thus
1
Yn+1 Z -
q

The proof is now complete.
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4.6 Semi-cycle analysis

Theorem 4.6.1 [14]

Assume that f € [(0,00) x (0,00), (0,00)] is such that : f(x,y) is increasing (respectively,
decreasing) in x for each fized y, and f(x,y) is decreasing (respectively, increasing) in y
for each fized x. Let T be a positive equilibrium of Eq.(2.4). Then, except possibly for the
first semi-cycle, every oscillatory solution of Eq.(2.4) has semi-cycle of length at least k.

Furthermore, if we assume that

flu,u) =2  for every u
and

flz,y) <z foreveryz <y<ux

then {x,} oscillates about the equilibrium T with semi-cycles of length k + 1 or k + 2,
except possibly for the first semi-cycle which may have length k. The extreme in each
semi-cycle occurs in the first term if the semi-cycle has two terms and in the second term

if the semi-cycle has three terms, and in the k+1 term if the semi-cycle has k + 2 terms.

Corollary 1 Assume that p > q, then except possibly for the first semi-cycle every oscil-
latory solution of Eq.(4.3) has semi-cycle of length at least k.

Proof: The proof follows from Theorem (4.6.1), since under the assumption that p > g,
f(z,y) is increasing in x for each fixed y and decreasing in y for each fixed x, as we have

proved in the previous section.

4.7 Global stability

Theorem 4.7.1 Assume that
p>q 0<A<1, (A2P+A%%) < (p—q) < 5(p+1)(g+1) and p—1<2q(1—-A?)
, then the positive equilibrium point of Eq.(4.3) is globally asymptotically stable.

Proof:
We will apply Theorem (2.5.1) in the proof using the interval |A +1,2(A + 1)

Under these assumptions we have shown in part (a) of Theorem (4.3.1) that g is locally

53



stable. We need to show that 7 is a global attractor. To this end, we consider the function

pr+y

F(x,y) = Az +
(z,y) p——y

We have shown that when p > ¢, f(z,y) is increasing in z for each fixed y, and decreasing
in y for each fixed .

Suppose that (m, M) € [A +1, §(A + 1)] X [A +1, ’é(A - 1)] is a solution of the system

M=F(M,m) and m=F(m,M)

Then we get Iy
M =AM 4 22T
qgM +m
and \
pm +
=A
m m + g+ M
SO u
pM +m
1—-—AM =
( ) aM +m
and Iy
pm +
1—Am =
( ) gm + M
From which we have
q(1 — AM*+ (1 — AymM = pM +m (4.24)
and
q(1 —Am?* + (1 — AymM =pm + M (4.25)

Subtract (4.25) from (4.24) to get
(1 = A)(M? —m?) = p(M —m) — (M —m)

q(1 = A)Y(M —m)(M +m) = p(M —m) — (M —m)

(M —m) (g1 — A)(M +m) —p+1) =0 (4.26)

If g(1— A)Y(M+m)—p+1=0, then m + M = £

q—qA
But, this contradicts our assumption that p — 1 < 2¢(1 — A?), and we will clarify this.

p—1<2q—2qA?
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———
p—1<2q—2qA?+2qA — 2qA
p—1<2Aq+2q —2qA% — 2¢A
p—1<q(2A+2)—qA(2A+2)

p—1<(qg—qA)(2A+2)

p—1

q—qA

But we have assumed that m > A+1and M > A+ 1,so m+ M > 2A + 2 and here is

< (24+2)

the contradiction.

Thus, m — M =0, and m = M. According to Theorem (2.5.1) the proof is complete.

Theorem 4.7.2 Assume that

1 _ 2 _ (q=p)(1—-A)
s <p<uq Ag>q—p, A<A—-q+p, 0<A<1l and A> I ET
, then the positive equilibrium point of Eq.(4.3) is globally asymptotically stable.

Proof:

We will apply Theorem (2.5.4) in the proof using the interval [%, ﬁ}
Under these assumptions we have shown in part (b) of Theorem (4.3.1) that y is locally
stable. We need to show that ¥ is a global attractor. To this end, we consider the function
pr+y
@ +y

F(z,y) = Az +

We have shown that F'(x,y) is increasing in both arguments in this interval.

Suppose that (m, M) € [%, ﬁ] X [é, ﬁ} is a solution of the system

m=F(m,m) and M =F(M,M)

Then we get
m:Am+pm+m
gm +m
and Mo M
P
SO



and

M

-
Now we have

(1=A)(g+1)m=p+1 (4.27)
and

(1-A)g+1)M=p+1 (4.28)
Subtract (4.28) from (4.27) to get

1-A)(g+1)(m—-M)=0 (4.29)

Thus, m — M =0, and m = M. According to Theorem (2.5.4) the proof is complete.

Remark: The main problem in [16] was in using the global stability theorems with-

out finding invariant intervals which led to results which are not accurate.

4.8 Numerical Discussion

In this section we give numerical examples which support the theoretical discussion in
the previous sections. These examples are of the form of Eq.(4.3) with different values of
p,q, A, k and different initial conditions. These examples were carried out by MATLAB
6.5.
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Example 1:
Assume that Equation (4.3) holds, take k =1, A= .1, f =.001, vy =1, B = 300 and
C = 3. So the equation will be reduced to the following

001z, + Tn1
T, +
300z, + 3x,_1

Ln+1 = 1

with the initial conditions g = 1 = .33, and n = 0,1, 2, ....

or equivalently
001yn + yn—

100yn + Yn—1
with the initial conditions yo =1, y; =1, and n = 0,1, 2, ...

Yn+1 = ]-yn +

This example supports our result in Theorem (4.4.1), since the assumptions of this

theorem are existent in this example as we will clarify now
1. (k=1) is an odd integer.
2. [(p—1)(g—1)(A+1) = —108.7911] < [—4(qgA + p) = —40.004].
3. (p=.001) < 1.
4. (¢ =100) > 1.

By theory, Eq.(4.3) has prime periodic two solutions as it is obvious from Figure (4.1).

Example 2:
Assume that Eq.(4.3) holds, take k =3, A= .1, 5 =50,7v=5, B=18, C =2 and
n=20,1,2,.... So the equation will be reduced to the following

50z, + 5T, —_3

n =.1 n
Tntl v 172, + 2x,_3

with the initial conditions xq = 10, 1 = 12.5, x5 = .25 and x3 =5

or equivalently
1Oyn + Yn—3
I T S S+ s
with the initial conditions yo =4, y1 =5, yo = .1 and y3 = 2
This example supports our result in Theorem (4.7.1), since the assumptions of this

theorem are existent in this example as we will clarify now
1. (p=10) > (¢ =8.5).
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2. 0<(A=1)<1
3. ([p—1=9) < ([2q(1 — A%)] = 16.83)
4. ([A2P+ A% =11) < (p—q =15 < (E(p+ 1)(g + 1)] = 52.25)

By theory, the positive equilibrium point z = A =~ oD — 1.286 is globally

asymptotically stable as it is obvious from Figure (4.2).

Example 3:
Assume that Eq.(4.3) holds, take k =2, A= .2, =198, y=2, B=10, C =1 and
n=20,1,2,.... So the equation will be reduced to the following

19.8x,, + 22,_2
10z, + ,,—o

L+l = 2£lj'n

with the initial conditions zqg = 8, 1 = 10 and 25 = .2

or equivalently

1Oyn + Yn—2
with the initial conditions yg =4, y; = 5 and y, = .1

Yn+1 = 2yn +

This example supports our result in Theorem (4.7.2), since the assumptions of this

theorem are existent in this example as we will clarify now

3. (Ag=2)>([g—p] = 1)
4. (A2=.04) < ([A—q+p]=.1)

_ —A _
5. (A=.2) > (2] = 6.6722 x 107)

+1 9941 _ .
1—Z)(q+1) = (1_.2);{0“) = 1.2386 is globally

asymptotically stable as it is obvious from Figure (4.3).

By theory, the positive equilibrium point = (
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001lxpn+xpn_1
300z +3xn—1

Figure 4.1: z,,11 = 12, + has prime periodic two solutions
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50xn+5xn 3
17zp 42,3

Figure 4.2: The behavior of the positive equilibrium point of z,; = .1z, +
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+ 19.8xp+2x, 2
10z +xpn—2

Figure 4.3: The behavior of the positive equilibrium point of z,.1 = .2z,
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Chapter 5

Qualitative behavior of the difference
PTntTy_j
q+Tpn—k

equation z, 1 = Ax, +

Introduction

In this chapter we will study some qualitative behavior of the solutions of the difference

equation
Ty + Tpn
Ty = Agy 4 P T Inck 01,2, . (5.1)
q + Tp—k
where the initial conditions x_y, - -+, _1, x¢ are arbitrary positive real numbers and the

coefficients A, p, g are positive constants, while k is a positive integer number.

Our concentration is on invariant intervals, periodic solutions, and the global asymp-
totic stability of all positive solutions of Eq.(5.1).

The global stability of Eq.(5.1) for A = 0 has been studied in [13]. Kulenvic et al.[11]
studied Eq.(5.1) when A =0 and k£ = 1. A more general recursive sequence of the form
Py + Tt

n=0,1,2,.. (5.2)
Q+xn—k

Tnt1 = Axn + an—k +

has been studied in [15].

5.1 Equilibrium points

In this section we will find the equilibrium points of Eq.(5.1)



According to the definition of the equilibrium point we have:

JT::AﬂY:-i-pj_HE
qt+7x
(Lnﬂj:giiﬁ
q+T
1
-4 -2 z-0
q+x
SO
=0
or
(1_A%_@+}L:0
q+

If(1-A)— P+l _ 0, then 1 — A = (p+1)

q+z q+z
1-A)(g+z)=p+1

g—qA+x—-Az=p+1
_ptl—-q+qA
a 1—A
(p—q) + (1+qA)
1—A

Thus T is a positive equilibrium point if one of the following two cases is valid:

&I

T = (5.3)
l.p>qand 0 < A< 1

2. p<q,(g—p)<l+gAdand 0 < A< 1

Lemma 1 Ifp > q, 0 < A <1, then the positive equilibrium point satisfies the inequality
z>1

p
Proof:

From (5.3) we deduce that:

P—a)+(1+qA) p+1l—q+qA _(p+1)—q(1-A4)

v 1A 1-A 11— A
J_J_p—l—l_ >q+1_ _qt+1l—qg+qA
T e I N R
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B 1+qA_ 1
> 1—A_[1+QA]{E}
Thus

T>1+qA[l+A+ A+ ] =14+A+ A+ +qA+qA* +qA> + -

but all terms on the right side are positive so
F>1>1

5.2 Linearization
In this section we derive the linearized equation of Eq.(5.1) about its equilibrium points
To this end, we introduce a continuous function F : (0,00)* — (0, 00) such that

Fla,y) = Az + 252

5.2.1 The linearized equation about the positive equilibrium

point
OF
(@y) _ ety b
Ox (¢ +y)? q+y
M = A + —
ox q+z
Substituting z from (5.3) we have
OF (z,7) P
—==A
oz QP EREnE e
OF (z,2) P
9 A+ q(1—A)+p—q+1+qA
1-A
OF (z, ) P
—qA+tp— A
am a—q +{7_;]1+1+q
hence OF(z.7) (1 A)
T, T p(1 —
A4+ " — 4
o7 + bt 1 Po (5.4)
also
OF(zr,y) _(g+y)x1—-(prty)x1 _g—pz
dy (¢ +y)? (¢ +y)?
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SO
0F (z,7) _ q—pT

dy  (q+71)?
Substituting 7 = w we have
8F(f, j‘) B q— p(p*Q)lt(fl‘JrqA)
= 2
dy (Q n (p‘q’li‘i+qA))

q(1=A)—p(p—q+1+qA)

aF(‘C(_:’j) . 1-A
dy <q(1fA)+pfq+1+qA> 2
1—A

N q—qA—p>+pg—p—qAp
aF(xv'T) 1-A

Ay (g—qA+p—g+1+qA)?
(1-A)2

A 2
aF(f,iv) (—qA qu)Jrl(zzpq)Jr( p>—p)
dy (q—qA+p—q+1+qA)2

(1-A)?

OF (z,7)  —qA(1+p)+q(1+p)—p(l+p)

oy (p+1)? =4

OF (z,) (p+1)(=gA+q—p)(1 - A)

dy (p+1)

OF(z,7) —(qA—q+p)(1— A)
oy p+1

Thus
IF(E) (1 -Ap-gted)

dy p+1
so, the linearized equation about the positive equilibrium point is

Zn+1 — PoRn — Plin—k = 0
where py and p; are given by (5.4) and (5.5).
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5.2.2 The linearized equation about the zero equilibrium point

OF(x,y) _ 4 (Q+y)12?:A+ p
Ox (¢+vy) q+y
0F(0,0) P
— A R .
o7 + p Po (5.6)
and
OF(z,y) _ q—px
dy (q+y)?
w0 OF(0,0) |
: ¢ _1_
oy 2 q 1 (5.7)

so, the linearized equation about the zero equilibrium point is
Zn4+1 — P0Zn — P1in—k = 0

where py and p; are given by (5.6) and (5.7).

5.3 Local stability

In this section we investigate the local stability of the positive solutions of Eq.(5.1)

Theorem 5.3.1 The zero equilibrium point (& = 0 ) is locally asymptotically stable if
p—q<—(1+qA). In particular, if p—q > —(1 + qA), then T = 0 is unstable.

Proof:
First suppose that p — g < —(1 + ¢A)

_ _ p 1 p 1
ol +lal = 1A+ L+ = a4 D
q q q (g

1 A 1
_ gy bl Actpe
q q

but from assumption

p—q<-1-—qA

SO
p+1+qA<gq
and y
1
Agtprl
q
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Thus
[po| + || <1

and so the zero equilibrium point is locally asymptotically stable under this condition

according to Theorem (2.2.1).

In particular, if p — g > —(1 + gA), then |po| + |p1| = AqJ;erl
but from assumption

p+1l+qA>gq
and y

ptl+ga >1

q
SO p
_ _ qg+p+1
ol + 1| = ———— =1

But in addition we have one of the following two cases holds:

1. k is an odd integer and

1
pP1L = — >0
q
2. k is an even integer and
_ Py 1
pop1 = (A+=)(=) >0
( q)(q)

and so condition (2.6) is a necessary condition for the asymptotic stability according to
Theorem(2.2.1), which is not true under this condition as we have proved previously.

Thus = 0 is unstable in this case.

Theorem 5.3.2 If p > q, 0 < A< 1 and p— q+ qA < 1, then the positive equilibrium
point is locally asymptotically stable.

Proof:
p(1—A), —(1—=A)(p—q+qA)
= A
ol + lon| = 4+ B | RS
1—A —(1—=A)(p— A
_ o4 )+\ A-A)p—qg+q )‘
p+1 p+1
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but we know that | — x| = |z|, and so

(1-4)
p+1

(1-A)p—q+q4)
p+1

p
lpol + 1] = A+ + | |

From assumption p > ¢, sop—¢ >0 and p — g + gA > 0. Consequently,

Ml—A)+(1—Aﬂp—q+qA)
p+1 p+1

lpol + |p1| = A+

since p — q + gA < 1 we have
Ap+ 1) +pl-A)+(1-A)p—q+qA) _Alp+1)+p(l—A)+(1-A)

+lp1| = <
|P0| |/01| P+l D1
and s Ap+D)+(1-Ap+1) _ (p+1)(A+1-4)
p+1)+(1-A)p+1 p+1)(A+1-
lpol + |p1] < - 1
p+1 p+1
Hence,
lpol + 1] <1

This proves that the positive equilibrium point is locally asymptotically stable under these

conditions.

Theorem 5.3.3 I[fp<q, 0<A<1,q—p<Aq and p—q+ qA < 1, then the positive

equilibrium point s locally asymptotically stable.

Proof:

First we notice that under these assumptions we have a positive equilibrium point
sincep<q,0<A<landq—p< Ag< Agq+1
Now we will check the local stability:
(1-4)
p+1
1—-A
a-4
p+1
but we know that | — x| = |z|, and so

|+|_<1_A)(p_Q+qA)
p+1

—1-A)p—q+44)
p+1

p
lpo| + |p1] = |A +

— A4t |

(1-4)
p+1

(1-A)p—q+q4)
p+1

p
lpo| + || = A+ + | |

From assumption ¢ — p < Aq, so Aq+ p — q > 0. Consequently,

Ml—AX+ﬂ—w®@—q+@A)
p+1 p+1

lpol + |p1| = A+
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since p — ¢ + qA < 1 we have

<MP+U+PQ—AW+@—AMP—Q+WQ<fWH4J+M1—A%Hﬂ—A)

—|— —
|po o1 P o

This proves that the positive equilibrium point is locally asymptotically stable under these

conditions.

Theorem 5.3.4 Ifp < q, 0 < A < 1 and Ag < q—p < Aq+ 1, then the positive
equilibrium point is locally asymptotically stable. Furthermore, condition (2.6) can be

considered as a necessary and sufficient condition for the asymptotic stability of Eq.(5.1).

Proof: (1 A) (1 A)( A)
p(l— —1-A)lp—q+g
+ o] = A+ +
lpol + |p1] = | P |+ | | |
1—A —(1—A)(p— A
_ o )+‘( )(p —q+qA)
p+1 p+1
p+1 p+1

since Aqg < ¢ — p, and so Aqg — ¢+ p < 0 we have

|%FHMM:A+pu_A)_UfWQ@—q+qm

p+1 p+1
_Ap+ 1) +p1-A) - (A= A)(=[=p+q—4q4])
p+1
_Alp+ 1) +p(1—A)+ (10— A)(g—p—qA)
B p+1

but we know that ¢ — p < Ag+ 1, and so ¢ — p — Ag < 1. Thus

Alp+1)+p(l—A)+ (1 - A)
p+1

lpo| + |p1] < -1

This proves that the positive equilibrium point is locally asymptotically stable. Thus,
condition (2.6) is sufficient for the asymptotic stability of Eq.(5.1). In addition, we see

that one of the following two cases is valid:

1. k is an odd integer, we know that Ag < ¢—pand Ag—q+p <0 so

—(1-A)p—-q+4d4)

>0
p+1

p1 =
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2. k is an even integer and

popr = (A+p(1—A)) (—(1—A)(p—q+qA)) =0

p+1 p+1

Thus, according to Theorem (2.2.1) condition (2.6) is also necessary for the asymptotic
stability of Eq.(5.1).

5.4 Periodic solutions

In this section, we investigate the periodic character of the positive solutions of Eq.(5.1)

Theorem 5.4.1 Equation(5.1) has no positive solutions of prime period two for all pos-

itive A, p, q
Proof:

1. If k£ is an even integer.

Assume for the sake of contradiction that there exists distinct positive real numbers
¢ and @ such that

"‘,¢7¢a¢7¢7"'

is a prime period two solution of Eq.(5.1).

Since k is even, x,_ = x,. Substituting in Eq.(5.1) we get

Y= Ap+ pf:f (5.8)
and
6= A+ pj):f (5.9)
From (5.8) we have
V(g+0) =Adlg+¢)+ (p+1)¢
SO
Vg + oy = Ao+ AP + pd + ¢ (5.10)

From (5.9) we have
¢l +¢) = Ad(g+ ) +py + ¢
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Thus,
6q+ oY = Aqy + AY* + py + ¥ (5.11)
By subtracting (5.11) from (5.10) we have

g(¥ — @) = Aq(¢ — ) + A(¢* = ¢*) +p(¢ = ¥) + (¢ — V)

90— ¢) = —Aq() — ¢) + A(¢p = V) +¥) —p(¥) — ¢) — (¥ — )
g —¢)=—Aq() — ¢) = AW = d) (¥ + &) —p(¥ — ¢) — (¥ — ¢)
(=) g+ Aq+Alp+ ¢ +p+1)=0
(=) gl + A+ Al + @] +p+1) =0

but we know that
(ql+A+ A +ol+p+1)>0
SO
b-6=0
Thus
¢ =1
which contradicts the assumption that ¢ # ¢

Thus, the proof of Theorem (5.4.1) when £ is even is now finished.

. If k is an odd integer.

Assume for the sake of contradiction that there exists distinct positive real numbers
¢ and ¢ such that

"'7¢7¢a¢5¢7"'

is a prime period two solution of Eq.(5.1).

Since k is odd, x,_ = T,+1. Substituting in Eq.(5.1) we get

VY =A¢9+ pj:f (5.12)
and
6= A+ p;/’:f (5.13)
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From (5.12) we have
Vg +4) = Adlg+ ) +pp + ¢

S0

@+ = Agd + Ag) + po + 1) (5.14)
From (5.13) we have

O(q+¢)=Av(g+ o) +pb+¢
Thus,

90+ ¢" = Aqy + Ay + p + ¢ (5.15)
By subtracting (5.15) from (5.14) we have

9 — @) + (* = &) = Aq(é — ¥) + p(¢ — V) + (¥ — ¢)
(v =0)+ W —=0)(W+¢)=—-Aq( = @) —p(t — ¢) + (¥ — ¢)
Divide both sides by (¢ — ¢), since ¢ # ¥
g+ (p+1¢)=—-Ag—p+1

Hence,
b+ =—Ag—q—p+1 (5.16)

While by adding (5.15) to (5.14) we have
g+ 0) + 97 + 6" = Aqd + ¢) + 2409 + p(é +¢) + (¢ + 1)

V4" = (0 +Y)(Ag+p+1—q)+24¢0
Add (2¢4) to both sides

VP + 200+ ¢ = (9 + ) (Ag+p+1—q)+ (2A+2)¢0

(W +¢)?=(¢+U)(Ag+p+1—q)+2(A+1)¢v
Now, substitute (¢ + ) from (5.16)

(—Ag—q—p+1)P2=(-Ag—q—p+1)(Ag+p+1—q) +2(A+ )¢y (5.17)
First, we will find (—Aq — ¢ —p+ 1)?
(—Ag—q—p+1)P?=(-Ag—q—p+1)(—-Ag—q—p+1)
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= AP+ AP +Ap—Aq+ AP+ +aqp—q+App+aep+p +-—p—Ag—q—p+1
and so
(—Aq—q—p+1)? = A2 +2A¢% + 2Aqp — 2Aq+ > + 2qp — 2¢ +p* — 2p+1 (5.18)

Now, we will find (—Ag—q¢—p+1)(Ag+p+1—¢q)

(-Ag—q—p+1)(Ag+p+1—-q)=

— AP —Aqp— Aq+ A — A —qp—q+ ¢ —Agp—p* —p+pg+Ag+p+1—gq

Thus

(—Aqg—q—p+1)(Ag+p+1—q) = —A¢ —2Ap— 29+ ¢ —p*+1  (5.19)
Substitute (5.18) and (5.19) in (5.17).
A PH2A¢P+2Aqp—2A0+*+2qp—2q+p° —2p+1 = —A¢* =2 Aqp—2¢+¢" —p* +1+2(A+1) o0

AP 2AP2Aqp—2Aq+¢*+2qp—2q+p* —2p+1+ A2 P42 Aqp+-2q—¢*+p* —1 = 2(A+1) g
2A%¢% + 2A¢% + 4Aqp — 2Aq + 2p* + 2qp — 2p = 2(A + 1)y
2A%° + A¢® + 2Aqp — Aq+ p* + qp — p) = 2(A + )¢
A2 + Ag® +2Aqp — Aq+p* +qp—p = (A+ 1)¢y
AP+ A+ Agp — Aq+ Aqp + p* +pg — p = (A+ 1)
Aq(Ag+q+p—1)+p(Ag+p+q—1)=(A+1)¢¥
(Ag+p)(Ag+q+p—1)=(A+1)oy

Consequently,
(Ag+p)(Ag+q+p—1)
A+1

oY = (5.20)

From (5.16) and (5.20) we have

(Ag+p)(Ag+q+p—1)

PY(d+ 1) = 151

(—Ag—q—p+1)

(Ag+p)(Ag+q+p—1)(=1)(Ag+q+p—1)
A+l

PY(o+ ) =
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since (Aq+p), (A+1) and (Ag+q+p—1)? are positive numbers, we conclude that

(A A —1)?
b6+ ) = (q+p)(Aq++1q4rp 1) <0

This contradicts our assumption that both ¢ and 1 are positive numbers, and so

the proof of Theorem (5.4.1) is now complete.

5.5 Invariant intervals

Theorem 5.5.1 Suppose that
p>q, 0<A<1l, pP+¢@<pil—A), p—qg+qgA<l and 2q<p—pA.
Assume that for some N > 0
TN—k+1," " TN-1,TN € [%, %}

then

Ty € [%,’—;},for alln > N

Proof:

Since x,, > % we have

Ty + Ty p(L) + 2y,
q+ Tp_p p q+ Tp—k
SO
q q+ Tn—k q
Tpa1 = A(5) + =A(=)+1
+1 (p) P (p)
substitute 1 = g
q g, , PG)
o 2 A + L= acdy ¢ =2
q p q
now since p > ¢ we have
xnﬂzg(AHf)zg(B) >4
p q b \q p

Thus



Now assume that
pr+y

q+y

In our interval f(z,y) is increasing in x for each fixed y, and decreasing in y for each fixed

Tpr = f(x,y) = Az +

T since
of _ 4, laty) xp—(prty) x0
Ox (q+y)?
af _ 4 (q+y)><2p:AJr Py
Ox (¢+y) q+y
and
af _(g+y)x1—(pr+y)x1
oy (q+y)?
of _aty—pr—y  q—pv
dy (¢ +y)? (g +y)?

so f(x,y) is increasing in y for each fixed z if ]% > x, and f(z,y) is decreasing in y for

each fixed z if g <.
Return to our equation: z,1 = f(x,, Tn_k)

In our interval f(x,,x,_x) is increasing in (z,) for each fixed (z,_x), and decreasing

in (z,_x) for each fixed (z,).

Since we assumed that for some N > 0, % <ay < §, we have

f(xnvxnfk) S f(gaxnk) S f(B’ g)

q p
and so )+ (9)
p LAY
Ty Tpeie) < A=) + 5.21
but we have so s )
P —(i}-q <(1-Ap

and since pg + q > q we conclude that

3 2 3 2
+ +
PEC_PEC gy,

pq+q q
and so s )
+
oL - ayp
pq+q



In another way

pq+q
substitute
1
L_»
P
to get
W+aG)
(g +a)(3)
p342q2
p
by <1-4
p
Multiply both sides by (%)
P (pdt(f) P
p
= <=(1-A4)
patq
g\ ™ q
SO
P (,,34;2) P
p
= +=-A<=
patyq
g\ ™ ¢ q
and ,
P+
il 52) +E4E
a+% ¢ g
S0 p a\(P\(4
(E)p+ ()(E)(E) LPyP
q+1 a q
Thus . ;
M) G) oy P (5.22)
q+1 a q
substitute (5.22) in (5.21) to get
(2 q
i <TG py
g+ ¢ q
and so
Xn+1 S g

The proof is now complete.

Theorem 5.5.2 Suppose that
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p<q, O0<A<I1, q—p<Aq and Aq+p2+%p<q.
Assume that for some N > 0

q 2
TN—k+1,"" ", TN-1, TN € [;7;]

then

q 24
Ty € [5,?},f0ralln>]\7

Proof:

Since x,, > % we have

) + 2,
trs = Ag, 1 DT Tk gy Pl F I
Jr
q—i_xn—k p Q+xn—k
SO
q q+ Tn—k q
Tpy1 > A(F)+ —— = A(F) +1
2 At e
substitute 1 = g
pn 2 A+ L= 4y + Doty )52
p q p q p p q
SO y
anzg(A#f):Q( q“)) (5.23)
p q p q
but from assumption ¢ — p < Ag so Aq+ p > g and
A
41P o (5.24)
q

substitute (5.24) in (5.23) to get

A
$n+12g( q_l_p)ZgXl
q p

]

Thus,

Neo)

Xn+1 Z -
p

Assume that
pTr +y

q+y

We have proved in the previous theorem that f(z,y) is increasing in z for each fixed y,

Tny1 = f(z,y) = Az +

and decreasing in y for each fixed x in this interval.
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SO

xn-{—l S -
p

but from assumption Aq + p? + %p < ¢, and so

q

2q (Aq+p*+3
o 2 (A )
p q
Thus
2
Xn+1<_q
|y

The proof is complete.
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5.6 Global stability

Theorem 5.6.1 Assume that

p>q, 0<A<1l, (P+¢)<pyl—A4), 2¢<((p—-pA) and p—q+gA<l
Then the positive equilibrium point of Eq.(5.1) is globally asymptotically stable.

Proof: Set

pr+y

q+y
Under these assumptions, we have shown in Theorem (5.3.2) that the positive equilib-

f(z,y) = Az +

rium point is locally asymptotically stable. We need to prove that Z is a global attractor
and we will use Theorem (2.5.1) for this.

We know that ]% < flz,y) < §, and in this interval f(z,y) is increasing in z for each fixed
y, and decreasing in y for each fixed x.

Suppose that (m, M) € [%, g] X [%, ﬂ is a solution of the system

M=FM,m) and m=F(m,M)

Then we get A
M =AM 4 22T
q+m

SO v
(1—A)p =22+ ™
qg+m

From which we have
(M —AM)(q+m) =pM +m

SO
Mqg+mM — AMq— AmM = pM +m (5.25)
Also
pm + M
m=Am+ —
q+ M
and u
pm +
1—-Am=——
( ) q+ M
Thus

(m—Am)(q+ M) =pm+ M
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and so
mq +mM — Amqg — AmM = pm + M (5.26)

Subtract (5.26) from (5.25) to get
q(M —m) — Ag(M —m) = p(M —m) + (m — M)
q(M —m) — Ag(M —m) = p(M —m) — (M —m)
(M—=m)(g—qA—p+1)=0 (5.27)

but from assumption p — ¢+ ¢gA <1,andso1—p+qg—qA > 0. Thus, M —m =0 and
m = M.

Theorem 5.6.2 Assume that
p<q, 0<A<1l, O0<p—q+gA<], Aq+p2—|—%p<q and
p(p—q+1+qA) <2q(1 - A)
Then the positive equilibrium point of Eq.(5.1) is globally asymptotically stable.

Proof: Set
pr +y

qty
Under these assumptions, we have shown in Theorem (5.3.3) that the positive equilib-

flz,y) = Az +

rium point is locally asymptotically stable. We need to prove that z is a global attractor
and we will use Theorem (2.5.1) for this.

We know that 2% < flz,y) < 2;‘7, and in this interval f(z,y) is increasing in x for each
fixed y, and decreasing in y for each fixed x.

Suppose that (m, M) € [%, %] X [%, %] is a solution of the system
M=F(M,m) and m=F(m,M)

Then we get \
M= AM 4 P22 E™
q+m
and u
pm +
m=Am+ ——
q+M

In the same procedure as in Theorem (5.6.1) we conclude that
(¢—Ag—p+1)(M—m)=0

but p—q¢+g¢A<l,and 0<1—p+q— qA. Thus, M =m.

The result is a consequence of Theorem (2.5.1).
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5.7 Numerical Discussion

In this section we give numerical examples which support the theoretical discussion
in the previous sections. These examples are of the form of equation (5.1) with different

values of p, q, A, k and the initial conditions. The examples were carried out on MATLAB.

Example 1:
Assume that Equation (5.1) holds, take k =1, A = .01, p = .05, ¢ = .02and n =0, 1,2, ....

So the equation will be reduced to the following

052, + r,_1

il = 01z, +
Pntl T2

with the initial conditions o = ;1 =1
This example supports our result in Theorem (5.6.1), since the assumptions of this theo-

rem are existent in this example as we will clarify now
1. (p=.05) > (¢ =.02).
2. 0<(A=.01) <L
3. ([P*+¢? =5.25 x 107*) < (pg[l — A] = 9.9 x 107%).
4. (2q = .04) < ([p — pA] = .0495).

5 ([p—q+qA] = .0302) < 1.

= —q+1+qA
x:pq-&-—i—q —

05—.02414.02x.01 _ :
s = = 1.0406 is

1-.01

By theory, the positive equilibrium point
globally asymptotically stable as it is obvious from Figure (5.1)

Example 2:
Assume that Equation (5.1) holds, take k =1, A= .81,p=.1,¢g=.5andn=0,1,2,....
So the equation will be reduced to the following

dx, + x5

Tpe1 = .8lx, +
1 0+ Tn—1

with the initial conditions o = ;1 =1
This example supports our result in Theorem (5.6.2), since the assumptions of this theo-

rem are existent in this example as we will clarify now
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05xn+xn—1
024+xzp—1

Figure 5.1: The behavior of the positive equilibrium point of z,.; = .01z, +
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Figure 5.2: The behavior of the positive equilibrium point of z,; = .81z, + %
L (p=.1)<(¢=".5)
2. 0<(A=381)<1.
3.0<([p—q+qAl=5x1073) <1
4. ([Aq + p*+ .5p] = .465) < (¢ = .5)
5. ([plp — g + 1+ gA)] = .1005) < ([2¢(1 — A)] = .19)
By theory, the positive equilibrium point z = p_qltIXqA = '1_'51“_1;'15”81 = 5.2895 is

globally asymptotically stable as it is obvious from Figure (5.2).
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Appendix A

The MATLAB 6.5 Codes

6$n+7xn—k

A.1 The difference equation x, ; = Az, + B Ot

%Qualitative behavior of the difference equation

%Xn+1 = AXn + ( BetaxXn + Gamma*Xn-k ) / ( BxXn + CxXn-k )

Y%We’am Masarweh

%1095374
%format long

Beta=input (’insert the value of Beta=’);
Gamma=input (’insert the value of Gamma=’);
’P=Beta/Gamma’

P=Beta/Gamma

B=input (’insert the value of B=’);
C=input (’insert the value of C=’);
’Q=B/C’

Q=B/C

A=input (’insert the value of A=’);
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K=input (’insert the value of K=’);

for h=1:K+1

x(h)=input (’insert the value of initial value =’);

y(h)=(C/Gamma) . *x (h) ;

end

for i = K+1

end

plot (y)

A.2 The difference equation x, . ; = Az, +

%Qualitative behavior of the difference equation

%¥n+1l = AXn + ( p*Xn + Xn-k ) / ( q + Xn-k )

:100,
y(A+1)=A. *y (1) +((P.*y (1) +y(i-K))/(Q.*y (1) +y(i-K)));

%We’am Masarweh

%1095374

%hformat long

p=input (’insert the
g=input (’insert the
A=input (’insert the

K=input (’insert the

for h=1:K+1

x(h)=input (’insert the value of initial value =’);

end

for i = K+1

end

plot (x)

1100,
x(i+1)=A.*x(i)+((p.*x(1)+x(i-K))/(q+x(i-K)));

value
value
value

value

of p=");
of gq=7);
of A=);
of K=");
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